1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Low-level SPU handling 4 * 5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 6 * 7 * Author: Arnd Bergmann <arndb@de.ibm.com> 8 */ 9 10 #undef DEBUG 11 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/init.h> 15 #include <linux/ptrace.h> 16 #include <linux/slab.h> 17 #include <linux/wait.h> 18 #include <linux/mm.h> 19 #include <linux/io.h> 20 #include <linux/mutex.h> 21 #include <linux/linux_logo.h> 22 #include <linux/syscore_ops.h> 23 #include <asm/spu.h> 24 #include <asm/spu_priv1.h> 25 #include <asm/spu_csa.h> 26 #include <asm/xmon.h> 27 #include <asm/prom.h> 28 #include <asm/kexec.h> 29 30 const struct spu_management_ops *spu_management_ops; 31 EXPORT_SYMBOL_GPL(spu_management_ops); 32 33 const struct spu_priv1_ops *spu_priv1_ops; 34 EXPORT_SYMBOL_GPL(spu_priv1_ops); 35 36 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES]; 37 EXPORT_SYMBOL_GPL(cbe_spu_info); 38 39 /* 40 * The spufs fault-handling code needs to call force_sig_fault to raise signals 41 * on DMA errors. Export it here to avoid general kernel-wide access to this 42 * function 43 */ 44 EXPORT_SYMBOL_GPL(force_sig_fault); 45 46 /* 47 * Protects cbe_spu_info and spu->number. 48 */ 49 static DEFINE_SPINLOCK(spu_lock); 50 51 /* 52 * List of all spus in the system. 53 * 54 * This list is iterated by callers from irq context and callers that 55 * want to sleep. Thus modifications need to be done with both 56 * spu_full_list_lock and spu_full_list_mutex held, while iterating 57 * through it requires either of these locks. 58 * 59 * In addition spu_full_list_lock protects all assignments to 60 * spu->mm. 61 */ 62 static LIST_HEAD(spu_full_list); 63 static DEFINE_SPINLOCK(spu_full_list_lock); 64 static DEFINE_MUTEX(spu_full_list_mutex); 65 66 void spu_invalidate_slbs(struct spu *spu) 67 { 68 struct spu_priv2 __iomem *priv2 = spu->priv2; 69 unsigned long flags; 70 71 spin_lock_irqsave(&spu->register_lock, flags); 72 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) 73 out_be64(&priv2->slb_invalidate_all_W, 0UL); 74 spin_unlock_irqrestore(&spu->register_lock, flags); 75 } 76 EXPORT_SYMBOL_GPL(spu_invalidate_slbs); 77 78 /* This is called by the MM core when a segment size is changed, to 79 * request a flush of all the SPEs using a given mm 80 */ 81 void spu_flush_all_slbs(struct mm_struct *mm) 82 { 83 struct spu *spu; 84 unsigned long flags; 85 86 spin_lock_irqsave(&spu_full_list_lock, flags); 87 list_for_each_entry(spu, &spu_full_list, full_list) { 88 if (spu->mm == mm) 89 spu_invalidate_slbs(spu); 90 } 91 spin_unlock_irqrestore(&spu_full_list_lock, flags); 92 } 93 94 /* The hack below stinks... try to do something better one of 95 * these days... Does it even work properly with NR_CPUS == 1 ? 96 */ 97 static inline void mm_needs_global_tlbie(struct mm_struct *mm) 98 { 99 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; 100 101 /* Global TLBIE broadcast required with SPEs. */ 102 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr); 103 } 104 105 void spu_associate_mm(struct spu *spu, struct mm_struct *mm) 106 { 107 unsigned long flags; 108 109 spin_lock_irqsave(&spu_full_list_lock, flags); 110 spu->mm = mm; 111 spin_unlock_irqrestore(&spu_full_list_lock, flags); 112 if (mm) 113 mm_needs_global_tlbie(mm); 114 } 115 EXPORT_SYMBOL_GPL(spu_associate_mm); 116 117 int spu_64k_pages_available(void) 118 { 119 return mmu_psize_defs[MMU_PAGE_64K].shift != 0; 120 } 121 EXPORT_SYMBOL_GPL(spu_64k_pages_available); 122 123 static void