1 /* 2 * Low-level SPU handling 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/interrupt.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/wait.h> 31 #include <linux/mm.h> 32 #include <linux/io.h> 33 #include <linux/mutex.h> 34 #include <linux/linux_logo.h> 35 #include <linux/syscore_ops.h> 36 #include <asm/spu.h> 37 #include <asm/spu_priv1.h> 38 #include <asm/spu_csa.h> 39 #include <asm/xmon.h> 40 #include <asm/prom.h> 41 #include <asm/kexec.h> 42 43 const struct spu_management_ops *spu_management_ops; 44 EXPORT_SYMBOL_GPL(spu_management_ops); 45 46 const struct spu_priv1_ops *spu_priv1_ops; 47 EXPORT_SYMBOL_GPL(spu_priv1_ops); 48 49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES]; 50 EXPORT_SYMBOL_GPL(cbe_spu_info); 51 52 /* 53 * The spufs fault-handling code needs to call force_sig_info to raise signals 54 * on DMA errors. Export it here to avoid general kernel-wide access to this 55 * function 56 */ 57 EXPORT_SYMBOL_GPL(force_sig_info); 58 59 /* 60 * Protects cbe_spu_info and spu->number. 61 */ 62 static DEFINE_SPINLOCK(spu_lock); 63 64 /* 65 * List of all spus in the system. 66 * 67 * This list is iterated by callers from irq context and callers that 68 * want to sleep. Thus modifications need to be done with both 69 * spu_full_list_lock and spu_full_list_mutex held, while iterating 70 * through it requires either of these locks. 71 * 72 * In addition spu_full_list_lock protects all assignmens to 73 * spu->mm. 74 */ 75 static LIST_HEAD(spu_full_list); 76 static DEFINE_SPINLOCK(spu_full_list_lock); 77 static DEFINE_MUTEX(spu_full_list_mutex); 78 79 struct spu_slb { 80 u64 esid, vsid; 81 }; 82 83 void spu_invalidate_slbs(struct spu *spu) 84 { 85 struct spu_priv2 __iomem *priv2 = spu->priv2; 86 unsigned long flags; 87 88 spin_lock_irqsave(&spu->register_lock, flags); 89 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) 90 out_be64(&priv2->slb_invalidate_all_W, 0UL); 91 spin_unlock_irqrestore(&spu->register_lock, flags); 92 } 93 EXPORT_SYMBOL_GPL(spu_invalidate_slbs); 94 95 /* This is called by the MM core when a segment size is changed, to 96 * request a flush of all the SPEs using a given mm 97 */ 98 void spu_flush_all_slbs(struct mm_struct *mm) 99 { 100 struct spu *spu; 101 unsigned long flags; 102 103 spin_lock_irqsave(&spu_full_list_lock, flags); 104 list_for_each_entry(spu, &spu_full_list, full_list) { 105 if (spu->mm == mm) 106 spu_invalidate_slbs(spu); 107 } 108 spin_unlock_irqrestore(&spu_full_list_lock, flags); 109 } 110 111 /* The hack below stinks... try to do something better one of 112 * these days... Does it even work properly with NR_CPUS == 1 ? 113 */ 114 static inline void mm_needs_global_tlbie(struct mm_struct *mm) 115 { 116 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; 117 118 /* Global TLBIE broadcast required with SPEs. */ 119 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr); 120 } 121 122 void spu_associate_mm(struct spu *spu, struct mm_struct *mm) 123 { 124 unsigned long flags; 125 126 spin_lock_irqsave(&spu_full_list_lock, flags); 127 spu->mm = mm; 128 spin_unlock_irqrestore(&spu_full_list_lock, flags); 129 if (mm) 130 mm_needs_global_tlbie(mm); 131 } 132 EXPORT_SYMBOL_GPL(spu_associate_mm); 133 134 int spu_64k_pages_available(void) 135 { 136 return mmu_psize_defs[MMU_PAGE_64K].shift != 0; 137 } 138 EXPORT_SYMBOL_GPL(spu_64k_pages_available); 139 140 static void spu_restart_dma(struct spu *spu) 141 { 142 struct spu_priv2 __iomem *priv2 = spu->priv2; 143 144 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) 145 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); 146 else { 147 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); 148 mb(); 