1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * spu management operations for of based platforms 4 * 5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 6 * Copyright 2006 Sony Corp. 7 * (C) Copyright 2007 TOSHIBA CORPORATION 8 */ 9 10 #include <linux/interrupt.h> 11 #include <linux/list.h> 12 #include <linux/export.h> 13 #include <linux/ptrace.h> 14 #include <linux/wait.h> 15 #include <linux/mm.h> 16 #include <linux/io.h> 17 #include <linux/mutex.h> 18 #include <linux/device.h> 19 #include <linux/of_address.h> 20 #include <linux/of_irq.h> 21 22 #include <asm/spu.h> 23 #include <asm/spu_priv1.h> 24 #include <asm/firmware.h> 25 26 #include "spufs/spufs.h" 27 #include "interrupt.h" 28 29 struct device_node *spu_devnode(struct spu *spu) 30 { 31 return spu->devnode; 32 } 33 34 EXPORT_SYMBOL_GPL(spu_devnode); 35 36 static u64 __init find_spu_unit_number(struct device_node *spe) 37 { 38 const unsigned int *prop; 39 int proplen; 40 41 /* new device trees should provide the physical-id attribute */ 42 prop = of_get_property(spe, "physical-id", &proplen); 43 if (proplen == 4) 44 return (u64)*prop; 45 46 /* celleb device tree provides the unit-id */ 47 prop = of_get_property(spe, "unit-id", &proplen); 48 if (proplen == 4) 49 return (u64)*prop; 50 51 /* legacy device trees provide the id in the reg attribute */ 52 prop = of_get_property(spe, "reg", &proplen); 53 if (proplen == 4) 54 return (u64)*prop; 55 56 return 0; 57 } 58 59 static void spu_unmap(struct spu *spu) 60 { 61 if (!firmware_has_feature(FW_FEATURE_LPAR)) 62 iounmap(spu->priv1); 63 iounmap(spu->priv2); 64 iounmap(spu->problem); 65 iounmap((__force u8 __iomem *)spu->local_store); 66 } 67 68 static int __init spu_map_interrupts_old(struct spu *spu, 69 struct device_node *np) 70 { 71 unsigned int isrc; 72 const u32 *tmp; 73 int nid; 74 75 /* Get the interrupt source unit from the device-tree */ 76 tmp = of_get_property(np, "isrc", NULL); 77 if (!tmp) 78 return -ENODEV; 79 isrc = tmp[0]; 80 81 tmp = of_get_property(np->parent->parent, "node-id", NULL); 82 if (!tmp) { 83 printk(KERN_WARNING "%s: can't find node-id\n", __func__); 84 nid = spu->node; 85 } else 86 nid = tmp[0]; 87 88 /* Add the node number */ 89 isrc |= nid << IIC_IRQ_NODE_SHIFT; 90 91 /* Now map interrupts of all 3 classes */ 92 spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc); 93 spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc); 94 spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc); 95 96 /* Right now, we only fail if class 2 failed */ 97 if (!spu->irqs[2]) 98 return -EINVAL; 99 100 return 0; 101 } 102 103 static void __iomem * __init spu_map_prop_old(struct spu *spu, 104 struct device_node *n, 105 const char *name) 106 { 107 const struct address_prop { 108 unsigned long address; 109 unsigned int len; 110 } __attribute__((packed)) *prop; 111 int proplen; 112 113 prop = of_get_property(n, name, &proplen); 114 if (prop == NULL || proplen != sizeof (struct address_prop)) 115 return NULL; 116 117 return ioremap(prop->address, prop->len); 118 } 119 120 static int __init spu_map_device_old(struct spu *spu) 121 { 122 struct device_node *node = spu->devnode; 123 const char *prop; 124 int ret; 125 126 ret = -ENODEV; 127 spu->name = of_get_property(node, "name", NULL); 128 if (!spu->name) 129 goto out; 