spu_restart_dma(struct spu *spu) 124 { 125 struct spu_priv2 __iomem *priv2 = spu->priv2; 126 127 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) 128 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); 129 else { 130 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); 131 mb(); 132 } 133 } 134 135 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb) 136 { 137 struct spu_priv2 __iomem *priv2 = spu->priv2; 138 139 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n", 140 __func__, slbe, slb->vsid, slb->esid); 141 142 out_be64(&priv2->slb_index_W, slbe); 143 /* set invalid before writing vsid */ 144 out_be64(&priv2->slb_esid_RW, 0); 145 /* now it's safe to write the vsid */ 146 out_be64(&priv2->slb_vsid_RW, slb->vsid); 147 /* setting the new esid makes the entry valid again */ 148 out_be64(&priv2->slb_esid_RW, slb->esid); 149 } 150 151 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) 152 { 153 struct copro_slb slb; 154 int ret; 155 156 ret = copro_calculate_slb(spu->mm, ea, &slb); 157 if (ret) 158 return ret; 159 160 spu_load_slb(spu, spu->slb_replace, &slb); 161 162 spu->slb_replace++; 163 if (spu->slb_replace >= 8) 164 spu->slb_replace = 0; 165 166 spu_restart_dma(spu); 167 spu->stats.slb_flt++; 168 return 0; 169 } 170 171 extern int hash_page(unsigned long ea, unsigned long access, 172 unsigned long trap, unsigned long dsisr); //XXX 173 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) 174 { 175 int ret; 176 177 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea); 178 179 /* 180 * Handle kernel space hash faults immediately. User hash 181 * faults need to be deferred to process context. 182 */ 183 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && 184 (get_region_id(ea) != USER_REGION_ID)) { 185 186 spin_unlock(&spu->register_lock); 187 ret = hash_page(ea, 188 _PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED, 189 0x300, dsisr); 190 spin_lock(&spu->register_lock); 191 192 if (!ret) { 193 spu_restart_dma(spu); 194 return 0; 195 } 196 } 197 198 spu->class_1_dar = ea; 199 spu->class_1_dsisr = dsisr; 200 201 spu->stop_callback(spu, 1); 202 203 spu->class_1_dar = 0; 204 spu->class_1_dsisr = 0; 205 206 return 0; 207 } 208 209 static void __spu_kernel_slb(void *addr, struct copro_slb *slb) 210 { 211 unsigned long ea = (unsigned long)addr; 212 u64 llp; 213 214 if (get_region_id(ea) == LINEAR_MAP_REGION_ID) 215 llp = mmu_psize_defs[mmu_linear_psize].sllp; 216 else 217 llp = mmu_psize_defs[mmu_virtual_psize].sllp; 218 219 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) | 220 SLB_VSID_KERNEL | llp; 221 slb->esid = (ea & ESID_MASK) | SLB_ESID_V; 222 } 223 224 /** 225 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the 226 * address @new_addr is present. 227 */ 228 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs, 229 void *new_addr) 230 { 231 unsigned long ea = (unsigned long)new_addr; 232 int i; 233 234 for (i = 0; i < nr_slbs; i++) 235 if (!((slbs[i].esid ^ ea) & ESID_MASK)) 236 return 1; 237 238 return 0; 239 } 240 241 /** 242 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We 243 * need to map both the context save area, and the save/restore code. 244 * 245 * Because the lscsa and code may cross segment boundaries, we check to see 246 * if mappings are required for the start and end of each range. We currently 247 * assume that the mappings are smaller that one segment - if not, something 248 * is seriously wrong. 