1 /*
2  * Low-level SPU handling
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/wait.h>
31 #include <linux/mm.h>
32 #include <linux/io.h>
33 #include <linux/mutex.h>
34 #include <linux/linux_logo.h>
35 #include <asm/spu.h>
36 #include <asm/spu_priv1.h>
37 #include <asm/spu_csa.h>
38 #include <asm/xmon.h>
39 #include <asm/prom.h>
40 
41 const struct spu_management_ops *spu_management_ops;
42 EXPORT_SYMBOL_GPL(spu_management_ops);
43 
44 const struct spu_priv1_ops *spu_priv1_ops;
45 EXPORT_SYMBOL_GPL(spu_priv1_ops);
46 
47 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
48 EXPORT_SYMBOL_GPL(cbe_spu_info);
49 
50 /*
51  * The spufs fault-handling code needs to call force_sig_info to raise signals
52  * on DMA errors. Export it here to avoid general kernel-wide access to this
53  * function
54  */
55 EXPORT_SYMBOL_GPL(force_sig_info);
56 
57 /*
58  * Protects cbe_spu_info and spu->number.
59  */
60 static DEFINE_SPINLOCK(spu_lock);
61 
62 /*
63  * List of all spus in the system.
64  *
65  * This list is iterated by callers from irq context and callers that
66  * want to sleep.  Thus modifications need to be done with both
67  * spu_full_list_lock and spu_full_list_mutex held, while iterating
68  * through it requires either of these locks.
69  *
70  * In addition spu_full_list_lock protects all assignmens to
71  * spu->mm.
72  */
73 static LIST_HEAD(spu_full_list);
74 static DEFINE_SPINLOCK(spu_full_list_lock);
75 static DEFINE_MUTEX(spu_full_list_mutex);
76 
77 struct spu_slb {
78 	u64 esid, vsid;
79 };
80 
81 void spu_invalidate_slbs(struct spu *spu)
82 {
83 	struct spu_priv2 __iomem *priv2 = spu->priv2;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&spu->register_lock, flags);
87 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
88 		out_be64(&priv2->slb_invalidate_all_W, 0UL);
89 	spin_unlock_irqrestore(&spu->register_lock, flags);
90 }
91 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
92 
93 /* This is called by the MM core when a segment size is changed, to
94  * request a flush of all the SPEs using a given mm
95  */
96 void spu_flush_all_slbs(struct mm_struct *mm)
97 {
98 	struct spu *spu;
99 	unsigned long flags;
100 
101 	spin_lock_irqsave(&spu_full_list_lock, flags);
102 	list_for_each_entry(spu, &spu_full_list, full_list) {
103 		if (spu->mm == mm)
104 			spu_invalidate_slbs(spu);
105 	}
106 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
107 }
108 
109 /* The hack below stinks... try to do something better one of
110  * these days... Does it even work properly with NR_CPUS == 1 ?
111  */
112 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
113 {
114 	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
115 
116 	/* Global TLBIE broadcast required with SPEs. */
117 	bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
118 }
119 
120 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
121 {
122 	unsigned long flags;
123 
124 	spin_lock_irqsave(&spu_full_list_lock, flags);
125 	spu->mm = mm;
126 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
127 	if (mm)
128 		mm_needs_global_tlbie(mm);
129 }
130 EXPORT_SYMBOL_GPL(spu_associate_mm);
131 
132 int spu_64k_pages_available(void)
133 {
134 	return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
135 }
136 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
137 
138 static void spu_restart_dma(struct spu *spu)
139 {
140 	struct spu_priv2 __iomem *priv2 = spu->priv2;
141 
142 	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
143 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
144 	else {
145 		set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
146 		mb();
147 	}
148 }
149 
150 static inline void spu_load_slb(struct spu *spu, int slbe, struct spu_slb *slb)
151 {
152 	struct spu_priv2 __iomem *priv2 = spu->priv2;
153 
154 	pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
155 			__func__, slbe, slb->vsid, slb->esid);
156 
157 	out_be64(&priv2->slb_index_W, slbe);