149 } 150 } 151 152 static inline void spu_load_slb(struct spu *spu, int slbe, struct spu_slb *slb) 153 { 154 struct spu_priv2 __iomem *priv2 = spu->priv2; 155 156 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n", 157 __func__, slbe, slb->vsid, slb->esid); 158 159 out_be64(&priv2->slb_index_W, slbe); 160 /* set invalid before writing vsid */ 161 out_be64(&priv2->slb_esid_RW, 0); 162 /* now it's safe to write the vsid */ 163 out_be64(&priv2->slb_vsid_RW, slb->vsid); 164 /* setting the new esid makes the entry valid again */ 165 out_be64(&priv2->slb_esid_RW, slb->esid); 166 } 167 168 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) 169 { 170 struct mm_struct *mm = spu->mm; 171 struct spu_slb slb; 172 int psize; 173 174 pr_debug("%s\n", __func__); 175 176 slb.esid = (ea & ESID_MASK) | SLB_ESID_V; 177 178 switch(REGION_ID(ea)) { 179 case USER_REGION_ID: 180 #ifdef CONFIG_PPC_MM_SLICES 181 psize = get_slice_psize(mm, ea); 182 #else 183 psize = mm->context.user_psize; 184 #endif 185 slb.vsid = (get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M) 186 << SLB_VSID_SHIFT) | SLB_VSID_USER; 187 break; 188 case VMALLOC_REGION_ID: 189 if (ea < VMALLOC_END) 190 psize = mmu_vmalloc_psize; 191 else 192 psize = mmu_io_psize; 193 slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) 194 << SLB_VSID_SHIFT) | SLB_VSID_KERNEL; 195 break; 196 case KERNEL_REGION_ID: 197 psize = mmu_linear_psize; 198 slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) 199 << SLB_VSID_SHIFT) | SLB_VSID_KERNEL; 200 break; 201 default: 202 /* Future: support kernel segments so that drivers 203 * can use SPUs. 204 */ 205 pr_debug("invalid region access at %016lx\n", ea); 206 return 1; 207 } 208 slb.vsid |= mmu_psize_defs[psize].sllp; 209 210 spu_load_slb(spu, spu->slb_replace, &slb); 211 212 spu->slb_replace++; 213 if (spu->slb_replace >= 8) 214 spu->slb_replace = 0; 215 216 spu_restart_dma(spu); 217 spu->stats.slb_flt++; 218 return 0; 219 } 220 221 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX 222 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) 223 { 224 int ret; 225 226 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea); 227 228 /* 229 * Handle kernel space hash faults immediately. User hash 230 * faults need to be deferred to process context. 231 */ 232 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && 233 (REGION_ID(ea) != USER_REGION_ID)) { 234 235 spin_unlock(&spu->register_lock); 236 ret = hash_page(ea, _PAGE_PRESENT, 0x300); 237 spin_lock(&spu->register_lock); 238 239 if (!ret) { 240 spu_restart_dma(spu); 241 return 0; 242 } 243 } 244 245 spu->class_1_dar = ea; 246 spu->class_1_dsisr = dsisr; 247 248 spu->stop_callback(spu, 1); 249 250 spu->class_1_dar = 0; 251 spu->class_1_dsisr = 0; 252 253 return 0; 254 } 255 256 static void __spu_kernel_slb(void *addr, struct spu_slb *slb) 257 { 258 unsigned long ea = (unsigned long)addr; 259 u64 llp; 260 261 if (REGION_ID(ea) == KERNEL_REGION_ID) 262 llp = mmu_psize_defs[mmu_linear_psize].sllp; 263 else 264 llp = mmu_psize_defs[mmu_virtual_psize].sllp; 265 266 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) | 267 SLB_VSID_KERNEL | llp; 268 slb->esid = (ea & ESID_MASK) | SLB_ESID_V; 269 } 270 271 /** 272 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the 273 * address @new_addr is present. 274 */ 275 static inline int __slb_present(struct spu_slb *slbs, int nr_slbs, 276 void *new_addr) 277 { 278 unsigned long ea = (unsigned long)new_addr; 279 int i; 280 281 for (i = 0; i < nr_slbs; i++) 282 if (!