249 */ 250 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa, 251 void *code, int code_size) 252 { 253 struct copro_slb slbs[4]; 254 int i, nr_slbs = 0; 255 /* start and end addresses of both mappings */ 256 void *addrs[] = { 257 lscsa, (void *)lscsa + sizeof(*lscsa) - 1, 258 code, code + code_size - 1 259 }; 260 261 /* check the set of addresses, and create a new entry in the slbs array 262 * if there isn't already a SLB for that address */ 263 for (i = 0; i < ARRAY_SIZE(addrs); i++) { 264 if (__slb_present(slbs, nr_slbs, addrs[i])) 265 continue; 266 267 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]); 268 nr_slbs++; 269 } 270 271 spin_lock_irq(&spu->register_lock); 272 /* Add the set of SLBs */ 273 for (i = 0; i < nr_slbs; i++) 274 spu_load_slb(spu, i, &slbs[i]); 275 spin_unlock_irq(&spu->register_lock); 276 } 277 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs); 278 279 static irqreturn_t 280 spu_irq_class_0(int irq, void *data) 281 { 282 struct spu *spu; 283 unsigned long stat, mask; 284 285 spu = data; 286 287 spin_lock(&spu->register_lock); 288 mask = spu_int_mask_get(spu, 0); 289 stat = spu_int_stat_get(spu, 0) & mask; 290 291 spu->class_0_pending |= stat; 292 spu->class_0_dar = spu_mfc_dar_get(spu); 293 spu->stop_callback(spu, 0); 294 spu->class_0_pending = 0; 295 spu->class_0_dar = 0; 296 297 spu_int_stat_clear(spu, 0, stat); 298 spin_unlock(&spu->register_lock); 299 300 return IRQ_HANDLED; 301 } 302 303 static irqreturn_t 304 spu_irq_class_1(int irq, void *data) 305 { 306 struct spu *spu; 307 unsigned long stat, mask, dar, dsisr; 308 309 spu = data; 310 311 /* atomically read & clear class1 status. */ 312 spin_lock(&spu->register_lock); 313 mask = spu_int_mask_get(spu, 1); 314 stat = spu_int_stat_get(spu, 1) & mask; 315 dar = spu_mfc_dar_get(spu); 316 dsisr = spu_mfc_dsisr_get(spu); 317 if (stat & CLASS1_STORAGE_FAULT_INTR) 318 spu_mfc_dsisr_set(spu, 0ul); 319 spu_int_stat_clear(spu, 1, stat); 320 321 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat, 322 dar, dsisr); 323 324 if (stat & CLASS1_SEGMENT_FAULT_INTR) 325 __spu_trap_data_seg(spu, dar); 326 327 if (stat & CLASS1_STORAGE_FAULT_INTR) 328 __spu_trap_data_map(spu, dar, dsisr); 329 330 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR) 331 ; 332 333 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR) 334 ; 335 336 spu->class_1_dsisr = 0; 337 spu->class_1_dar = 0; 338 339 spin_unlock(&spu->register_lock); 340 341 return stat ? IRQ_HANDLED : IRQ_NONE; 342 } 343 344 static irqreturn_t 345 spu_irq_class_2(int irq, void *data) 346 { 347 struct spu *spu; 348 unsigned long stat; 349 unsigned long mask; 350 const int mailbox_intrs = 351 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR; 352 353 spu = data; 354 spin_lock(&spu->register_lock); 355 stat = spu_int_stat_get(spu, 2); 356 mask = spu_int_mask_get(spu, 2); 357 /* ignore interrupts we're not waiting for */ 358 stat &= mask; 359 /* mailbox interrupts are level triggered. mask them now before 360 * acknowledging */ 361 if (stat & mailbox_intrs) 362 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs)); 363 /* acknowledge all interrupts before the callbacks */ 364 spu_int_stat_clear(spu, 2, stat); 365 366 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); 367 368 if (stat & CLASS2_MAILBOX_INTR) 369 spu->ibox_callback(spu); 370 371 if (stat & CLASS2_SPU_STOP_INTR) 372 spu->stop_callback(spu, 2); 373 374 if (stat & CLASS2_SPU_HALT_INTR) 375 spu->stop_callback(spu, 2); 376 377 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR) 378 spu->mfc_callback(spu); 379 380 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR) 