1 /*
2  * spu management operations for of based platforms
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  * Copyright 2006 Sony Corp.
6  * (C) Copyright 2007 TOSHIBA CORPORATION
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28 #include <linux/mm.h>
29 #include <linux/io.h>
30 #include <linux/mutex.h>
31 #include <linux/device.h>
32 
33 #include <asm/spu.h>
34 #include <asm/spu_priv1.h>
35 #include <asm/firmware.h>
36 #include <asm/prom.h>
37 
38 #include "spufs/spufs.h"
39 #include "interrupt.h"
40 
41 struct device_node *spu_devnode(struct spu *spu)
42 {
43 	return spu->devnode;
44 }
45 
46 EXPORT_SYMBOL_GPL(spu_devnode);
47 
48 static u64 __init find_spu_unit_number(struct device_node *spe)
49 {
50 	const unsigned int *prop;
51 	int proplen;
52 
53 	/* new device trees should provide the physical-id attribute */
54 	prop = of_get_property(spe, "physical-id", &proplen);
55 	if (proplen == 4)
56 		return (u64)*prop;
57 
58 	/* celleb device tree provides the unit-id */
59 	prop = of_get_property(spe, "unit-id", &proplen);
60 	if (proplen == 4)
61 		return (u64)*prop;
62 
63 	/* legacy device trees provide the id in the reg attribute */
64 	prop = of_get_property(spe, "reg", &proplen);
65 	if (proplen == 4)
66 		return (u64)*prop;
67 
68 	return 0;
69 }
70 
71 static void spu_unmap(struct spu *spu)
72 {
73 	if (!firmware_has_feature(FW_FEATURE_LPAR))
74 		iounmap(spu->priv1);
75 	iounmap(spu->priv2);
76 	iounmap(spu->problem);
77 	iounmap((__force u8 __iomem *)spu->local_store);
78 }
79 
80 static int __init spu_map_interrupts_old(struct spu *spu,
81 	struct device_node *np)
82 {
83 	unsigned int isrc;
84 	const u32 *tmp;
85 	int nid;
86 
87 	/* Get the interrupt source unit from the device-tree */
88 	tmp = of_get_property(np, "isrc", NULL);
89 	if (!tmp)
90 		return -ENODEV;
91 	isrc = tmp[0];
92 
93 	tmp = of_get_property(np->parent->parent, "node-id", NULL);
94 	if (!tmp) {
95 		printk(KERN_WARNING "%s: can't find node-id\n", __func__);
96 		nid = spu->node;
97 	} else
98 		nid = tmp[0];
99 
100 	/* Add the node number */
101 	isrc |= nid << IIC_IRQ_NODE_SHIFT;
102 
103 	/* Now map interrupts of all 3 classes */
104 	spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
105 	spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
106 	spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
107 
108 	/* Right now, we only fail if class 2 failed */
109 	return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
110 }
111 
112 static void __iomem * __init spu_map_prop_old(struct spu *spu,
113 					      struct device_node *n,
114 					      const char *name)
115 {
116 	const struct address_prop {
117 		unsigned long address;
118 		unsigned int len;
119 	} __attribute__((packed)) *prop;
120 	int proplen;
121 
122 	prop = of_get_property(n, name, &proplen);
123 	if (prop == NULL || proplen != sizeof (struct address_prop))
124 		return NULL;
125 
126 	return ioremap(prop->address, prop->len);
127 }
128 
129 static int __init spu_map_device_old(struct spu *spu)
130 {
131 	struct device_node *node = spu->devnode;
132 	const char *prop;
133 	int ret;
134 
135 	ret = -ENODEV;
136 	spu->name = of_get_property(node, "name", NULL);
137 	if (!spu->name)
138 		goto out;
139 
140 	prop = of_get_property(node, "local-store", NULL);
141 	if (!prop)
142 		goto out;
143 	spu->local_store_phys = *(unsigned long *)prop;
144 
145 	/* we use local store as ram, not io memory */
146 	spu->local_store = (void __force *)
147 		spu_map_prop_old(spu, node, "local-store");
148 	if (!spu->local_store)
149 		goto out;
150 
151 	prop = of_get_property(node, "problem", NULL);
