1 /* 2 * SPU file system -- SPU context management 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/slab.h> 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <asm/spu.h> 29 #include <asm/spu_csa.h> 30 #include "spufs.h" 31 #include "sputrace.h" 32 33 34 atomic_t nr_spu_contexts = ATOMIC_INIT(0); 35 36 struct spu_context *alloc_spu_context(struct spu_gang *gang) 37 { 38 struct spu_context *ctx; 39 struct timespec ts; 40 41 ctx = kzalloc(sizeof *ctx, GFP_KERNEL); 42 if (!ctx) 43 goto out; 44 /* Binding to physical processor deferred 45 * until spu_activate(). 46 */ 47 if (spu_init_csa(&ctx->csa)) 48 goto out_free; 49 spin_lock_init(&ctx->mmio_lock); 50 mutex_init(&ctx->mapping_lock); 51 kref_init(&ctx->kref); 52 mutex_init(&ctx->state_mutex); 53 mutex_init(&ctx->run_mutex); 54 init_waitqueue_head(&ctx->ibox_wq); 55 init_waitqueue_head(&ctx->wbox_wq); 56 init_waitqueue_head(&ctx->stop_wq); 57 init_waitqueue_head(&ctx->mfc_wq); 58 init_waitqueue_head(&ctx->run_wq); 59 ctx->state = SPU_STATE_SAVED; 60 ctx->ops = &spu_backing_ops; 61 ctx->owner = get_task_mm(current); 62 INIT_LIST_HEAD(&ctx->rq); 63 INIT_LIST_HEAD(&ctx->aff_list); 64 if (gang) 65 spu_gang_add_ctx(gang, ctx); 66 67 __spu_update_sched_info(ctx); 68 spu_set_timeslice(ctx); 69 ctx->stats.util_state = SPU_UTIL_IDLE_LOADED; 70 ktime_get_ts(&ts); 71 ctx->stats.tstamp = timespec_to_ns(&ts); 72 73 atomic_inc(&nr_spu_contexts); 74 goto out; 75 out_free: 76 kfree(ctx); 77 ctx = NULL; 78 out: 79 return ctx; 80 } 81 82 void destroy_spu_context(struct kref *kref) 83 { 84 struct spu_context *ctx; 85 ctx = container_of(kref, struct spu_context, kref); 86 spu_context_nospu_trace(destroy_spu_context__enter, ctx); 87 mutex_lock(&ctx->state_mutex); 88 spu_deactivate(ctx); 89 mutex_unlock(&ctx->state_mutex); 90 spu_fini_csa(&ctx->csa); 91 if (ctx->gang) 92 spu_gang_remove_ctx(ctx->gang, ctx); 93 if (ctx->prof_priv_kref) 94 kref_put(ctx->prof_priv_kref, ctx->prof_priv_release); 95 BUG_ON(!list_empty(&ctx->rq)); 96 atomic_dec(&nr_spu_contexts); 97 kfree(ctx->switch_log); 98 kfree(ctx); 99 } 100 101 struct spu_context * get_spu_context(struct spu_context *ctx) 102 { 103 kref_get(&ctx->kref); 104 return ctx; 105 } 106 107 int put_spu_context(struct spu_context *ctx) 108 { 109 return kref_put(&ctx->kref, &destroy_spu_context); 110 } 111 112 /* give up the mm reference when the context is about to be destroyed */ 113 void spu_forget(struct spu_context *ctx) 114 { 115 struct mm_struct *mm; 116 117 /* 118 * This is basically an open-coded spu_acquire_saved, except that 119 * we don't acquire the state mutex interruptible, and we don't 120 * want this context to be rescheduled on release. 121 */ 122 mutex_lock(&ctx->state_mutex); 123 if (ctx->state != SPU_STATE_SAVED) 124 spu_deactivate(ctx); 125 126 mm = ctx->owner; 127 ctx->owner = NULL; 128 mmput(mm); 129 spu_release(ctx); 130 } 131 132 void spu_unmap_mappings(struct spu_context *ctx) 133 { 134 mutex_lock(&ctx->mapping_lock); 135 if (ctx->local_store) 136 unmap_mapping_range(ctx->local_store, 0, LS_SIZE, 1); 137 if (ctx->mfc) 138 unmap_mapping_range(ctx->mfc, 0, SPUFS_MFC_MAP_SIZE, 1); 139 if (ctx->cntl) 140 unmap_mapping_range(ctx->cntl, 0, SPUFS_CNTL_MAP_SIZE, 1); 141 if (ctx->signal1) 142 unmap_mapping_range(ctx->signal1, 0, SPUFS_SIGNAL_MAP_SIZE, 1); 143 if (ctx->signal2) 144 unmap_mapping_range(ctx->signal2, 0, SPUFS_SIGNAL_MAP_SIZE, 1); 145 if (ctx->mss) 146 unmap_mapping_range(ctx->mss, 0, SPUFS_MSS_MAP_SIZE, 1); 147 if (ctx->psmap) 148 unmap_mapping_range(ctx->psmap, 0, SPUFS_PS_MAP_SIZE, 1); 149 mutex_unlock(&ctx->mapping_lock); 150 } 151 152 /** 153 * spu_acquire_saved - lock spu contex and make sure it is in saved state 154 * @ctx: spu contex to lock 155 */ 156 int spu_acquire_saved(struct spu_context *ctx) 157 { 158 int ret; 159 160 spu_context_nospu_trace(spu_acquire_saved__enter, ctx); 161 162 ret = spu_acquire(ctx); 163 if (ret) 164 return ret; 165 166 if (ctx->state != SPU_STATE_SAVED) { 167 set_bit(SPU_SCHED_WAS_ACTIVE, &ctx->sched_flags); 168 spu_deactivate(ctx); 169 } 170 171 return 0; 172 } 173 174 /** 175 * spu_release_saved - unlock spu context and return it to the runqueue 176 * @ctx: context to unlock 177 */ 178 void spu_release_saved(struct spu_context *ctx) 179 { 180 BUG_ON(ctx->state != SPU_STATE_SAVED); 181 182 if (test_and_clear_bit(SPU_SCHED_WAS_ACTIVE, &ctx->sched_flags) && 183 test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 184 spu_activate(ctx, 0); 185 186 spu_release(ctx); 187 } 188 189