381 spu->wbox_callback(spu); 382 383 spu->stats.class2_intr++; 384 385 spin_unlock(&spu->register_lock); 386 387 return stat ? IRQ_HANDLED : IRQ_NONE; 388 } 389 390 static int __init spu_request_irqs(struct spu *spu) 391 { 392 int ret = 0; 393 394 if (spu->irqs[0]) { 395 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", 396 spu->number); 397 ret = request_irq(spu->irqs[0], spu_irq_class_0, 398 0, spu->irq_c0, spu); 399 if (ret) 400 goto bail0; 401 } 402 if (spu->irqs[1]) { 403 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", 404 spu->number); 405 ret = request_irq(spu->irqs[1], spu_irq_class_1, 406 0, spu->irq_c1, spu); 407 if (ret) 408 goto bail1; 409 } 410 if (spu->irqs[2]) { 411 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", 412 spu->number); 413 ret = request_irq(spu->irqs[2], spu_irq_class_2, 414 0, spu->irq_c2, spu); 415 if (ret) 416 goto bail2; 417 } 418 return 0; 419 420 bail2: 421 if (spu->irqs[1]) 422 free_irq(spu->irqs[1], spu); 423 bail1: 424 if (spu->irqs[0]) 425 free_irq(spu->irqs[0], spu); 426 bail0: 427 return ret; 428 } 429 430 static void spu_free_irqs(struct spu *spu) 431 { 432 if (spu->irqs[0]) 433 free_irq(spu->irqs[0], spu); 434 if (spu->irqs[1]) 435 free_irq(spu->irqs[1], spu); 436 if (spu->irqs[2]) 437 free_irq(spu->irqs[2], spu); 438 } 439 440 void spu_init_channels(struct spu *spu) 441 { 442 static const struct { 443 unsigned channel; 444 unsigned count; 445 } zero_list[] = { 446 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, 447 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, 448 }, count_list[] = { 449 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, 450 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, 451 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, 452 }; 453 struct spu_priv2 __iomem *priv2; 454 int i; 455 456 priv2 = spu->priv2; 457 458 /* initialize all channel data to zero */ 459 for (i = 0; i < ARRAY_SIZE(zero_list); i++) { 460 int count; 461 462 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); 463 for (count = 0; count < zero_list[i].count; count++) 464 out_be64(&priv2->spu_chnldata_RW, 0); 465 } 466 467 /* initialize channel counts to meaningful values */ 468 for (i = 0; i < ARRAY_SIZE(count_list); i++) { 469 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); 470 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); 471 } 472 } 473 EXPORT_SYMBOL_GPL(spu_init_channels); 474 475 static struct bus_type spu_subsys = { 476 .name = "spu", 477 .dev_name = "spu", 478 }; 479 480 int spu_add_dev_attr(struct device_attribute *attr) 481 { 482 struct spu *spu; 483 484 mutex_lock(&spu_full_list_mutex); 485 list_for_each_entry(spu, &spu_full_list, full_list) 486 device_create_file(&spu->dev, attr); 487 mutex_unlock(&spu_full_list_mutex); 488 489 return 0; 490 } 491 EXPORT_SYMBOL_GPL(spu_add_dev_attr); 492 493 int spu_add_dev_attr_group(const struct attribute_group *attrs) 494 { 495 struct spu *spu; 496 int rc = 0; 497 498 mutex_lock(&spu_full_list_mutex); 499 list_for_each_entry(spu, &spu_full_list, full_list) { 500 rc = sysfs_create_group(&spu->dev.kobj, attrs); 501 502 /* we're in trouble here, but try unwinding anyway */ 503 if (rc) { 504 printk(KERN_ERR "%s: can't create sysfs group '%s'\n", 505 __func__, attrs->name); 506 507 list_for_each_entry_continue_reverse(spu, 508 &spu_full_list, full_list) 509 sysfs_remove_group(&spu->dev.kobj, attrs); 510 break; 511 } 512 } 513 514 mutex_unlock(&spu_full_list_mutex); 515 516 return rc; 517 } 518 