152 	if (!prop)
153 		goto out_unmap;
154 	spu->problem_phys = *(unsigned long *)prop;
155 
156 	spu->problem = spu_map_prop_old(spu, node, "problem");
157 	if (!spu->problem)
158 		goto out_unmap;
159 
160 	spu->priv2 = spu_map_prop_old(spu, node, "priv2");
161 	if (!spu->priv2)
162 		goto out_unmap;
163 
164 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
165 		spu->priv1 = spu_map_prop_old(spu, node, "priv1");
166 		if (!spu->priv1)
167 			goto out_unmap;
168 	}
169 
170 	ret = 0;
171 	goto out;
172 
173 out_unmap:
174 	spu_unmap(spu);
175 out:
176 	return ret;
177 }
178 
179 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
180 {
181 	struct of_irq oirq;
182 	int ret;
183 	int i;
184 
185 	for (i=0; i < 3; i++) {
186 		ret = of_irq_map_one(np, i, &oirq);
187 		if (ret) {
188 			pr_debug("spu_new: failed to get irq %d\n", i);
189 			goto err;
190 		}
191 		ret = -EINVAL;
192 		pr_debug("  irq %d no 0x%x on %s\n", i, oirq.specifier[0],
193 			 oirq.controller->full_name);
194 		spu->irqs[i] = irq_create_of_mapping(oirq.controller,
195 					oirq.specifier, oirq.size);
196 		if (spu->irqs[i] == NO_IRQ) {
197 			pr_debug("spu_new: failed to map it !\n");
198 			goto err;
199 		}
200 	}
201 	return 0;
202 
203 err:
204 	pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier,
205 		spu->name);
206 	for (; i >= 0; i--) {
207 		if (spu->irqs[i] != NO_IRQ)
208 			irq_dispose_mapping(spu->irqs[i]);
209 	}
210 	return ret;
211 }
212 
213 static int spu_map_resource(struct spu *spu, int nr,
214 			    void __iomem** virt, unsigned long *phys)
215 {
216 	struct device_node *np = spu->devnode;
217 	struct resource resource = { };
218 	unsigned long len;
219 	int ret;
220 
221 	ret = of_address_to_resource(np, nr, &resource);
222 	if (ret)
223 		return ret;
224 	if (phys)
225 		*phys = resource.start;
226 	len = resource.end - resource.start + 1;
227 	*virt = ioremap(resource.start, len);
228 	if (!*virt)
229 		return -EINVAL;
230 	return 0;
231 }
232 
233 static int __init spu_map_device(struct spu *spu)
234 {
235 	struct device_node *np = spu->devnode;
236 	int ret = -ENODEV;
237 
238 	spu->name = of_get_property(np, "name", NULL);
239 	if (!spu->name)
240 		goto out;
241 
242 	ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
243 			       &spu->local_store_phys);
244 	if (ret) {
245 		pr_debug("spu_new: failed to map %s resource 0\n",
246 			 np->full_name);
247 		goto out;
248 	}
249 	ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
250 			       &spu->problem_phys);
251 	if (ret) {
252 		pr_debug("spu_new: failed to map %s resource 1\n",
253 			 np->full_name);
254 		goto out_unmap;
255 	}
256 	ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
257 	if (ret) {
258 		pr_debug("spu_new: failed to map %s resource 2\n",
259 			 np->full_name);
260 		goto out_unmap;
261 	}
262 	if (!firmware_has_feature(FW_FEATURE_LPAR))
263 		ret = spu_map_resource(spu, 3,
264 			       (void __iomem**)&spu->priv1, NULL);
265 	if (ret) {
266 		pr_debug("spu_new: failed to map %s resource 3\n",
267 			 np->full_name);
268 		goto out_unmap;
269 	}
270 	pr_debug("spu_new: %s maps:\n", np->full_name);
271 	pr_debug("  local store   : 0x%016lx -> 0x%p\n",
272 		 spu->local_store_phys, spu->local_store);
273 	pr_debug("  problem state : 0x%016lx -> 0x%p\n",
274 		 spu->problem_phys, spu->problem);
275 	pr_debug("  priv2         :                       0x%p\n", spu->priv2);
276 	pr_debug("  priv1         :                       0x%p\n", spu->priv1);
277 
278 	return 0;
279 
280 out_unmap:
281 	spu_unmap(spu);
282 out:
283 	pr_debug("failed to map spe %s: %d\n", spu->name, ret);
