xref: /openbmc/linux/arch/powerpc/platforms/cell/spu_base.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * Low-level SPU handling
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/wait.h>
31 #include <linux/mm.h>
32 #include <linux/io.h>
33 #include <linux/mutex.h>
34 #include <linux/linux_logo.h>
35 #include <linux/syscore_ops.h>
36 #include <asm/spu.h>
37 #include <asm/spu_priv1.h>
38 #include <asm/spu_csa.h>
39 #include <asm/xmon.h>
40 #include <asm/prom.h>
41 #include <asm/kexec.h>
42 
43 const struct spu_management_ops *spu_management_ops;
44 EXPORT_SYMBOL_GPL(spu_management_ops);
45 
46 const struct spu_priv1_ops *spu_priv1_ops;
47 EXPORT_SYMBOL_GPL(spu_priv1_ops);
48 
49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
50 EXPORT_SYMBOL_GPL(cbe_spu_info);
51 
52 /*
53  * The spufs fault-handling code needs to call force_sig_info to raise signals
54  * on DMA errors. Export it here to avoid general kernel-wide access to this
55  * function
56  */
57 EXPORT_SYMBOL_GPL(force_sig_info);
58 
59 /*
60  * Protects cbe_spu_info and spu->number.
61  */
62 static DEFINE_SPINLOCK(spu_lock);
63 
64 /*
65  * List of all spus in the system.
66  *
67  * This list is iterated by callers from irq context and callers that
68  * want to sleep.  Thus modifications need to be done with both
69  * spu_full_list_lock and spu_full_list_mutex held, while iterating
70  * through it requires either of these locks.
71  *
72  * In addition spu_full_list_lock protects all assignmens to
73  * spu->mm.
74  */
75 static LIST_HEAD(spu_full_list);
76 static DEFINE_SPINLOCK(spu_full_list_lock);
77 static DEFINE_MUTEX(spu_full_list_mutex);
78 
79 struct spu_slb {
80 	u64 esid, vsid;
81 };
82 
83 void spu_invalidate_slbs(struct spu *spu)
84 {
85 	struct spu_priv2 __iomem *priv2 = spu->priv2;
86 	unsigned long flags;
87 
88 	spin_lock_irqsave(&spu->register_lock, flags);
89 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
90 		out_be64(&priv2->slb_invalidate_all_W, 0UL);
91 	spin_unlock_irqrestore(&spu->register_lock, flags);
92 }
93 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
94 
95 /* This is called by the MM core when a segment size is changed, to
96  * request a flush of all the SPEs using a given mm
97  */
98 void spu_flush_all_slbs(struct mm_struct *mm)
99 {
100 	struct spu *spu;
101 	unsigned long flags;
102 
103 	spin_lock_irqsave(&spu_full_list_lock, flags);
104 	list_for_each_entry(spu, &spu_full_list, full_list) {
105 		if (spu->mm == mm)
106 			spu_invalidate_slbs(spu);
107 	}
108 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
109 }
110 
111 /* The hack below stinks... try to do something better one of
112  * these days... Does it even work properly with NR_CPUS == 1 ?