158 	/* set invalid before writing vsid */
159 	out_be64(&priv2->slb_esid_RW, 0);
160 	/* now it's safe to write the vsid */
161 	out_be64(&priv2->slb_vsid_RW, slb->vsid);
162 	/* setting the new esid makes the entry valid again */
163 	out_be64(&priv2->slb_esid_RW, slb->esid);
164 }
165 
166 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
167 {
168 	struct mm_struct *mm = spu->mm;
169 	struct spu_slb slb;
170 	int psize;
171 
172 	pr_debug("%s\n", __func__);
173 
174 	slb.esid = (ea & ESID_MASK) | SLB_ESID_V;
175 
176 	switch(REGION_ID(ea)) {
177 	case USER_REGION_ID:
178 #ifdef CONFIG_PPC_MM_SLICES
179 		psize = get_slice_psize(mm, ea);
180 #else
181 		psize = mm->context.user_psize;
182 #endif
183 		slb.vsid = (get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M)
184 				<< SLB_VSID_SHIFT) | SLB_VSID_USER;
185 		break;
186 	case VMALLOC_REGION_ID:
187 		if (ea < VMALLOC_END)
188 			psize = mmu_vmalloc_psize;
189 		else
190 			psize = mmu_io_psize;
191 		slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
192 				<< SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
193 		break;
194 	case KERNEL_REGION_ID:
195 		psize = mmu_linear_psize;
196 		slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
197 				<< SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
198 		break;
199 	default:
200 		/* Future: support kernel segments so that drivers
201 		 * can use SPUs.
202 		 */
203 		pr_debug("invalid region access at %016lx\n", ea);
204 		return 1;
205 	}
206 	slb.vsid |= mmu_psize_defs[psize].sllp;
207 
208 	spu_load_slb(spu, spu->slb_replace, &slb);
209 
210 	spu->slb_replace++;
211 	if (spu->slb_replace >= 8)
212 		spu->slb_replace = 0;
213 
214 	spu_restart_dma(spu);
215 	spu->stats.slb_flt++;
216 	return 0;
217 }
218 
219 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
220 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
221 {
222 	int ret;
223 
224 	pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
225 
226 	/*
227 	 * Handle kernel space hash faults immediately. User hash
228 	 * faults need to be deferred to process context.
229 	 */
230 	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
231 	    (REGION_ID(ea) != USER_REGION_ID)) {
232 
233 		spin_unlock(&spu->register_lock);
234 		ret = hash_page(ea, _PAGE_PRESENT, 0x300);
235 		spin_lock(&spu->register_lock);
236 
237 		if (!ret) {
238 			spu_restart_dma(spu);
239 			return 0;
240 		}
241 	}
242 
243 	spu->class_1_dar = ea;
244 	spu->class_1_dsisr = dsisr;
245 
246 	spu->stop_callback(spu, 1);
247 
248 	spu->class_1_dar = 0;
249 	spu->class_1_dsisr = 0;
250 
251 	return 0;
252 }
253 
254 static void __spu_kernel_slb(void *addr, struct spu_slb *slb)
255 {
256 	unsigned long ea = (unsigned long)addr;
257 	u64 llp;
258 
259 	if (REGION_ID(ea) == KERNEL_REGION_ID)
260 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
261 	else
262 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
263 
264 	slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
265 		SLB_VSID_KERNEL | llp;
266 	slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
267 }
268 
269 /**
270  * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
271  * address @new_addr is present.
272  */
273 static inline int __slb_present(struct spu_slb *slbs, int nr_slbs,
274 		void *new_addr)
275 {
276 	unsigned long ea = (unsigned long)new_addr;
277 	int i;
278 
279 	for (i = 0; i < nr_slbs; i++)
280 		if (!((slbs[i].esid ^ ea) & ESID_MASK))
281 			return 1;
282 
283 	return 0;
284 }
285 
286 /**
287  * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
288  * need to map both the context save area, and the save/restore code.
289  *
290  * Because the lscsa and code may cross segment boundaires, we check to see
291  * if mappings are required for the start and end of each range. We currently
292  * assume that the mappings are smaller that one segment - if not, something
293  * is seriously wrong.