284 	return ret;
285 }
286 
287 static int __init of_enumerate_spus(int (*fn)(void *data))
288 {
289 	int ret;
290 	struct device_node *node;
291 	unsigned int n = 0;
292 
293 	ret = -ENODEV;
294 	for (node = of_find_node_by_type(NULL, "spe");
295 			node; node = of_find_node_by_type(node, "spe")) {
296 		ret = fn(node);
297 		if (ret) {
298 			printk(KERN_WARNING "%s: Error initializing %s\n",
299 				__func__, node->name);
300 			break;
301 		}
302 		n++;
303 	}
304 	return ret ? ret : n;
305 }
306 
307 static int __init of_create_spu(struct spu *spu, void *data)
308 {
309 	int ret;
310 	struct device_node *spe = (struct device_node *)data;
311 	static int legacy_map = 0, legacy_irq = 0;
312 
313 	spu->devnode = of_node_get(spe);
314 	spu->spe_id = find_spu_unit_number(spe);
315 
316 	spu->node = of_node_to_nid(spe);
317 	if (spu->node >= MAX_NUMNODES) {
318 		printk(KERN_WARNING "SPE %s on node %d ignored,"
319 		       " node number too big\n", spe->full_name, spu->node);
320 		printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
321 		ret = -ENODEV;
322 		goto out;
323 	}
324 
325 	ret = spu_map_device(spu);
326 	if (ret) {
327 		if (!legacy_map) {
328 			legacy_map = 1;
329 			printk(KERN_WARNING "%s: Legacy device tree found, "
330 				"trying to map old style\n", __func__);
331 		}
332 		ret = spu_map_device_old(spu);
333 		if (ret) {
334 			printk(KERN_ERR "Unable to map %s\n",
335 				spu->name);
336 			goto out;
337 		}
338 	}
339 
340 	ret = spu_map_interrupts(spu, spe);
341 	if (ret) {
342 		if (!legacy_irq) {
343 			legacy_irq = 1;
344 			printk(KERN_WARNING "%s: Legacy device tree found, "
345 				"trying old style irq\n", __func__);
346 		}
347 		ret = spu_map_interrupts_old(spu, spe);
348 		if (ret) {
349 			printk(KERN_ERR "%s: could not map interrupts\n",
350 				spu->name);
351 			goto out_unmap;
352 		}
353 	}
354 
355 	pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
356 		spu->local_store, spu->problem, spu->priv1,
357 		spu->priv2, spu->number);
358 	goto out;
359 
360 out_unmap:
361 	spu_unmap(spu);
362 out:
363 	return ret;
364 }
365 
366 static int of_destroy_spu(struct spu *spu)
367 {
368 	spu_unmap(spu);
369 	of_node_put(spu->devnode);
370 	return 0;
371 }
372 
373 static void enable_spu_by_master_run(struct spu_context *ctx)
374 {
375 	ctx->ops->master_start(ctx);
376 }
377 
378 static void disable_spu_by_master_run(struct spu_context *ctx)
379 {
380 	ctx->ops->master_stop(ctx);
381 }
382 
383 /* Hardcoded affinity idxs for qs20 */
384 #define QS20_SPES_PER_BE 8
385 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
386 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
387 
388 static struct spu *spu_lookup_reg(int node, u32 reg)
389 {
390 	struct spu *spu;
391 	const u32 *spu_reg;
392 
393 	list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
394 		spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
395 		if (*spu_reg == reg)
396 			return spu;
397 	}
398 	return NULL;
399 }
400 
401 static void init_affinity_qs20_harcoded(void)
402 {
403 	int node, i;
404 	struct spu *last_spu, *spu;
405 	u32 reg;
406 
407 	for (node = 0; node < MAX_NUMNODES; node++) {
408 		last_spu = NULL;
409 		for (i = 0; i < QS20_SPES_PER_BE; i++) {
410 			reg = qs20_reg_idxs[i];
411 			spu = spu_lookup_reg(node, reg);
412 			if (!spu)
413 				continue;
414 			spu->has_mem_affinity = qs20_reg_memory[reg];
415 			if (last_spu)
416 				list_add_tail(&spu->aff_list,
417 						&last_spu->aff_list);
418 			last_spu = spu;
419 		}
420 	}
421 }
422 
423 static int of_has_vicinity(void)
424 {
425 	struct device_node *dn;