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group); 519 520 521 void spu_remove_dev_attr(struct device_attribute *attr) 522 { 523 struct spu *spu; 524 525 mutex_lock(&spu_full_list_mutex); 526 list_for_each_entry(spu, &spu_full_list, full_list) 527 device_remove_file(&spu->dev, attr); 528 mutex_unlock(&spu_full_list_mutex); 529 } 530 EXPORT_SYMBOL_GPL(spu_remove_dev_attr); 531 532 void spu_remove_dev_attr_group(const struct attribute_group *attrs) 533 { 534 struct spu *spu; 535 536 mutex_lock(&spu_full_list_mutex); 537 list_for_each_entry(spu, &spu_full_list, full_list) 538 sysfs_remove_group(&spu->dev.kobj, attrs); 539 mutex_unlock(&spu_full_list_mutex); 540 } 541 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group); 542 543 static int __init spu_create_dev(struct spu *spu) 544 { 545 int ret; 546 547 spu->dev.id = spu->number; 548 spu->dev.bus = &spu_subsys; 549 ret = device_register(&spu->dev); 550 if (ret) { 551 printk(KERN_ERR "Can't register SPU %d with sysfs\n", 552 spu->number); 553 return ret; 554 } 555 556 sysfs_add_device_to_node(&spu->dev, spu->node); 557 558 return 0; 559 } 560 561 static int __init create_spu(void *data) 562 { 563 struct spu *spu; 564 int ret; 565 static int number; 566 unsigned long flags; 567 568 ret = -ENOMEM; 569 spu = kzalloc(sizeof (*spu), GFP_KERNEL); 570 if (!spu) 571 goto out; 572 573 spu->alloc_state = SPU_FREE; 574 575 spin_lock_init(&spu->register_lock); 576 spin_lock(&spu_lock); 577 spu->number = number++; 578 spin_unlock(&spu_lock); 579 580 ret = spu_create_spu(spu, data); 581 582 if (ret) 583 goto out_free; 584 585 spu_mfc_sdr_setup(spu); 586 spu_mfc_sr1_set(spu, 0x33); 587 ret = spu_request_irqs(spu); 588 if (ret) 589 goto out_destroy; 590 591 ret = spu_create_dev(spu); 592 if (ret) 593 goto out_free_irqs; 594 595 mutex_lock(&cbe_spu_info[spu->node].list_mutex); 596 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus); 597 cbe_spu_info[spu->node].n_spus++; 598 mutex_unlock(&cbe_spu_info[spu->node].list_mutex); 599 600 mutex_lock(&spu_full_list_mutex); 601 spin_lock_irqsave(&spu_full_list_lock, flags); 602 list_add(&spu->full_list, &spu_full_list); 603 spin_unlock_irqrestore(&spu_full_list_lock, flags); 604 mutex_unlock(&spu_full_list_mutex); 605 606 spu->stats.util_state = SPU_UTIL_IDLE_LOADED; 607 spu->stats.tstamp = ktime_get_ns(); 608 609 INIT_LIST_HEAD(&spu->aff_list); 610 611 goto out; 612 613 out_free_irqs: 614 spu_free_irqs(spu); 615 out_destroy: 616 spu_destroy_spu(spu); 617 out_free: 618 kfree(spu); 619 out: 620 return ret; 621 } 622 623 static const char *spu_state_names[] = { 624 "user", "system", "iowait", "idle" 625 }; 626 627 static unsigned long long spu_acct_time(struct spu *spu, 628 enum spu_utilization_state state) 629 { 630 unsigned long long time = spu->stats.times[state]; 631 632 /* 633 * If the spu is idle or the context is stopped, utilization 634 * statistics are not updated. Apply the time delta from the 635 * last recorded state of the spu. 636 */ 637 if (spu->stats.util_state == state) 638 time += ktime_get_ns() - spu->stats.tstamp; 639 640 return time / NSEC_PER_MSEC; 641 } 642 643 644 static ssize_t spu_stat_show(struct device *dev, 645 struct device_attribute *attr, char *buf) 646 { 647 struct spu *spu = container_of(dev, struct spu, dev); 648 649 return sprintf(buf, "%s %llu %llu %llu %llu " 650 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 651 spu_state_names[spu->stats.util_state], 652 spu_acct_time(spu, SPU_UTIL_USER), 653 spu_acct_time(spu, SPU_UTIL_SYSTEM), 654 