113  */
114 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
115 {
116 	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
117 
118 	/* Global TLBIE broadcast required with SPEs. */
119 	bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
120 }
121 
122 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
123 {
124 	unsigned long flags;
125 
126 	spin_lock_irqsave(&spu_full_list_lock, flags);
127 	spu->mm = mm;
128 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
129 	if (mm)
130 		mm_needs_global_tlbie(mm);
131 }
132 EXPORT_SYMBOL_GPL(spu_associate_mm);
133 
134 int spu_64k_pages_available(void)
135 {
136 	return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
137 }
138 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
139 
140 static void spu_restart_dma(struct spu *spu)
141 {
142 	struct spu_priv2 __iomem *priv2 = spu->priv2;
143 
144 	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
145 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
146 	else {
147 		set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
148 		mb();
149 	}
150 }
151 
152 static inline void spu_load_slb(struct spu *spu, int slbe, struct spu_slb *slb)
153 {
154 	struct spu_priv2 __iomem *priv2 = spu->priv2;
155 
156 	pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
157 			__func__, slbe, slb->vsid, slb->esid);
158 
159 	out_be64(&priv2->slb_index_W, slbe);
160 	/* set invalid before writing vsid */
161 	out_be64(&priv2->slb_esid_RW, 0);
162 	/* now it's safe to write the vsid */
163 	out_be64(&priv2->slb_vsid_RW, slb->vsid);
164 	/* setting the new esid makes the entry valid again */
165 	out_be64(&priv2->slb_esid_RW, slb->esid);
166 }
167 
168 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
169 {
170 	struct mm_struct *mm = spu->mm;
171 	struct spu_slb slb;
172 	int psize;
173 
174 	pr_debug("%s\n", __func__);
175 
176 	slb.esid = (ea & ESID_MASK) | SLB_ESID_V;
177 
178 	switch(REGION_ID(ea)) {
179 	case USER_REGION_ID:
180 #ifdef CONFIG_PPC_MM_SLICES
181 		psize = get_slice_psize(mm, ea);
182 #else
183 		psize = mm->context.user_psize;
184 #endif
185 		slb.vsid = (get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M)
186 				<< SLB_VSID_SHIFT) | SLB_VSID_USER;
187 		break;
188 	case VMALLOC_REGION_ID:
189 		if (ea < VMALLOC_END)
190 			psize = mmu_vmalloc_psize;
191 		else
192 			psize = mmu_io_psize;
193 		slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
194 				<< SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
195 		break;
196 	case KERNEL_REGION_ID:
197 		psize = mmu_linear_psize;
198 		slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
199 				<< SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
200 		break;
201 	default:
202 		/* Future: support kernel segments so that drivers
203 		 * can use SPUs.
204 		 */
205 		pr_debug("invalid region access at %016lx\n", ea);
206 		return 1;
207 	}
208 	slb.vsid |= mmu_psize_defs[psize].sllp;
209 
210 	spu_load_slb(spu, spu->slb_replace, &slb);
211 
212 	spu->slb_replace++;
213 	if (spu->slb_replace >= 8)
214 		spu->slb_replace = 0;
215 
216 	spu_restart_dma(spu);
217 	spu->stats.slb_flt++;
218 	return 0;
219 }
220 
221 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
222 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
223 {
224 	int ret;
225 
226 	pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
227 
228 	/*
229 	 * Handle kernel space hash faults immediately. User hash
230 	 * faults need to be deferred to process context.
231 	 */
232 	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
233 	    (REGION_ID(ea) != USER_REGION_ID)) {
234 
235 		spin_unlock(&spu->register_lock);
236 		ret = hash_page(ea, _PAGE_PRESENT, 0x300);
237 		spin_lock(&spu->register_lock);
238 
239 		if (!ret) {
240 			spu_restart_dma(spu);
241 			return 0;
242 		}
243 	}
244 
245 	spu->class_1_dar = ea;
246 	spu->class_1_dsisr = dsisr;
247 
248 	spu->stop_callback(spu, 1);
249 
250 	spu->class_1_dar = 0;
251 	spu->class_1_dsisr = 0;
252 
253 	return 0;
254 }
255 
256 static void __spu_kernel_slb(void *addr, struct spu_slb *slb)
257 {
258 	unsigned long ea = (unsigned long)addr;
259 	u64 llp;
260 
261 	if (REGION_ID(ea) == KERNEL_REGION_ID)
262 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
263 	else
264 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
265 
266 	slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
267 		SLB_VSID_KERNEL | llp;
268 	slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
269 }
270 
271 /**
272  * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
273  * address @new_addr is present.
274  */
275 static inline int __slb_present(struct spu_slb *slbs, int nr_slbs,
276 		void *new_addr)
277 {
278 	unsigned long ea = (unsigned long)new_addr;
279 	int i;
280 
281 	for (i = 0; i < nr_slbs; i++)
282 		if (!((slbs[i].esid ^ ea) & ESID_MASK))
283 			return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
290  * need to map both the context save area, and the save/restore code.
291  *
292  * Because the lscsa and code may cross segment boundaires, we check to see
293  * if mappings are required for the start and end of each range. We currently
294  * assume that the mappings are smaller that one segment - if not, something
295  * is seriously wrong.