426 
427 	for_each_node_by_type(dn, "spe") {
428 		if (of_find_property(dn, "vicinity", NULL))  {
429 			of_node_put(dn);
430 			return 1;
431 		}
432 	}
433 	return 0;
434 }
435 
436 static struct spu *devnode_spu(int cbe, struct device_node *dn)
437 {
438 	struct spu *spu;
439 
440 	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
441 		if (spu_devnode(spu) == dn)
442 			return spu;
443 	return NULL;
444 }
445 
446 static struct spu *
447 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
448 {
449 	struct spu *spu;
450 	struct device_node *spu_dn;
451 	const phandle *vic_handles;
452 	int lenp, i;
453 
454 	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
455 		spu_dn = spu_devnode(spu);
456 		if (spu_dn == avoid)
457 			continue;
458 		vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
459 		for (i=0; i < (lenp / sizeof(phandle)); i++) {
460 			if (vic_handles[i] == target->linux_phandle)
461 				return spu;
462 		}
463 	}
464 	return NULL;
465 }
466 
467 static void init_affinity_node(int cbe)
468 {
469 	struct spu *spu, *last_spu;
470 	struct device_node *vic_dn, *last_spu_dn;
471 	phandle avoid_ph;
472 	const phandle *vic_handles;
473 	const char *name;
474 	int lenp, i, added;
475 
476 	last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
477 								cbe_list);
478 	avoid_ph = 0;
479 	for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
480 		last_spu_dn = spu_devnode(last_spu);
481 		vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
482 
483 		/*
484 		 * Walk through each phandle in vicinity property of the spu
485 		 * (tipically two vicinity phandles per spe node)
486 		 */
487 		for (i = 0; i < (lenp / sizeof(phandle)); i++) {
488 			if (vic_handles[i] == avoid_ph)
489 				continue;
490 
491 			vic_dn = of_find_node_by_phandle(vic_handles[i]);
492 			if (!vic_dn)
493 				continue;
494 
495 			/* a neighbour might be spe, mic-tm, or bif0 */
496 			name = of_get_property(vic_dn, "name", NULL);
497 			if (!name)
498 				continue;
499 
500 			if (strcmp(name, "spe") == 0) {
501 				spu = devnode_spu(cbe, vic_dn);
502 				avoid_ph = last_spu_dn->linux_phandle;
503 			} else {
504 				/*
505 				 * "mic-tm" and "bif0" nodes do not have
506 				 * vicinity property. So we need to find the
507 				 * spe which has vic_dn as neighbour, but
508 				 * skipping the one we came from (last_spu_dn)
509 				 */
510 				spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
511 				if (!spu)
512 					continue;
513 				if (!strcmp(name, "mic-tm")) {
514 					last_spu->has_mem_affinity = 1;
515 					spu->has_mem_affinity = 1;
516 				}
517 				avoid_ph = vic_dn->linux_phandle;
518 			}
519 
520 			list_add_tail(&spu->aff_list, &last_spu->aff_list);
521 			last_spu = spu;
522 			break;
523 		}
524 	}
525 }
526 
527 static void init_affinity_fw(void)
528 {
529 	int cbe;
530 
531 	for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
532 		init_affinity_node(cbe);
533 }
534 
535 static int __init init_affinity(void)
536 {
537 	if (of_has_vicinity()) {
538 		init_affinity_fw();
539 	} else {
540 		long root = of_get_flat_dt_root();
541 		if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
542 			init_affinity_qs20_harcoded();
543 		else
544 			printk("No affinity configuration found\n");
545 	}
546 
547 	return 0;
548 }
549 
550 const struct spu_management_ops spu_management_of_ops = {
551 	.enumerate_spus = of_enumerate_spus,
552 	.create_spu = of_create_spu,
553 	.destroy_spu = of_destroy_spu,
554 	.enable_spu = enable_spu_by_master_run,
555 	.disable_spu = disable_spu_by_master_run,
556 	.init_affinity = init_affinity,
557 };
558