1 /* 2 * SPU file system -- SPU context management 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <asm/atomic.h> 28 #include <asm/spu.h> 29 #include <asm/spu_csa.h> 30 #include "spufs.h" 31 32 33 atomic_t nr_spu_contexts = ATOMIC_INIT(0); 34 35 struct spu_context *alloc_spu_context(struct spu_gang *gang) 36 { 37 struct spu_context *ctx; 38 struct timespec ts; 39 40 ctx = kzalloc(sizeof *ctx, GFP_KERNEL); 41 if (!ctx) 42 goto out; 43 /* Binding to physical processor deferred 44 * until spu_activate(). 45 */ 46 if (spu_init_csa(&ctx->csa)) 47 goto out_free; 48 spin_lock_init(&ctx->mmio_lock); 49 mutex_init(&ctx->mapping_lock); 50 kref_init(&ctx->kref); 51 mutex_init(&ctx->state_mutex); 52 mutex_init(&ctx->run_mutex); 53 init_waitqueue_head(&ctx->ibox_wq); 54 init_waitqueue_head(&ctx->wbox_wq); 55 init_waitqueue_head(&ctx->stop_wq); 56 init_waitqueue_head(&ctx->mfc_wq); 57 init_waitqueue_head(&ctx->run_wq); 58 ctx->state = SPU_STATE_SAVED; 59 ctx->ops = &spu_backing_ops; 60 ctx->owner = get_task_mm(current); 61 INIT_LIST_HEAD(&ctx->rq); 62 INIT_LIST_HEAD(&ctx->aff_list); 63 if (gang) 64 spu_gang_add_ctx(gang, ctx); 65 66 __spu_update_sched_info(ctx); 67 spu_set_timeslice(ctx); 68 ctx->stats.util_state = SPU_UTIL_IDLE_LOADED; 69 ktime_get_ts(&ts); 70 ctx->stats.tstamp = timespec_to_ns(&ts); 71 72 atomic_inc(&nr_spu_contexts); 73 goto out; 74 out_free: 75 kfree(ctx); 76 ctx = NULL; 77 out: 78 return ctx; 79 } 80 81 void destroy_spu_context(struct kref *kref) 82 { 83 struct spu_context *ctx; 84 ctx = container_of(kref, struct spu_context, kref); 85 spu_context_nospu_trace(destroy_spu_context__enter, ctx); 86 mutex_lock(&ctx->state_mutex); 87 spu_deactivate(ctx); 88 mutex_unlock(&ctx->state_mutex); 89 spu_fini_csa(&ctx->csa); 90 if (ctx->gang) 91 spu_gang_remove_ctx(ctx->gang, ctx); 92 if (ctx->prof_priv_kref) 93 kref_put(ctx->prof_priv_kref, ctx->prof_priv_release); 94 BUG_ON(!list_empty(&ctx->rq)); 95 atomic_dec(&nr_spu_contexts); 96 kfree(ctx->switch_log); 97 kfree(ctx); 98 } 99 100 struct spu_context * get_spu_context(struct spu_context *ctx) 101 { 102 kref_get(&ctx->kref); 103 return ctx; 104 } 105 106 int put_spu_context(struct spu_context *ctx) 107 { 108 return kref_put(&ctx->kref, &destroy_spu_context); 109 } 110 111 /* give up the mm reference when the context is about to be destroyed */ 112 void spu_forget(struct spu_context *ctx) 113 { 114 struct mm_struct *mm; 115 116 /* 117 * This is basically an open-coded spu_acquire_saved, except that 118 * we don't acquire the state mutex interruptible, and we don't 119 * want this context to be rescheduled on release. 120 */ 121 mutex_lock(&ctx->state_mutex); 122 if (ctx->state != SPU_STATE_SAVED) 123 spu_deactivate(ctx); 124 125 mm = ctx->owner; 126 ctx->owner = NULL; 127 mmput(mm); 128 spu_release(ctx); 129 } 130 131 void spu_unmap_mappings(struct spu_context *ctx) 132 { 133 mutex_lock(&ctx->mapping_lock); 134 if (ctx->local_store) 135 unmap_mapping_range(ctx->local_store, 0, LS_SIZE, 1); 136 if (ctx->mfc) 137 unmap_mapping_range(ctx->mfc, 0, SPUFS_MFC_MAP_SIZE, 1); 138 if (ctx->cntl) 139 unmap_mapping_range(ctx->cntl, 0, SPUFS_CNTL_MAP_SIZE, 1); 140 if (ctx->signal1) 141 unmap_mapping_range(ctx->signal1, 0, SPUFS_SIGNAL_MAP_SIZE, 1); 142 if (ctx->signal2) 143 unmap_mapping_range(ctx->signal2, 0, SPUFS_SIGNAL_MAP_SIZE, 1); 144 if (ctx->mss) 145 unmap_mapping_range(ctx->mss, 0, SPUFS_MSS_MAP_SIZE, 1); 146 if (ctx->psmap) 147 unmap_mapping_range(ctx->psmap, 0, SPUFS_PS_MAP_SIZE, 1); 148 mutex_unlock(&ctx->mapping_lock); 149 } 150 151 /** 152 * spu_acquire_saved - lock spu contex and make sure it is in saved state 153 * @ctx: spu contex to lock 154 */ 155 int spu_acquire_saved(struct spu_context *ctx) 156 { 157 int ret; 158 159 spu_context_nospu_trace(spu_acquire_saved__enter, ctx); 160 161 ret = spu_acquire(ctx); 162 if (ret) 163 return ret; 164 165 if (ctx->state != SPU_STATE_SAVED) { 166 set_bit(SPU_SCHED_WAS_ACTIVE, &ctx->sched_flags); 167 spu_deactivate(ctx); 168 } 169 170 return 0; 171 } 172 173 /** 174 * spu_release_saved - unlock spu context and return it to the runqueue 175 * @ctx: context to unlock 176 */ 177 void spu_release_saved(struct spu_context *ctx) 178 { 179 BUG_ON(ctx->state != SPU_STATE_SAVED); 180 181 if (test_and_clear_bit(SPU_SCHED_WAS_ACTIVE, &ctx->sched_flags) && 182 test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 183 spu_activate(ctx, 0); 184 185 spu_release(ctx); 186 } 187 188