296  */
297 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
298 		void *code, int code_size)
299 {
300 	struct spu_slb slbs[4];
301 	int i, nr_slbs = 0;
302 	/* start and end addresses of both mappings */
303 	void *addrs[] = {
304 		lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
305 		code, code + code_size - 1
306 	};
307 
308 	/* check the set of addresses, and create a new entry in the slbs array
309 	 * if there isn't already a SLB for that address */
310 	for (i = 0; i < ARRAY_SIZE(addrs); i++) {
311 		if (__slb_present(slbs, nr_slbs, addrs[i]))
312 			continue;
313 
314 		__spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
315 		nr_slbs++;
316 	}
317 
318 	spin_lock_irq(&spu->register_lock);
319 	/* Add the set of SLBs */
320 	for (i = 0; i < nr_slbs; i++)
321 		spu_load_slb(spu, i, &slbs[i]);
322 	spin_unlock_irq(&spu->register_lock);
323 }
324 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
325 
326 static irqreturn_t
327 spu_irq_class_0(int irq, void *data)
328 {
329 	struct spu *spu;
330 	unsigned long stat, mask;
331 
332 	spu = data;
333 
334 	spin_lock(&spu->register_lock);
335 	mask = spu_int_mask_get(spu, 0);
336 	stat = spu_int_stat_get(spu, 0) & mask;
337 
338 	spu->class_0_pending |= stat;
339 	spu->class_0_dar = spu_mfc_dar_get(spu);
340 	spu->stop_callback(spu, 0);
341 	spu->class_0_pending = 0;
342 	spu->class_0_dar = 0;
343 
344 	spu_int_stat_clear(spu, 0, stat);
345 	spin_unlock(&spu->register_lock);
346 
347 	return IRQ_HANDLED;
348 }
349 
350 static irqreturn_t
351 spu_irq_class_1(int irq, void *data)
352 {
353 	struct spu *spu;
354 	unsigned long stat, mask, dar, dsisr;
355 
356 	spu = data;
357 
358 	/* atomically read & clear class1 status. */
359 	spin_lock(&spu->register_lock);
360 	mask  = spu_int_mask_get(spu, 1);
361 	stat  = spu_int_stat_get(spu, 1) & mask;
362 	dar   = spu_mfc_dar_get(spu);
363 	dsisr = spu_mfc_dsisr_get(spu);
364 	if (stat & CLASS1_STORAGE_FAULT_INTR)
365 		spu_mfc_dsisr_set(spu, 0ul);
366 	spu_int_stat_clear(spu, 1, stat);
367 
368 	pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
369 			dar, dsisr);
370 
371 	if (stat & CLASS1_SEGMENT_FAULT_INTR)
372 		__spu_trap_data_seg(spu, dar);
373 
374 	if (stat & CLASS1_STORAGE_FAULT_INTR)
375 		__spu_trap_data_map(spu, dar, dsisr);
376 
377 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
378 		;
379 
380 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
381 		;
382 
383 	spu->class_1_dsisr = 0;
384 	spu->class_1_dar = 0;
385 
386 	spin_unlock(&spu->register_lock);
387 
388 	return stat ? IRQ_HANDLED : IRQ_NONE;
389 }
390 
391 static irqreturn_t
392 spu_irq_class_2(int irq, void *data)
393 {
394 	struct spu *spu;
395 	unsigned long stat;
396 	unsigned long mask;
397 	const int mailbox_intrs =
398 		CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
399 
400 	spu = data;
401 	spin_lock(&spu->register_lock);
402 	stat = spu_int_stat_get(spu, 2);
403 	mask = spu_int_mask_get(spu, 2);
404 	/* ignore interrupts we're not waiting for */
405 	stat &= mask;
406 	/* mailbox interrupts are level triggered. mask them now before
407 	 * acknowledging */
408 	if (stat & mailbox_intrs)
409 		spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
410 	/* acknowledge all interrupts before the callbacks */
411 	spu_int_stat_clear(spu, 2, stat);
412 
413 	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
414 
415 	if (stat & CLASS2_MAILBOX_INTR)
416 		spu->ibox_callback(spu);
417 
418 	if (stat & CLASS2_SPU_STOP_INTR)
419 		spu->stop_callback(spu, 2);
420 
421 	if (stat & CLASS2_SPU_HALT_INTR)