((slbs[i].esid ^ ea) & ESID_MASK)) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We 290 * need to map both the context save area, and the save/restore code. 291 * 292 * Because the lscsa and code may cross segment boundaires, we check to see 293 * if mappings are required for the start and end of each range. We currently 294 * assume that the mappings are smaller that one segment - if not, something 295 * is seriously wrong. 296 */ 297 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa, 298 void *code, int code_size) 299 { 300 struct spu_slb slbs[4]; 301 int i, nr_slbs = 0; 302 /* start and end addresses of both mappings */ 303 void *addrs[] = { 304 lscsa, (void *)lscsa + sizeof(*lscsa) - 1, 305 code, code + code_size - 1 306 }; 307 308 /* check the set of addresses, and create a new entry in the slbs array 309 * if there isn't already a SLB for that address */ 310 for (i = 0; i < ARRAY_SIZE(addrs); i++) { 311 if (__slb_present(slbs, nr_slbs, addrs[i])) 312 continue; 313 314 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]); 315 nr_slbs++; 316 } 317 318 spin_lock_irq(&spu->register_lock); 319 /* Add the set of SLBs */ 320 for (i = 0; i < nr_slbs; i++) 321 spu_load_slb(spu, i, &slbs[i]); 322 spin_unlock_irq(&spu->register_lock); 323 } 324 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs); 325 326 static irqreturn_t 327 spu_irq_class_0(int irq, void *data) 328 { 329 struct spu *spu; 330 unsigned long stat, mask; 331 332 spu = data; 333 334 spin_lock(&spu->register_lock); 335 mask = spu_int_mask_get(spu, 0); 336 stat = spu_int_stat_get(spu, 0) & mask; 337 338 spu->class_0_pending |= stat; 339 spu->class_0_dar = spu_mfc_dar_get(spu); 340 spu->stop_callback(spu, 0); 341 spu->class_0_pending = 0; 342 spu->class_0_dar = 0; 343 344 spu_int_stat_clear(spu, 0, stat); 345 spin_unlock(&spu->register_lock); 346 347 return IRQ_HANDLED; 348 } 349 350 static irqreturn_t 351 spu_irq_class_1(int irq, void *data) 352 { 353 struct spu *spu; 354 unsigned long stat, mask, dar, dsisr; 355 356 spu = data; 357 358 /* atomically read & clear class1 status. */ 359 spin_lock(&spu->register_lock); 360 mask = spu_int_mask_get(spu, 1); 361 stat = spu_int_stat_get(spu, 1) & mask; 362 dar = spu_mfc_dar_get(spu); 363 dsisr = spu_mfc_dsisr_get(spu); 364 if (stat & CLASS1_STORAGE_FAULT_INTR) 365 spu_mfc_dsisr_set(spu, 0ul); 366 spu_int_stat_clear(spu, 1, stat); 367 368 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat, 369 dar, dsisr); 370 371 if (stat & CLASS1_SEGMENT_FAULT_INTR) 372 __spu_trap_data_seg(spu, dar); 373 374 if (stat & CLASS1_STORAGE_FAULT_INTR) 375 __spu_trap_data_map(spu, dar, dsisr); 376 377 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR) 378 ; 379 380 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR) 381 ; 382 383 spu->class_1_dsisr = 0; 384 spu->class_1_dar = 0; 385 386 spin_unlock(&spu->register_lock); 387 388 return stat ? IRQ_HANDLED : IRQ_NONE; 389 } 390 391 static irqreturn_t 392 spu_irq_class_2(int irq, void *data) 393 { 394 struct spu *spu; 395 unsigned long stat; 396 unsigned long mask; 397 const int mailbox_intrs = 398 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR; 399 400 spu = data; 401 spin_lock(&spu->register_lock); 402 stat = spu_int_stat_get(spu, 2); 403 mask = spu_int_mask_get(spu, 2); 404 /* ignore interrupts we're not waiting for */ 405 stat &= mask; 406 /* mailbox interrupts are level triggered. mask them now before 407 * acknowledging */ 408 if (stat & mailbox_intrs) 409 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs)); 410 /* acknowledge all interrupts before the callbacks */ 411 spu_int_stat_clear(spu, 2, stat); 412 413 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); 414 415 if (stat & CLASS2_MAILBOX_INTR) 416 spu->ibox_callback(spu); 417 418 if (stat & CLASS2_SPU_STOP_INTR) 419 spu->stop_callback(spu, 