130 131 prop = of_get_property(node, "local-store", NULL); 132 if (!prop) 133 goto out; 134 spu->local_store_phys = *(unsigned long *)prop; 135 136 /* we use local store as ram, not io memory */ 137 spu->local_store = (void __force *) 138 spu_map_prop_old(spu, node, "local-store"); 139 if (!spu->local_store) 140 goto out; 141 142 prop = of_get_property(node, "problem", NULL); 143 if (!prop) 144 goto out_unmap; 145 spu->problem_phys = *(unsigned long *)prop; 146 147 spu->problem = spu_map_prop_old(spu, node, "problem"); 148 if (!spu->problem) 149 goto out_unmap; 150 151 spu->priv2 = spu_map_prop_old(spu, node, "priv2"); 152 if (!spu->priv2) 153 goto out_unmap; 154 155 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 156 spu->priv1 = spu_map_prop_old(spu, node, "priv1"); 157 if (!spu->priv1) 158 goto out_unmap; 159 } 160 161 ret = 0; 162 goto out; 163 164 out_unmap: 165 spu_unmap(spu); 166 out: 167 return ret; 168 } 169 170 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np) 171 { 172 int i; 173 174 for (i=0; i < 3; i++) { 175 spu->irqs[i] = irq_of_parse_and_map(np, i); 176 if (!spu->irqs[i]) 177 goto err; 178 } 179 return 0; 180 181 err: 182 pr_debug("failed to map irq %x for spu %s\n", i, spu->name); 183 for (; i >= 0; i--) { 184 if (spu->irqs[i]) 185 irq_dispose_mapping(spu->irqs[i]); 186 } 187 return -EINVAL; 188 } 189 190 static int __init spu_map_resource(struct spu *spu, int nr, 191 void __iomem** virt, unsigned long *phys) 192 { 193 struct device_node *np = spu->devnode; 194 struct resource resource = { }; 195 unsigned long len; 196 int ret; 197 198 ret = of_address_to_resource(np, nr, &resource); 199 if (ret) 200 return ret; 201 if (phys) 202 *phys = resource.start; 203 len = resource_size(&resource); 204 *virt = ioremap(resource.start, len); 205 if (!*virt) 206 return -EINVAL; 207 return 0; 208 } 209 210 static int __init spu_map_device(struct spu *spu) 211 { 212 struct device_node *np = spu->devnode; 213 int ret = -ENODEV; 214 215 spu->name = of_get_property(np, "name", NULL); 216 if (!spu->name) 217 goto out; 218 219 ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store, 220 &spu->local_store_phys); 221 if (ret) { 222 pr_debug("spu_new: failed to map %pOF resource 0\n", 223 np); 224 goto out; 225 } 226 ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem, 227 &spu->problem_phys); 228 if (ret) { 229 pr_debug("spu_new: failed to map %pOF resource 1\n", 230 np); 231 goto out_unmap; 232 } 233 ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL); 234 if (ret) { 235 pr_debug("spu_new: failed to map %pOF resource 2\n", 236 np); 237 goto out_unmap; 238 } 239 if (!firmware_has_feature(FW_FEATURE_LPAR)) 240 ret = spu_map_resource(spu, 3, 241 (void __iomem**)&spu->priv1, NULL); 242 if (ret) { 243 pr_debug("spu_new: failed to map %pOF resource 3\n", 244 np); 245 goto out_unmap; 246 } 247 pr_debug("spu_new: %pOF maps:\n", np); 248 pr_debug(" local store : 0x%016lx -> 0x%p\n", 249 spu->local_store_phys, spu->local_store); 250 pr_debug(" problem state : 0x%016lx -> 0x%p\n", 251 spu->problem_phys, spu->problem); 252 pr_debug(" priv2 : 0x%p\n", spu->priv2); 253 pr_debug(" priv1 : 0x%p\n", spu->priv1); 254 255 return 0; 256 257 out_unmap: 258 spu_unmap(spu); 259 out: 260 pr_debug("failed to map spe %s: %d\n", spu->name, ret); 