422 		spu->stop_callback(spu, 2);
423 
424 	if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
425 		spu->mfc_callback(spu);
426 
427 	if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
428 		spu->wbox_callback(spu);
429 
430 	spu->stats.class2_intr++;
431 
432 	spin_unlock(&spu->register_lock);
433 
434 	return stat ? IRQ_HANDLED : IRQ_NONE;
435 }
436 
437 static int spu_request_irqs(struct spu *spu)
438 {
439 	int ret = 0;
440 
441 	if (spu->irqs[0] != NO_IRQ) {
442 		snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
443 			 spu->number);
444 		ret = request_irq(spu->irqs[0], spu_irq_class_0,
445 				  0, spu->irq_c0, spu);
446 		if (ret)
447 			goto bail0;
448 	}
449 	if (spu->irqs[1] != NO_IRQ) {
450 		snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
451 			 spu->number);
452 		ret = request_irq(spu->irqs[1], spu_irq_class_1,
453 				  0, spu->irq_c1, spu);
454 		if (ret)
455 			goto bail1;
456 	}
457 	if (spu->irqs[2] != NO_IRQ) {
458 		snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
459 			 spu->number);
460 		ret = request_irq(spu->irqs[2], spu_irq_class_2,
461 				  0, spu->irq_c2, spu);
462 		if (ret)
463 			goto bail2;
464 	}
465 	return 0;
466 
467 bail2:
468 	if (spu->irqs[1] != NO_IRQ)
469 		free_irq(spu->irqs[1], spu);
470 bail1:
471 	if (spu->irqs[0] != NO_IRQ)
472 		free_irq(spu->irqs[0], spu);
473 bail0:
474 	return ret;
475 }
476 
477 static void spu_free_irqs(struct spu *spu)
478 {
479 	if (spu->irqs[0] != NO_IRQ)
480 		free_irq(spu->irqs[0], spu);
481 	if (spu->irqs[1] != NO_IRQ)
482 		free_irq(spu->irqs[1], spu);
483 	if (spu->irqs[2] != NO_IRQ)
484 		free_irq(spu->irqs[2], spu);
485 }
486 
487 void spu_init_channels(struct spu *spu)
488 {
489 	static const struct {
490 		 unsigned channel;
491 		 unsigned count;
492 	} zero_list[] = {
493 		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
494 		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
495 	}, count_list[] = {
496 		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
497 		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
498 		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
499 	};
500 	struct spu_priv2 __iomem *priv2;
501 	int i;
502 
503 	priv2 = spu->priv2;
504 
505 	/* initialize all channel data to zero */
506 	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
507 		int count;
508 
509 		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
510 		for (count = 0; count < zero_list[i].count; count++)
511 			out_be64(&priv2->spu_chnldata_RW, 0);
512 	}
513 
514 	/* initialize channel counts to meaningful values */
515 	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
516 		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
517 		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
518 	}
519 }
520 EXPORT_SYMBOL_GPL(spu_init_channels);
521 
522 static struct bus_type spu_subsys = {
523 	.name = "spu",
524 	.dev_name = "spu",
525 };
526 
527 int spu_add_dev_attr(struct device_attribute *attr)
528 {
529 	struct spu *spu;
530 
531 	mutex_lock(&spu_full_list_mutex);
532 	list_for_each_entry(spu, &spu_full_list, full_list)
533 		device_create_file(&spu->dev, attr);
534 	mutex_unlock(&spu_full_list_mutex);
535 
536 	return 0;
537 }
538 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
539 
540 int spu_add_dev_attr_group(struct attribute_group *attrs)
541 {
542 	struct spu *spu;
543 	int rc = 0;
544 
545 	mutex_lock(&spu_full_list_mutex);
546 	list_for_each_entry(spu, &spu_full_list, full_list) {
547 		rc = sysfs_create_group(&spu->dev.kobj, attrs);
548 