2); 420 421 if (stat & CLASS2_SPU_HALT_INTR) 422 spu->stop_callback(spu, 2); 423 424 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR) 425 spu->mfc_callback(spu); 426 427 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR) 428 spu->wbox_callback(spu); 429 430 spu->stats.class2_intr++; 431 432 spin_unlock(&spu->register_lock); 433 434 return stat ? IRQ_HANDLED : IRQ_NONE; 435 } 436 437 static int spu_request_irqs(struct spu *spu) 438 { 439 int ret = 0; 440 441 if (spu->irqs[0] != NO_IRQ) { 442 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", 443 spu->number); 444 ret = request_irq(spu->irqs[0], spu_irq_class_0, 445 0, spu->irq_c0, spu); 446 if (ret) 447 goto bail0; 448 } 449 if (spu->irqs[1] != NO_IRQ) { 450 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", 451 spu->number); 452 ret = request_irq(spu->irqs[1], spu_irq_class_1, 453 0, spu->irq_c1, spu); 454 if (ret) 455 goto bail1; 456 } 457 if (spu->irqs[2] != NO_IRQ) { 458 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", 459 spu->number); 460 ret = request_irq(spu->irqs[2], spu_irq_class_2, 461 0, spu->irq_c2, spu); 462 if (ret) 463 goto bail2; 464 } 465 return 0; 466 467 bail2: 468 if (spu->irqs[1] != NO_IRQ) 469 free_irq(spu->irqs[1], spu); 470 bail1: 471 if (spu->irqs[0] != NO_IRQ) 472 free_irq(spu->irqs[0], spu); 473 bail0: 474 return ret; 475 } 476 477 static void spu_free_irqs(struct spu *spu) 478 { 479 if (spu->irqs[0] != NO_IRQ) 480 free_irq(spu->irqs[0], spu); 481 if (spu->irqs[1] != NO_IRQ) 482 free_irq(spu->irqs[1], spu); 483 if (spu->irqs[2] != NO_IRQ) 484 free_irq(spu->irqs[2], spu); 485 } 486 487 void spu_init_channels(struct spu *spu) 488 { 489 static const struct { 490 unsigned channel; 491 unsigned count; 492 } zero_list[] = { 493 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, 494 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, 495 }, count_list[] = { 496 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, 497 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, 498 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, 499 }; 500 struct spu_priv2 __iomem *priv2; 501 int i; 502 503 priv2 = spu->priv2; 504 505 /* initialize all channel data to zero */ 506 for (i = 0; i < ARRAY_SIZE(zero_list); i++) { 507 int count; 508 509 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); 510 for (count = 0; count < zero_list[i].count; count++) 511 out_be64(&priv2->spu_chnldata_RW, 0); 512 } 513 514 /* initialize channel counts to meaningful values */ 515 for (i = 0; i < ARRAY_SIZE(count_list); i++) { 516 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); 517 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); 518 } 519 } 520 EXPORT_SYMBOL_GPL(spu_init_channels); 521 522 static struct bus_type spu_subsys = { 523 .name = "spu", 524 .dev_name = "spu", 525 }; 526 527 int spu_add_dev_attr(struct device_attribute *attr) 528 { 529 struct spu *spu; 530 531 mutex_lock(&spu_full_list_mutex); 532 list_for_each_entry(spu, &spu_full_list, full_list) 533 device_create_file(&spu->dev, attr); 534 mutex_unlock(&spu_full_list_mutex); 535 536 return 0; 537 } 538 EXPORT_SYMBOL_GPL(spu_add_dev_attr); 539 540 int spu_add_dev_attr_group(struct attribute_group *attrs) 541 { 542 struct spu *spu; 543 int rc = 0; 544 545 mutex_lock(&spu_full_list_mutex); 546 list_for_each_entry(spu, &spu_full_list, full_list) { 547 rc = sysfs_create_group(&spu->dev.kobj, attrs); 548 549 /* we're in trouble here, but try unwinding anyway */ 550 if (rc) { 551 printk(KERN_ERR "%s: can't create sysfs group '%s'\n", 552 __func__, attrs->name); 553 554 list_for_each_entry_continue_reverse(spu, 555 &spu_full_list, full_list) 556 