spu_acct_time(spu, SPU_UTIL_IOWAIT), 655 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED), 656 spu->stats.vol_ctx_switch, 657 spu->stats.invol_ctx_switch, 658 spu->stats.slb_flt, 659 spu->stats.hash_flt, 660 spu->stats.min_flt, 661 spu->stats.maj_flt, 662 spu->stats.class2_intr, 663 spu->stats.libassist); 664 } 665 666 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL); 667 668 #ifdef CONFIG_KEXEC_CORE 669 670 struct crash_spu_info { 671 struct spu *spu; 672 u32 saved_spu_runcntl_RW; 673 u32 saved_spu_status_R; 674 u32 saved_spu_npc_RW; 675 u64 saved_mfc_sr1_RW; 676 u64 saved_mfc_dar; 677 u64 saved_mfc_dsisr; 678 }; 679 680 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */ 681 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS]; 682 683 static void crash_kexec_stop_spus(void) 684 { 685 struct spu *spu; 686 int i; 687 u64 tmp; 688 689 for (i = 0; i < CRASH_NUM_SPUS; i++) { 690 if (!crash_spu_info[i].spu) 691 continue; 692 693 spu = crash_spu_info[i].spu; 694 695 crash_spu_info[i].saved_spu_runcntl_RW = 696 in_be32(&spu->problem->spu_runcntl_RW); 697 crash_spu_info[i].saved_spu_status_R = 698 in_be32(&spu->problem->spu_status_R); 699 crash_spu_info[i].saved_spu_npc_RW = 700 in_be32(&spu->problem->spu_npc_RW); 701 702 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu); 703 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu); 704 tmp = spu_mfc_sr1_get(spu); 705 crash_spu_info[i].saved_mfc_sr1_RW = tmp; 706 707 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; 708 spu_mfc_sr1_set(spu, tmp); 709 710 __delay(200); 711 } 712 } 713 714 static void __init crash_register_spus(struct list_head *list) 715 { 716 struct spu *spu; 717 int ret; 718 719 list_for_each_entry(spu, list, full_list) { 720 if (WARN_ON(spu->number >= CRASH_NUM_SPUS)) 721 continue; 722 723 crash_spu_info[spu->number].spu = spu; 724 } 725 726 ret = crash_shutdown_register(&crash_kexec_stop_spus); 727 if (ret) 728 printk(KERN_ERR "Could not register SPU crash handler"); 729 } 730 731 #else 732 static inline void crash_register_spus(struct list_head *list) 733 { 734 } 735 #endif 736 737 static void spu_shutdown(void) 738 { 739 struct spu *spu; 740 741 mutex_lock(&spu_full_list_mutex); 742 list_for_each_entry(spu, &spu_full_list, full_list) { 743 spu_free_irqs(spu); 744 spu_destroy_spu(spu); 745 } 746 mutex_unlock(&spu_full_list_mutex); 747 } 748 749 static struct syscore_ops spu_syscore_ops = { 750 .shutdown = spu_shutdown, 751 }; 752 753 static int __init init_spu_base(void) 754 { 755 int i, ret = 0; 756 757 for (i = 0; i < MAX_NUMNODES; i++) { 758 mutex_init(&cbe_spu_info[i].list_mutex); 759 INIT_LIST_HEAD(&cbe_spu_info[i].spus); 760 } 761 762 if (!spu_management_ops) 763 goto out; 764 765 /* create system subsystem for spus */ 766 ret = subsys_system_register(&spu_subsys, NULL); 767 if (ret) 768 goto out; 769 770 ret = spu_enumerate_spus(create_spu); 771 772 if (ret < 0) { 773 printk(KERN_WARNING "%s: Error initializing spus\n", 774 __func__); 775 goto out_unregister_subsys; 776 } 777 778 if (ret > 0) 779 fb_append_extra_logo(&logo_spe_clut224, ret); 780 781 mutex_lock(&spu_full_list_mutex); 782 xmon_register_spus(&spu_full_list); 783 crash_register_spus(&spu_full_list); 784 mutex_unlock(&spu_full_list_mutex); 785 spu_add_dev_attr(&dev_attr_stat); 786 register_syscore_ops(&spu_syscore_ops); 787 788 spu_init_affinity(); 789 790 return 0; 791 792 out_unregister_subsys: 793 bus_unregister(&spu_subsys); 794 out: 795 return ret; 796 } 797 device_initcall(init_spu_base); 798