261 return ret; 262 } 263 264 static int __init of_enumerate_spus(int (*fn)(void *data)) 265 { 266 int ret; 267 struct device_node *node; 268 unsigned int n = 0; 269 270 ret = -ENODEV; 271 for_each_node_by_type(node, "spe") { 272 ret = fn(node); 273 if (ret) { 274 printk(KERN_WARNING "%s: Error initializing %pOFn\n", 275 __func__, node); 276 of_node_put(node); 277 break; 278 } 279 n++; 280 } 281 return ret ? ret : n; 282 } 283 284 static int __init of_create_spu(struct spu *spu, void *data) 285 { 286 int ret; 287 struct device_node *spe = (struct device_node *)data; 288 static int legacy_map = 0, legacy_irq = 0; 289 290 spu->devnode = of_node_get(spe); 291 spu->spe_id = find_spu_unit_number(spe); 292 293 spu->node = of_node_to_nid(spe); 294 if (spu->node >= MAX_NUMNODES) { 295 printk(KERN_WARNING "SPE %pOF on node %d ignored," 296 " node number too big\n", spe, spu->node); 297 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n"); 298 ret = -ENODEV; 299 goto out; 300 } 301 302 ret = spu_map_device(spu); 303 if (ret) { 304 if (!legacy_map) { 305 legacy_map = 1; 306 printk(KERN_WARNING "%s: Legacy device tree found, " 307 "trying to map old style\n", __func__); 308 } 309 ret = spu_map_device_old(spu); 310 if (ret) { 311 printk(KERN_ERR "Unable to map %s\n", 312 spu->name); 313 goto out; 314 } 315 } 316 317 ret = spu_map_interrupts(spu, spe); 318 if (ret) { 319 if (!legacy_irq) { 320 legacy_irq = 1; 321 printk(KERN_WARNING "%s: Legacy device tree found, " 322 "trying old style irq\n", __func__); 323 } 324 ret = spu_map_interrupts_old(spu, spe); 325 if (ret) { 326 printk(KERN_ERR "%s: could not map interrupts\n", 327 spu->name); 328 goto out_unmap; 329 } 330 } 331 332 pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name, 333 spu->local_store, spu->problem, spu->priv1, 334 spu->priv2, spu->number); 335 goto out; 336 337 out_unmap: 338 spu_unmap(spu); 339 out: 340 return ret; 341 } 342 343 static int of_destroy_spu(struct spu *spu) 344 { 345 spu_unmap(spu); 346 of_node_put(spu->devnode); 347 return 0; 348 } 349 350 static void enable_spu_by_master_run(struct spu_context *ctx) 351 { 352 ctx->ops->master_start(ctx); 353 } 354 355 static void disable_spu_by_master_run(struct spu_context *ctx) 356 { 357 ctx->ops->master_stop(ctx); 358 } 359 360 /* Hardcoded affinity idxs for qs20 */ 361 #define QS20_SPES_PER_BE 8 362 static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 }; 363 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 }; 364 365 static struct spu *__init spu_lookup_reg(int node, u32 reg) 366 { 367 struct spu *spu; 368 const u32 *spu_reg; 369 370 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 371 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL); 372 if (*spu_reg == reg) 373 return spu; 374 } 375 return NULL; 376 } 377 378 static void __init init_affinity_qs20_harcoded(void) 379 { 380 int node, i; 381 struct spu *last_spu, *spu; 382 u32 reg; 383 384 for (node = 0; node < MAX_NUMNODES; node++) { 385 last_spu = NULL; 386 for (i = 0; i < QS20_SPES_PER_BE; i++) { 387 reg = qs20_reg_idxs[i]; 388 spu = spu_lookup_reg(node, reg); 389 if (!spu) 390 continue; 391 spu->has_mem_affinity = qs20_reg_memory[reg]; 392 if (last_spu) 393 list_add_tail(&spu->aff_list, 394 &last_spu->aff_list); 395 last_spu = spu; 396 } 397 } 398 } 399 400 static int __init of_has_vicinity(void) 401 { 402 struct device_node *dn; 403 404 for_each_node_by_type(dn, "spe") { 405 if (of_property_present(dn, "vicinity")) { 406 of_node_put(dn); 407 return 1; 408 } 409 } 410 return 0; 411 } 412 413 static struct spu *__init devnode_spu(int cbe, struct device_node *dn) 414 { 415 struct spu *spu; 416 417 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) 418 if (spu_devnode(spu) == dn) 419 return spu; 420 return NULL; 421 } 422 423 static struct spu * __init 424 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid) 425 { 426 struct spu *spu; 427 struct device_node *spu_dn; 428 const phandle *vic_handles; 429 int lenp, i; 430 431 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) { 432 spu_dn = spu_devnode(spu); 433 if (spu_dn == avoid) 434 continue; 435 vic_handles = of_get_property(spu_dn, "vicinity", &lenp); 436 for (i=0; i < (lenp / sizeof(phandle)); i++) { 437 if (vic_handles[i] == target->phandle) 438 return spu; 439 } 440 } 441 return NULL; 442 } 443 444 static void __init init_affinity_node(int cbe) 445 { 446 struct spu *spu, *last_spu; 447 struct device_node *vic_dn, *last_spu_dn; 448 phandle avoid_ph; 449 const phandle *vic_handles; 450 int lenp, i, added; 451 452 last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu, 453 cbe_list); 454 avoid_ph = 0; 455 for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) { 456 last_spu_dn = spu_devnode(last_spu); 457 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp); 458 459 /* 460 * Walk through each phandle in vicinity property of the spu 461 * (typically two vicinity phandles per spe node) 462 */ 463 for (i = 0; i < (lenp / sizeof(phandle)); i++) { 464 if (vic_handles[i] == avoid_ph) 465 continue; 466 467 vic_dn = of_find_node_by_phandle(vic_handles[i]); 468 if (!vic_dn) 469 continue; 470 471 if (of_node_name_eq(vic_dn, "spe") ) { 472 spu = devnode_spu(cbe, vic_dn); 473 avoid_ph = last_spu_dn->phandle; 474 } else { 475 /* 476 * "mic-tm" and "bif0" nodes do not have 477 * vicinity property. So we need to find the 478 * spe which has vic_dn as neighbour, but 479 * skipping the one we came from (last_spu_dn) 480 */ 481 spu = neighbour_spu(cbe, vic_dn, last_spu_dn); 482 if (!spu) 483 continue; 484 if (of_node_name_eq(vic_dn, "mic-tm")) { 485 last_spu->has_mem_affinity = 1; 486 spu->has_mem_affinity = 1; 487 } 488 avoid_ph = vic_dn->phandle; 489 } 490 491 of_node_put(vic_dn); 492 493 list_add_tail(&spu->aff_list, &last_spu->aff_list); 494 last_spu = spu; 495 break; 496 } 497 } 498 } 499 500 static void __init init_affinity_fw(void) 501 { 502 int cbe; 503 504 for (cbe = 0; cbe < MAX_NUMNODES; cbe++) 505 init_affinity_node(cbe); 506 } 507 508 static int __init init_affinity(void) 509 { 510 if (of_has_vicinity()) { 511 init_affinity_fw(); 512 } else { 513 if (of_machine_is_compatible("IBM,CPBW-1.0")) 514 init_affinity_qs20_harcoded(); 515 else 516 printk("No affinity configuration found\n"); 517 } 518 519 return 0; 520 } 521 522 const struct spu_management_ops spu_management_of_ops = { 523 .enumerate_spus = of_enumerate_spus, 524 .create_spu = of_create_spu, 525 .destroy_spu = of_destroy_spu, 526 .enable_spu = enable_spu_by_master_run, 527 .disable_spu = disable_spu_by_master_run, 528 .init_affinity = init_affinity, 529 }; 530