sysfs_remove_group(&spu->dev.kobj, attrs); 557 break; 558 } 559 } 560 561 mutex_unlock(&spu_full_list_mutex); 562 563 return rc; 564 } 565 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group); 566 567 568 void spu_remove_dev_attr(struct device_attribute *attr) 569 { 570 struct spu *spu; 571 572 mutex_lock(&spu_full_list_mutex); 573 list_for_each_entry(spu, &spu_full_list, full_list) 574 device_remove_file(&spu->dev, attr); 575 mutex_unlock(&spu_full_list_mutex); 576 } 577 EXPORT_SYMBOL_GPL(spu_remove_dev_attr); 578 579 void spu_remove_dev_attr_group(struct attribute_group *attrs) 580 { 581 struct spu *spu; 582 583 mutex_lock(&spu_full_list_mutex); 584 list_for_each_entry(spu, &spu_full_list, full_list) 585 sysfs_remove_group(&spu->dev.kobj, attrs); 586 mutex_unlock(&spu_full_list_mutex); 587 } 588 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group); 589 590 static int spu_create_dev(struct spu *spu) 591 { 592 int ret; 593 594 spu->dev.id = spu->number; 595 spu->dev.bus = &spu_subsys; 596 ret = device_register(&spu->dev); 597 if (ret) { 598 printk(KERN_ERR "Can't register SPU %d with sysfs\n", 599 spu->number); 600 return ret; 601 } 602 603 sysfs_add_device_to_node(&spu->dev, spu->node); 604 605 return 0; 606 } 607 608 static int __init create_spu(void *data) 609 { 610 struct spu *spu; 611 int ret; 612 static int number; 613 unsigned long flags; 614 struct timespec ts; 615 616 ret = -ENOMEM; 617 spu = kzalloc(sizeof (*spu), GFP_KERNEL); 618 if (!spu) 619 goto out; 620 621 spu->alloc_state = SPU_FREE; 622 623 spin_lock_init(&spu->register_lock); 624 spin_lock(&spu_lock); 625 spu->number = number++; 626 spin_unlock(&spu_lock); 627 628 ret = spu_create_spu(spu, data); 629 630 if (ret) 631 goto out_free; 632 633 spu_mfc_sdr_setup(spu); 634 spu_mfc_sr1_set(spu, 0x33); 635 ret = spu_request_irqs(spu); 636 if (ret) 637 goto out_destroy; 638 639 ret = spu_create_dev(spu); 640 if (ret) 641 goto out_free_irqs; 642 643 mutex_lock(&cbe_spu_info[spu->node].list_mutex); 644 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus); 645 cbe_spu_info[spu->node].n_spus++; 646 mutex_unlock(&cbe_spu_info[spu->node].list_mutex); 647 648 mutex_lock(&spu_full_list_mutex); 649 spin_lock_irqsave(&spu_full_list_lock, flags); 650 list_add(&spu->full_list, &spu_full_list); 651 spin_unlock_irqrestore(&spu_full_list_lock, flags); 652 mutex_unlock(&spu_full_list_mutex); 653 654 spu->stats.util_state = SPU_UTIL_IDLE_LOADED; 655 ktime_get_ts(&ts); 656 spu->stats.tstamp = timespec_to_ns(&ts); 657 658 INIT_LIST_HEAD(&spu->aff_list); 659 660 goto out; 661 662 out_free_irqs: 663 spu_free_irqs(spu); 664 out_destroy: 665 spu_destroy_spu(spu); 666 out_free: 667 kfree(spu); 668 out: 669 return ret; 670 } 671 672 static const char *spu_state_names[] = { 673 "user", "system", "iowait", "idle" 674 }; 675 676 static unsigned long long spu_acct_time(struct spu *spu, 677 enum spu_utilization_state state) 678 { 679 struct timespec ts; 680 unsigned long long time = spu->stats.times[state]; 681 682 /* 683 * If the spu is idle or the context is stopped, utilization 684 * statistics are not updated. Apply the time delta from the 685 * last recorded state of the spu. 686 */ 687 if (spu->stats.util_state == state) { 688 ktime_get_ts(&ts); 689 time += timespec_to_ns(&ts) - spu->stats.tstamp; 690 } 691 692 return time / NSEC_PER_MSEC; 693 } 694 695 696 static ssize_t spu_stat_show(struct device *dev, 697 struct device_attribute *attr, char *buf) 698 { 699 struct spu *spu = container_of(dev, struct spu, dev); 700 701 return sprintf(buf, "%s %llu %llu %llu %llu " 702 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 703 spu_state_names[spu->stats.util_state], 704 