294  */
295 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
296 		void *code, int code_size)
297 {
298 	struct spu_slb slbs[4];
299 	int i, nr_slbs = 0;
300 	/* start and end addresses of both mappings */
301 	void *addrs[] = {
302 		lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
303 		code, code + code_size - 1
304 	};
305 
306 	/* check the set of addresses, and create a new entry in the slbs array
307 	 * if there isn't already a SLB for that address */
308 	for (i = 0; i < ARRAY_SIZE(addrs); i++) {
309 		if (__slb_present(slbs, nr_slbs, addrs[i]))
310 			continue;
311 
312 		__spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
313 		nr_slbs++;
314 	}
315 
316 	spin_lock_irq(&spu->register_lock);
317 	/* Add the set of SLBs */
318 	for (i = 0; i < nr_slbs; i++)
319 		spu_load_slb(spu, i, &slbs[i]);
320 	spin_unlock_irq(&spu->register_lock);
321 }
322 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
323 
324 static irqreturn_t
325 spu_irq_class_0(int irq, void *data)
326 {
327 	struct spu *spu;
328 	unsigned long stat, mask;
329 
330 	spu = data;
331 
332 	spin_lock(&spu->register_lock);
333 	mask = spu_int_mask_get(spu, 0);
334 	stat = spu_int_stat_get(spu, 0) & mask;
335 
336 	spu->class_0_pending |= stat;
337 	spu->class_0_dar = spu_mfc_dar_get(spu);
338 	spu->stop_callback(spu, 0);
339 	spu->class_0_pending = 0;
340 	spu->class_0_dar = 0;
341 
342 	spu_int_stat_clear(spu, 0, stat);
343 	spin_unlock(&spu->register_lock);
344 
345 	return IRQ_HANDLED;
346 }
347 
348 static irqreturn_t
349 spu_irq_class_1(int irq, void *data)
350 {
351 	struct spu *spu;
352 	unsigned long stat, mask, dar, dsisr;
353 
354 	spu = data;
355 
356 	/* atomically read & clear class1 status. */
357 	spin_lock(&spu->register_lock);
358 	mask  = spu_int_mask_get(spu, 1);
359 	stat  = spu_int_stat_get(spu, 1) & mask;
360 	dar   = spu_mfc_dar_get(spu);
361 	dsisr = spu_mfc_dsisr_get(spu);
362 	if (stat & CLASS1_STORAGE_FAULT_INTR)
363 		spu_mfc_dsisr_set(spu, 0ul);
364 	spu_int_stat_clear(spu, 1, stat);
365 
366 	pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
367 			dar, dsisr);
368 
369 	if (stat & CLASS1_SEGMENT_FAULT_INTR)
370 		__spu_trap_data_seg(spu, dar);
371 
372 	if (stat & CLASS1_STORAGE_FAULT_INTR)
373 		__spu_trap_data_map(spu, dar, dsisr);
374 
375 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
376 		;
377 
378 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
379 		;
380 
381 	spu->class_1_dsisr = 0;
382 	spu->class_1_dar = 0;
383 
384 	spin_unlock(&spu->register_lock);
385 
386 	return stat ? IRQ_HANDLED : IRQ_NONE;
387 }
388 
389 static irqreturn_t
390 spu_irq_class_2(int irq, void *data)
391 {
392 	struct spu *spu;
393 	unsigned long stat;
394 	unsigned long mask;
395 	const int mailbox_intrs =
396 		CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
397 
398 	spu = data;
399 	spin_lock(&spu->register_lock);
400 	stat = spu_int_stat_get(spu, 2);
401 	mask = spu_int_mask_get(spu, 2);
402 	/* ignore interrupts we're not waiting for */
403 	stat &= mask;
404 	/* mailbox interrupts are level triggered. mask them now before
405 	 * acknowledging */
406 	if (stat & mailbox_intrs)
407 		spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
408 	/* acknowledge all interrupts before the callbacks */
409 	spu_int_stat_clear(spu, 2, stat);
410 
411 	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
412 
413 	if (stat & CLASS2_MAILBOX_INTR)
414 		spu->ibox_callback(spu);
415 
416 	if (stat & CLASS2_SPU_STOP_INTR)
417 		spu->stop_callback(spu, 2);
418 
419 	if (stat & CLASS2_SPU_HALT_INTR)
420 		spu->stop_callback(spu, 2);
421 