549 		/* we're in trouble here, but try unwinding anyway */
550 		if (rc) {
551 			printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
552 					__func__, attrs->name);
553 
554 			list_for_each_entry_continue_reverse(spu,
555 					&spu_full_list, full_list)
556 				sysfs_remove_group(&spu->dev.kobj, attrs);
557 			break;
558 		}
559 	}
560 
561 	mutex_unlock(&spu_full_list_mutex);
562 
563 	return rc;
564 }
565 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
566 
567 
568 void spu_remove_dev_attr(struct device_attribute *attr)
569 {
570 	struct spu *spu;
571 
572 	mutex_lock(&spu_full_list_mutex);
573 	list_for_each_entry(spu, &spu_full_list, full_list)
574 		device_remove_file(&spu->dev, attr);
575 	mutex_unlock(&spu_full_list_mutex);
576 }
577 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
578 
579 void spu_remove_dev_attr_group(struct attribute_group *attrs)
580 {
581 	struct spu *spu;
582 
583 	mutex_lock(&spu_full_list_mutex);
584 	list_for_each_entry(spu, &spu_full_list, full_list)
585 		sysfs_remove_group(&spu->dev.kobj, attrs);
586 	mutex_unlock(&spu_full_list_mutex);
587 }
588 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
589 
590 static int spu_create_dev(struct spu *spu)
591 {
592 	int ret;
593 
594 	spu->dev.id = spu->number;
595 	spu->dev.bus = &spu_subsys;
596 	ret = device_register(&spu->dev);
597 	if (ret) {
598 		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
599 				spu->number);
600 		return ret;
601 	}
602 
603 	sysfs_add_device_to_node(&spu->dev, spu->node);
604 
605 	return 0;
606 }
607 
608 static int __init create_spu(void *data)
609 {
610 	struct spu *spu;
611 	int ret;
612 	static int number;
613 	unsigned long flags;
614 	struct timespec ts;
615 
616 	ret = -ENOMEM;
617 	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
618 	if (!spu)
619 		goto out;
620 
621 	spu->alloc_state = SPU_FREE;
622 
623 	spin_lock_init(&spu->register_lock);
624 	spin_lock(&spu_lock);
625 	spu->number = number++;
626 	spin_unlock(&spu_lock);
627 
628 	ret = spu_create_spu(spu, data);
629 
630 	if (ret)
631 		goto out_free;
632 
633 	spu_mfc_sdr_setup(spu);
634 	spu_mfc_sr1_set(spu, 0x33);
635 	ret = spu_request_irqs(spu);
636 	if (ret)
637 		goto out_destroy;
638 
639 	ret = spu_create_dev(spu);
640 	if (ret)
641 		goto out_free_irqs;
642 
643 	mutex_lock(&cbe_spu_info[spu->node].list_mutex);
644 	list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
645 	cbe_spu_info[spu->node].n_spus++;
646 	mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
647 
648 	mutex_lock(&spu_full_list_mutex);
649 	spin_lock_irqsave(&spu_full_list_lock, flags);
650 	list_add(&spu->full_list, &spu_full_list);
651 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
652 	mutex_unlock(&spu_full_list_mutex);
653 
654 	spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
655 	ktime_get_ts(&ts);
656 	spu->stats.tstamp = timespec_to_ns(&ts);
657 
658 	INIT_LIST_HEAD(&spu->aff_list);
659 
660 	goto out;
661 
662 out_free_irqs:
663 	spu_free_irqs(spu);
664 out_destroy:
665 	spu_destroy_spu(spu);
666 out_free:
667 	kfree(spu);
668 out:
669 	return ret;
670 }
671 
672 static const char *spu_state_names[] = {
673 	"user", "system", "iowait", "idle"
674 };
675 
676 static unsigned long long spu_acct_time(struct spu *spu,
677 		enum spu_utilization_state state)
678 {
679 	struct timespec ts;
680 	unsigned long long time = spu->stats.times[state];
681 
682 	/*
683 	 * If the spu is idle or the context is stopped, utilization
684 	 * statistics are not updated.  Apply the time delta from the
685 	 * last recorded state of the spu.