spu_acct_time(spu, SPU_UTIL_USER), 705 spu_acct_time(spu, SPU_UTIL_SYSTEM), 706 spu_acct_time(spu, SPU_UTIL_IOWAIT), 707 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED), 708 spu->stats.vol_ctx_switch, 709 spu->stats.invol_ctx_switch, 710 spu->stats.slb_flt, 711 spu->stats.hash_flt, 712 spu->stats.min_flt, 713 spu->stats.maj_flt, 714 spu->stats.class2_intr, 715 spu->stats.libassist); 716 } 717 718 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL); 719 720 #ifdef CONFIG_KEXEC 721 722 struct crash_spu_info { 723 struct spu *spu; 724 u32 saved_spu_runcntl_RW; 725 u32 saved_spu_status_R; 726 u32 saved_spu_npc_RW; 727 u64 saved_mfc_sr1_RW; 728 u64 saved_mfc_dar; 729 u64 saved_mfc_dsisr; 730 }; 731 732 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */ 733 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS]; 734 735 static void crash_kexec_stop_spus(void) 736 { 737 struct spu *spu; 738 int i; 739 u64 tmp; 740 741 for (i = 0; i < CRASH_NUM_SPUS; i++) { 742 if (!crash_spu_info[i].spu) 743 continue; 744 745 spu = crash_spu_info[i].spu; 746 747 crash_spu_info[i].saved_spu_runcntl_RW = 748 in_be32(&spu->problem->spu_runcntl_RW); 749 crash_spu_info[i].saved_spu_status_R = 750 in_be32(&spu->problem->spu_status_R); 751 crash_spu_info[i].saved_spu_npc_RW = 752 in_be32(&spu->problem->spu_npc_RW); 753 754 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu); 755 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu); 756 tmp = spu_mfc_sr1_get(spu); 757 crash_spu_info[i].saved_mfc_sr1_RW = tmp; 758 759 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; 760 spu_mfc_sr1_set(spu, tmp); 761 762 __delay(200); 763 } 764 } 765 766 static void crash_register_spus(struct list_head *list) 767 { 768 struct spu *spu; 769 int ret; 770 771 list_for_each_entry(spu, list, full_list) { 772 if (WARN_ON(spu->number >= CRASH_NUM_SPUS)) 773 continue; 774 775 crash_spu_info[spu->number].spu = spu; 776 } 777 778 ret = crash_shutdown_register(&crash_kexec_stop_spus); 779 if (ret) 780 printk(KERN_ERR "Could not register SPU crash handler"); 781 } 782 783 #else 784 static inline void crash_register_spus(struct list_head *list) 785 { 786 } 787 #endif 788 789 static void spu_shutdown(void) 790 { 791 struct spu *spu; 792 793 mutex_lock(&spu_full_list_mutex); 794 list_for_each_entry(spu, &spu_full_list, full_list) { 795 spu_free_irqs(spu); 796 spu_destroy_spu(spu); 797 } 798 mutex_unlock(&spu_full_list_mutex); 799 } 800 801 static struct syscore_ops spu_syscore_ops = { 802 .shutdown = spu_shutdown, 803 }; 804 805 static int __init init_spu_base(void) 806 { 807 int i, ret = 0; 808 809 for (i = 0; i < MAX_NUMNODES; i++) { 810 mutex_init(&cbe_spu_info[i].list_mutex); 811 INIT_LIST_HEAD(&cbe_spu_info[i].spus); 812 } 813 814 if (!spu_management_ops) 815 goto out; 816 817 /* create system subsystem for spus */ 818 ret = subsys_system_register(&spu_subsys, NULL); 819 if (ret) 820 goto out; 821 822 ret = spu_enumerate_spus(create_spu); 823 824 if (ret < 0) { 825 printk(KERN_WARNING "%s: Error initializing spus\n", 826 __func__); 827 goto out_unregister_subsys; 828 } 829 830 if (ret > 0) 831 fb_append_extra_logo(&logo_spe_clut224, ret); 832 833 mutex_lock(&spu_full_list_mutex); 834 xmon_register_spus(&spu_full_list); 835 crash_register_spus(&spu_full_list); 836 mutex_unlock(&spu_full_list_mutex); 837 spu_add_dev_attr(&dev_attr_stat); 838 register_syscore_ops(&spu_syscore_ops); 839 840 spu_init_affinity(); 841 842 return 0; 843 844 out_unregister_subsys: 845 bus_unregister(&spu_subsys); 846 out: 847 return ret; 848 } 849 module_init(init_spu_base); 850 851 MODULE_LICENSE("GPL"); 852 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>"); 853