xref: /openbmc/linux/arch/powerpc/platforms/cell/spu_manage.c (revision 53e8558837be58c1d44d50ad87247a8c56c95c13)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * spu management operations for of based platforms
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  * Copyright 2006 Sony Corp.
7  * (C) Copyright 2007 TOSHIBA CORPORATION
8  */
9 
10 #include <linux/interrupt.h>
11 #include <linux/list.h>
12 #include <linux/export.h>
13 #include <linux/ptrace.h>
14 #include <linux/wait.h>
15 #include <linux/mm.h>
16 #include <linux/io.h>
17 #include <linux/mutex.h>
18 #include <linux/device.h>
19 
20 #include <asm/spu.h>
21 #include <asm/spu_priv1.h>
22 #include <asm/firmware.h>
23 #include <asm/prom.h>
24 
25 #include "spufs/spufs.h"
26 #include "interrupt.h"
27 
28 struct device_node *spu_devnode(struct spu *spu)
29 {
30 	return spu->devnode;
31 }
32 
33 EXPORT_SYMBOL_GPL(spu_devnode);
34 
35 static u64 __init find_spu_unit_number(struct device_node *spe)
36 {
37 	const unsigned int *prop;
38 	int proplen;
39 
40 	/* new device trees should provide the physical-id attribute */
41 	prop = of_get_property(spe, "physical-id", &proplen);
42 	if (proplen == 4)
43 		return (u64)*prop;
44 
45 	/* celleb device tree provides the unit-id */
46 	prop = of_get_property(spe, "unit-id", &proplen);
47 	if (proplen == 4)
48 		return (u64)*prop;
49 
50 	/* legacy device trees provide the id in the reg attribute */
51 	prop = of_get_property(spe, "reg", &proplen);
52 	if (proplen == 4)
53 		return (u64)*prop;
54 
55 	return 0;
56 }
57 
58 static void spu_unmap(struct spu *spu)
59 {
60 	if (!firmware_has_feature(FW_FEATURE_LPAR))
61 		iounmap(spu->priv1);
62 	iounmap(spu->priv2);
63 	iounmap(spu->problem);
64 	iounmap((__force u8 __iomem *)spu->local_store);
65 }
66 
67 static int __init spu_map_interrupts_old(struct spu *spu,
68 	struct device_node *np)
69 {
70 	unsigned int isrc;
71 	const u32 *tmp;
72 	int nid;
73 
74 	/* Get the interrupt source unit from the device-tree */
75 	tmp = of_get_property(np, "isrc", NULL);
76 	if (!tmp)
77 		return -ENODEV;
78 	isrc = tmp[0];
79 
80 	tmp = of_get_property(np->parent->parent, "node-id", NULL);
81 	if (!tmp) {
82 		printk(KERN_WARNING "%s: can't find node-id\n", __func__);
83 		nid = spu->node;
84 	} else
85 		nid = tmp[0];
86 
87 	/* Add the node number */
88 	isrc |= nid << IIC_IRQ_NODE_SHIFT;
89 
90 	/* Now map interrupts of all 3 classes */
91 	spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
92 	spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
93 	spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
94 
95 	/* Right now, we only fail if class 2 failed */
96 	if (!spu->irqs[2])
97 		return -EINVAL;
98 
99 	return 0;
100 }
101 
102 static void __iomem * __init spu_map_prop_old(struct spu *spu,
103 					      struct device_node *n,
104 					      const char *name)
105 {
106 	const struct address_prop {
107 		unsigned long address;
108 		unsigned int len;
109 	} __attribute__((packed)) *prop;
110 	int proplen;
111 
112 	prop = of_get_property(n, name, &proplen);
113 	if (prop == NULL || proplen != sizeof (struct address_prop))
114 		return NULL;
115 
116 	return ioremap(prop->address, prop->len);
117 }
118 
119 static int __init spu_map_device_old(struct spu *spu)
120 {
121 	struct device_node *node = spu->devnode;
122 	const char *prop;
123 	int ret;
124 
125 	ret = -ENODEV;
126 	spu->name = of_get_property(node, "name", NULL);
127 	if (!spu->name)
128 		goto out;
129 