422 	if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
423 		spu->mfc_callback(spu);
424 
425 	if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
426 		spu->wbox_callback(spu);
427 
428 	spu->stats.class2_intr++;
429 
430 	spin_unlock(&spu->register_lock);
431 
432 	return stat ? IRQ_HANDLED : IRQ_NONE;
433 }
434 
435 static int spu_request_irqs(struct spu *spu)
436 {
437 	int ret = 0;
438 
439 	if (spu->irqs[0] != NO_IRQ) {
440 		snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
441 			 spu->number);
442 		ret = request_irq(spu->irqs[0], spu_irq_class_0,
443 				  IRQF_DISABLED,
444 				  spu->irq_c0, spu);
445 		if (ret)
446 			goto bail0;
447 	}
448 	if (spu->irqs[1] != NO_IRQ) {
449 		snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
450 			 spu->number);
451 		ret = request_irq(spu->irqs[1], spu_irq_class_1,
452 				  IRQF_DISABLED,
453 				  spu->irq_c1, spu);
454 		if (ret)
455 			goto bail1;
456 	}
457 	if (spu->irqs[2] != NO_IRQ) {
458 		snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
459 			 spu->number);
460 		ret = request_irq(spu->irqs[2], spu_irq_class_2,
461 				  IRQF_DISABLED,
462 				  spu->irq_c2, spu);
463 		if (ret)
464 			goto bail2;
465 	}
466 	return 0;
467 
468 bail2:
469 	if (spu->irqs[1] != NO_IRQ)
470 		free_irq(spu->irqs[1], spu);
471 bail1:
472 	if (spu->irqs[0] != NO_IRQ)
473 		free_irq(spu->irqs[0], spu);
474 bail0:
475 	return ret;
476 }
477 
478 static void spu_free_irqs(struct spu *spu)
479 {
480 	if (spu->irqs[0] != NO_IRQ)
481 		free_irq(spu->irqs[0], spu);
482 	if (spu->irqs[1] != NO_IRQ)
483 		free_irq(spu->irqs[1], spu);
484 	if (spu->irqs[2] != NO_IRQ)
485 		free_irq(spu->irqs[2], spu);
486 }
487 
488 void spu_init_channels(struct spu *spu)
489 {
490 	static const struct {
491 		 unsigned channel;
492 		 unsigned count;
493 	} zero_list[] = {
494 		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
495 		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
496 	}, count_list[] = {
497 		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
498 		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
499 		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
500 	};
501 	struct spu_priv2 __iomem *priv2;
502 	int i;
503 
504 	priv2 = spu->priv2;
505 
506 	/* initialize all channel data to zero */
507 	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
508 		int count;
509 
510 		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
511 		for (count = 0; count < zero_list[i].count; count++)
512 			out_be64(&priv2->spu_chnldata_RW, 0);
513 	}
514 
515 	/* initialize channel counts to meaningful values */
516 	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
517 		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
518 		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
519 	}
520 }
521 EXPORT_SYMBOL_GPL(spu_init_channels);
522 
523 static int spu_shutdown(struct sys_device *sysdev)
524 {
525 	struct spu *spu = container_of(sysdev, struct spu, sysdev);
526 
527 	spu_free_irqs(spu);
528 	spu_destroy_spu(spu);
529 	return 0;
530 }
531 
532 static struct sysdev_class spu_sysdev_class = {
533 	.name = "spu",
534 	.shutdown = spu_shutdown,
535 };
536 
537 int spu_add_sysdev_attr(struct sysdev_attribute *attr)
538 {
539 	struct spu *spu;
540 
541 	mutex_lock(&spu_full_list_mutex);
542 	list_for_each_entry(spu, &spu_full_list, full_list)
543 		sysdev_create_file(&spu->sysdev, attr);
544 	mutex_unlock(&spu_full_list_mutex);
545 
546 	return 0;
547 }
548 EXPORT_SYMBOL_GPL(spu_add_sysdev_attr);
549 
550 int spu_add_sysdev_attr_group(struct attribute_group *attrs)
551 {
552 	struct spu *spu;