686 	 */
687 	if (spu->stats.util_state == state) {
688 		ktime_get_ts(&ts);
689 		time += timespec_to_ns(&ts) - spu->stats.tstamp;
690 	}
691 
692 	return time / NSEC_PER_MSEC;
693 }
694 
695 
696 static ssize_t spu_stat_show(struct device *dev,
697 				struct device_attribute *attr, char *buf)
698 {
699 	struct spu *spu = container_of(dev, struct spu, dev);
700 
701 	return sprintf(buf, "%s %llu %llu %llu %llu "
702 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
703 		spu_state_names[spu->stats.util_state],
704 		spu_acct_time(spu, SPU_UTIL_USER),
705 		spu_acct_time(spu, SPU_UTIL_SYSTEM),
706 		spu_acct_time(spu, SPU_UTIL_IOWAIT),
707 		spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
708 		spu->stats.vol_ctx_switch,
709 		spu->stats.invol_ctx_switch,
710 		spu->stats.slb_flt,
711 		spu->stats.hash_flt,
712 		spu->stats.min_flt,
713 		spu->stats.maj_flt,
714 		spu->stats.class2_intr,
715 		spu->stats.libassist);
716 }
717 
718 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
719 
720 #ifdef CONFIG_KEXEC
721 
722 struct crash_spu_info {
723 	struct spu *spu;
724 	u32 saved_spu_runcntl_RW;
725 	u32 saved_spu_status_R;
726 	u32 saved_spu_npc_RW;
727 	u64 saved_mfc_sr1_RW;
728 	u64 saved_mfc_dar;
729 	u64 saved_mfc_dsisr;
730 };
731 
732 #define CRASH_NUM_SPUS	16	/* Enough for current hardware */
733 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
734 
735 static void crash_kexec_stop_spus(void)
736 {
737 	struct spu *spu;
738 	int i;
739 	u64 tmp;
740 
741 	for (i = 0; i < CRASH_NUM_SPUS; i++) {
742 		if (!crash_spu_info[i].spu)
743 			continue;
744 
745 		spu = crash_spu_info[i].spu;
746 
747 		crash_spu_info[i].saved_spu_runcntl_RW =
748 			in_be32(&spu->problem->spu_runcntl_RW);
749 		crash_spu_info[i].saved_spu_status_R =
750 			in_be32(&spu->problem->spu_status_R);
751 		crash_spu_info[i].saved_spu_npc_RW =
752 			in_be32(&spu->problem->spu_npc_RW);
753 
754 		crash_spu_info[i].saved_mfc_dar    = spu_mfc_dar_get(spu);
755 		crash_spu_info[i].saved_mfc_dsisr  = spu_mfc_dsisr_get(spu);
756 		tmp = spu_mfc_sr1_get(spu);
757 		crash_spu_info[i].saved_mfc_sr1_RW = tmp;
758 
759 		tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
760 		spu_mfc_sr1_set(spu, tmp);
761 
762 		__delay(200);
763 	}
764 }
765 
766 static void crash_register_spus(struct list_head *list)
767 {
768 	struct spu *spu;
769 	int ret;
770 
771 	list_for_each_entry(spu, list, full_list) {
772 		if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
773 			continue;
774 
775 		crash_spu_info[spu->number].spu = spu;
776 	}
777 
778 	ret = crash_shutdown_register(&crash_kexec_stop_spus);
779 	if (ret)
780 		printk(KERN_ERR "Could not register SPU crash handler");
781 }
782 
783 #else
784 static inline void crash_register_spus(struct list_head *list)
785 {
786 }
787 #endif
788 
789 static void spu_shutdown(void)
790 {
791 	struct spu *spu;
792 
793 	mutex_lock(&spu_full_list_mutex);
794 	list_for_each_entry(spu, &spu_full_list, full_list) {
795 		spu_free_irqs(spu);
796 		spu_destroy_spu(spu);
797 	}
798 	mutex_unlock(&spu_full_list_mutex);
799 }
800 
801 static struct syscore_ops spu_syscore_ops = {
802 	.shutdown = spu_shutdown,
803 };
804 
805 static int __init init_spu_base(void)
806 {
807 	int i, ret = 0;
808 
809 	for (i = 0; i < MAX_NUMNODES; i++) {
810 		mutex_init(&cbe_spu_info[i].list_mutex);
811 		INIT_LIST_HEAD(&cbe_spu_info[i].spus);
812 	}
813 
814 	if (!spu_management_ops)
815 		goto out;
816 
817 	/* create system subsystem for spus */
818 	ret = subsys_system_register(&spu_subsys, NULL);
819 	if (ret)
820 		goto out;
821 
822 	ret = spu_enumerate_spus(create_spu);
823 
824 	if (ret < 0) {
825 		printk(KERN_WARNING "%s: Error initializing spus\n",
826 			__func__);
827 		goto out_unregister_subsys;
828 	}
829 
830 	if (ret > 0)
831 		fb_append_extra_logo(&logo_spe_clut224, ret);
832 
833 	mutex_lock(&spu_full_list_mutex);
834 	xmon_register_spus(&spu_full_list);
835 	crash_register_spus(&spu_full_list);
836 	mutex_unlock(&spu_full_list_mutex);
837 	spu_add_dev_attr(&dev_attr_stat);
838 	register_syscore_ops(&spu_syscore_ops);
839 
840 	spu_init_affinity();
841 
842 	return 0;
843 
844  out_unregister_subsys:
845 	bus_unregister(&spu_subsys);
846  out:
847 	return ret;
848 }
849 module_init(init_spu_base);
850 
851 MODULE_LICENSE("GPL");
852 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
853