130 	prop = of_get_property(node, "local-store", NULL);
131 	if (!prop)
132 		goto out;
133 	spu->local_store_phys = *(unsigned long *)prop;
134 
135 	/* we use local store as ram, not io memory */
136 	spu->local_store = (void __force *)
137 		spu_map_prop_old(spu, node, "local-store");
138 	if (!spu->local_store)
139 		goto out;
140 
141 	prop = of_get_property(node, "problem", NULL);
142 	if (!prop)
143 		goto out_unmap;
144 	spu->problem_phys = *(unsigned long *)prop;
145 
146 	spu->problem = spu_map_prop_old(spu, node, "problem");
147 	if (!spu->problem)
148 		goto out_unmap;
149 
150 	spu->priv2 = spu_map_prop_old(spu, node, "priv2");
151 	if (!spu->priv2)
152 		goto out_unmap;
153 
154 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
155 		spu->priv1 = spu_map_prop_old(spu, node, "priv1");
156 		if (!spu->priv1)
157 			goto out_unmap;
158 	}
159 
160 	ret = 0;
161 	goto out;
162 
163 out_unmap:
164 	spu_unmap(spu);
165 out:
166 	return ret;
167 }
168 
169 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
170 {
171 	int i;
172 
173 	for (i=0; i < 3; i++) {
174 		spu->irqs[i] = irq_of_parse_and_map(np, i);
175 		if (!spu->irqs[i])
176 			goto err;
177 	}
178 	return 0;
179 
180 err:
181 	pr_debug("failed to map irq %x for spu %s\n", i, spu->name);
182 	for (; i >= 0; i--) {
183 		if (spu->irqs[i])
184 			irq_dispose_mapping(spu->irqs[i]);
185 	}
186 	return -EINVAL;
187 }
188 
189 static int spu_map_resource(struct spu *spu, int nr,
190 			    void __iomem** virt, unsigned long *phys)
191 {
192 	struct device_node *np = spu->devnode;
193 	struct resource resource = { };
194 	unsigned long len;
195 	int ret;
196 
197 	ret = of_address_to_resource(np, nr, &resource);
198 	if (ret)
199 		return ret;
200 	if (phys)
201 		*phys = resource.start;
202 	len = resource_size(&resource);
203 	*virt = ioremap(resource.start, len);
204 	if (!*virt)
205 		return -EINVAL;
206 	return 0;
207 }
208 
209 static int __init spu_map_device(struct spu *spu)
210 {
211 	struct device_node *np = spu->devnode;
212 	int ret = -ENODEV;
213 
214 	spu->name = of_get_property(np, "name", NULL);
215 	if (!spu->name)
216 		goto out;
217 
218 	ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
219 			       &spu->local_store_phys);
220 	if (ret) {
221 		pr_debug("spu_new: failed to map %pOF resource 0\n",
222 			 np);
223 		goto out;
224 	}
225 	ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
226 			       &spu->problem_phys);
227 	if (ret) {
228 		pr_debug("spu_new: failed to map %pOF resource 1\n",
229 			 np);
230 		goto out_unmap;
231 	}
232 	ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
233 	if (ret) {
234 		pr_debug("spu_new: failed to map %pOF resource 2\n",
235 			 np);
236 		goto out_unmap;
237 	}
238 	if (!firmware_has_feature(FW_FEATURE_LPAR))
239 		ret = spu_map_resource(spu, 3,
240 			       (void __iomem**)&spu->priv1, NULL);
241 	if (ret) {
242 		pr_debug("spu_new: failed to map %pOF resource 3\n",
243 			 np);
244 		goto out_unmap;
245 	}
246 	pr_debug("spu_new: %pOF maps:\n", np);
247 	pr_debug("  local store   : 0x%016lx -> 0x%p\n",
248 		 spu->local_store_phys, spu->local_store);
249 	pr_debug("  problem state : 0x%016lx -> 0x%p\n",
250 		 spu->problem_phys, spu->problem);
251 	pr_debug("  priv2         :                       0x%p\n", spu->priv2);
252 	pr_debug("  priv1         :                       0x%p\n", spu->priv1);
253 
254 	return 0;
255 
256 out_unmap:
257 	spu_unmap(spu);
258 out:
259 	pr_debug("failed to map spe %s: %d\n", spu->name, ret);
260 	return ret;
261 }
262 
263 static int __init of_enumerate_spus(int (*fn)(void *data))
264 {
265 	int ret;
266 	struct device_node *node;
267 	unsigned int n = 0;
268 
269 	ret = -ENODEV;
270 	for_each_node_by_type(node, "spe") {
271 		ret = fn(node);
272 		if (ret) {
273 			printk(KERN_WARNING "%s: Error initializing %pOFn\n",
274 				__func__, node);
275 			of_node_put(node);
276 			break;
277 		}
278 		n++;
279 	}
280 	return ret ? ret : n;
281 }
282 
283 static int __init of_create_spu(struct spu *spu, void *data)
284 {
285 	int ret;
286 	struct device_node *spe = (struct device_node *)data;
287 	static int legacy_map = 0, legacy_irq = 0;
288 
289 	spu->devnode = of_node_get(spe);
290 	spu->spe_id = find_spu_unit_number(spe);
291 
292 	spu->node = of_node_to_nid(spe);
293 	if (spu->node >= MAX_NUMNODES) {
294 		printk(KERN_WARNING "SPE %pOF on node %d ignored,"
295 		       " node number too big\n", spe, spu->node);
296 		printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
297 		ret = -ENODEV;
298 		goto out;
299 	}
300 
301 	ret = spu_map_device(spu);
302 	if (ret) {
303 		if (!legacy_map) {
304 			legacy_map = 1;
305 			printk(KERN_WARNING "%s: Legacy device tree found, "
306 				"trying to map old style\n", __func__);
307 		}
308 		ret = spu_map_device_old(spu);
309 		if (ret) {
310 			printk(KERN_ERR "Unable to map %s\n",
311 				spu->name);
312 			goto out;
313 		}
314 	}
315 
316 	ret = spu_map_interrupts(spu, spe);
317 	if (ret) {
318 		if (!legacy_irq) {
319 			legacy_irq = 1;
320 			printk(KERN_WARNING "%s: Legacy device tree found, "
321 				"trying old style irq\n", __func__);
322 		}
323 		ret = spu_map_interrupts_old(spu, spe);
324 		if (ret) {
325 			printk(KERN_ERR "%s: could not map interrupts\n",
326 				spu->name);
327 			goto out_unmap;
328 		}
329 	}
330 
331 	pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
332 		spu->local_store, spu->problem, spu->priv1,
333 		spu->priv2, spu->number);
334 	goto out;
335 
336 out_unmap:
337 	spu_unmap(spu);
338 out:
339 	return ret;
340 }
341 
342 static int of_destroy_spu(struct spu *spu)
343 {
344 	spu_unmap(spu);
345 	of_node_put(spu->devnode);
346 	return 0;
347 }
348 
349 static void enable_spu_by_master_run(struct spu_context *ctx)
350 {
351 	ctx->ops->master_start(ctx);
352 }
353 
354 static void disable_spu_by_master_run(struct spu_context *ctx)
355 {
356 	ctx->ops->master_stop(ctx);
357 }
358 
359 /* Hardcoded affinity idxs for qs20 */
360 #define QS20_SPES_PER_BE 8
361 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
362 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
363 
364 static struct spu *spu_lookup_reg(int node, u32 reg)
365 {
366 	struct spu *spu;
367 	const u32 *spu_reg;
368 
369 	list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
370 		spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
371 		if (*spu_reg == reg)
372 			return spu;
373 	}
374 	return NULL;
375 }
376 
377 static void init_affinity_qs20_harcoded(void)
378 {
379 	int node, i;
380 	struct spu *last_spu, *spu;
381 	u32 reg;
382 
383 	for (node = 0; node < MAX_NUMNODES; node++) {
384 		last_spu = NULL;
385 		for (i = 0; i < QS20_SPES_PER_BE; i++) {
386 			reg = qs20_reg_idxs[i];
387 			spu = spu_lookup_reg(node, reg);
388 			if (!spu)
389 				continue;
390 			spu->has_mem_affinity = qs20_reg_memory[reg];
391 			if (last_spu)
392 				list_add_tail(&spu->aff_list,
393 						&last_spu->aff_list);
394 			last_spu = spu;
395 		}
396 	}
397 }
398 
399 static int of_has_vicinity(void)
400 {
401 	struct device_node *dn;
402 
403 	for_each_node_by_type(dn, "spe") {
404 		if (of_find_property(dn, "vicinity", NULL))  {
405 			of_node_put(dn);
406 			return 1;
407 		}
408 	}
409 	return 0;
410 }
411 
412 static struct spu *devnode_spu(int cbe, struct device_node *dn)
413 {
414 	struct spu *spu;
415 
416 	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
417 		if (spu_devnode(spu) == dn)
418 			return spu;
419 	return NULL;
420 }
421 
422 static struct spu *
423 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
424 {
425 	struct spu *spu;
426 	struct device_node *spu_dn;
427 	const phandle *vic_handles;
428 	int lenp, i;
429 
430 	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
431 		spu_dn = spu_devnode(spu);
432 		if (spu_dn == avoid)
433 			continue;
434 		vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
435 		for (i=0; i < (lenp / sizeof(phandle)); i++) {
436 			if (vic_handles[i] == target->phandle)
437 				return spu;
438 		}
439 	}
440 	return NULL;
441 }
442 
443 static void init_affinity_node(int cbe)
444 {
445 	struct spu *spu, *last_spu;
446 	struct device_node *vic_dn, *last_spu_dn;
447 	phandle avoid_ph;
448 	const phandle *vic_handles;
449 	int lenp, i, added;
450 
451 	last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
452 								cbe_list);
453 	avoid_ph = 0;
454 	for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
455 		last_spu_dn = spu_devnode(last_spu);
456 		vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
457 
458 		/*
459 		 * Walk through each phandle in vicinity property of the spu
460 		 * (tipically two vicinity phandles per spe node)
461 		 */
462 		for (i = 0; i < (lenp / sizeof(phandle)); i++) {
463 			if (vic_handles[i] == avoid_ph)
464 				continue;
465 
466 			vic_dn = of_find_node_by_phandle(vic_handles[i]);
467 			if (!vic_dn)
468 				continue;
469 
470 			if (of_node_name_eq(vic_dn, "spe") ) {
471 				spu = devnode_spu(cbe, vic_dn);
472 				avoid_ph = last_spu_dn->phandle;
473 			} else {
474 				/*
475 				 * "mic-tm" and "bif0" nodes do not have
476 				 * vicinity property. So we need to find the
477 				 * spe which has vic_dn as neighbour, but
478 				 * skipping the one we came from (last_spu_dn)
479 				 */
480 				spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
481 				if (!spu)
482 					continue;
483 				if (of_node_name_eq(vic_dn, "mic-tm")) {
484 					last_spu->has_mem_affinity = 1;
485 					spu->has_mem_affinity = 1;
486 				}
487 				avoid_ph = vic_dn->phandle;
488 			}
489 
490 			list_add_tail(&spu->aff_list, &last_spu->aff_list);
491 			last_spu = spu;
492 			break;
493 		}
494 	}
495 }
496 
497 static void init_affinity_fw(void)
498 {
499 	int cbe;
500 
501 	for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
502 		init_affinity_node(cbe);
503 }
504 
505 static int __init init_affinity(void)
506 {
507 	if (of_has_vicinity()) {
508 		init_affinity_fw();
509 	} else {
510 		if (of_machine_is_compatible("IBM,CPBW-1.0"))
511 			init_affinity_qs20_harcoded();
512 		else
513 			printk("No affinity configuration found\n");
514 	}
515 
516 	return 0;
517 }
518 
519 const struct spu_management_ops spu_management_of_ops = {
520 	.enumerate_spus = of_enumerate_spus,
521 	.create_spu = of_create_spu,
522 	.destroy_spu = of_destroy_spu,
523 	.enable_spu = enable_spu_by_master_run,
524 	.disable_spu = disable_spu_by_master_run,
525 	.init_affinity = init_affinity,
526 };
527