553 	int rc = 0;
554 
555 	mutex_lock(&spu_full_list_mutex);
556 	list_for_each_entry(spu, &spu_full_list, full_list) {
557 		rc = sysfs_create_group(&spu->sysdev.kobj, attrs);
558 
559 		/* we're in trouble here, but try unwinding anyway */
560 		if (rc) {
561 			printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
562 					__func__, attrs->name);
563 
564 			list_for_each_entry_continue_reverse(spu,
565 					&spu_full_list, full_list)
566 				sysfs_remove_group(&spu->sysdev.kobj, attrs);
567 			break;
568 		}
569 	}
570 
571 	mutex_unlock(&spu_full_list_mutex);
572 
573 	return rc;
574 }
575 EXPORT_SYMBOL_GPL(spu_add_sysdev_attr_group);
576 
577 
578 void spu_remove_sysdev_attr(struct sysdev_attribute *attr)
579 {
580 	struct spu *spu;
581 
582 	mutex_lock(&spu_full_list_mutex);
583 	list_for_each_entry(spu, &spu_full_list, full_list)
584 		sysdev_remove_file(&spu->sysdev, attr);
585 	mutex_unlock(&spu_full_list_mutex);
586 }
587 EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr);
588 
589 void spu_remove_sysdev_attr_group(struct attribute_group *attrs)
590 {
591 	struct spu *spu;
592 
593 	mutex_lock(&spu_full_list_mutex);
594 	list_for_each_entry(spu, &spu_full_list, full_list)
595 		sysfs_remove_group(&spu->sysdev.kobj, attrs);
596 	mutex_unlock(&spu_full_list_mutex);
597 }
598 EXPORT_SYMBOL_GPL(spu_remove_sysdev_attr_group);
599 
600 static int spu_create_sysdev(struct spu *spu)
601 {
602 	int ret;
603 
604 	spu->sysdev.id = spu->number;
605 	spu->sysdev.cls = &spu_sysdev_class;
606 	ret = sysdev_register(&spu->sysdev);
607 	if (ret) {
608 		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
609 				spu->number);
610 		return ret;
611 	}
612 
613 	sysfs_add_device_to_node(&spu->sysdev, spu->node);
614 
615 	return 0;
616 }
617 
618 static int __init create_spu(void *data)
619 {
620 	struct spu *spu;
621 	int ret;
622 	static int number;
623 	unsigned long flags;
624 	struct timespec ts;
625 
626 	ret = -ENOMEM;
627 	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
628 	if (!spu)
629 		goto out;
630 
631 	spu->alloc_state = SPU_FREE;
632 
633 	spin_lock_init(&spu->register_lock);
634 	spin_lock(&spu_lock);
635 	spu->number = number++;
636 	spin_unlock(&spu_lock);
637 
638 	ret = spu_create_spu(spu, data);
639 
640 	if (ret)
641 		goto out_free;
642 
643 	spu_mfc_sdr_setup(spu);
644 	spu_mfc_sr1_set(spu, 0x33);
645 	ret = spu_request_irqs(spu);
646 	if (ret)
647 		goto out_destroy;
648 
649 	ret = spu_create_sysdev(spu);
650 	if (ret)
651 		goto out_free_irqs;
652 
653 	mutex_lock(&cbe_spu_info[spu->node].list_mutex);
654 	list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
655 	cbe_spu_info[spu->node].n_spus++;
656 	mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
657 
658 	mutex_lock(&spu_full_list_mutex);
659 	spin_lock_irqsave(&spu_full_list_lock, flags);
660 	list_add(&spu->full_list, &spu_full_list);
661 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
662 	mutex_unlock(&spu_full_list_mutex);
663 
664 	spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
665 	ktime_get_ts(&ts);
666 	spu->stats.tstamp = timespec_to_ns(&ts);
667 
668 	INIT_LIST_HEAD(&spu->aff_list);
669 
670 	goto out;
671 
672 out_free_irqs:
673 	spu_free_irqs(spu);
674 out_destroy:
675 	spu_destroy_spu(spu);
676 out_free:
677 	kfree(spu);
678 out:
679 	return ret;
680 }
681 
682 static const char *spu_state_names[] = {
683 	"user", "system", "iowait", "idle"
684 };
685 
686 static unsigned long long spu_acct_time(struct spu *spu,
687 		enum spu_utilization_state state)
688 {
689 	struct timespec ts;
690 	unsigned long long time = spu->stats.times[state];
691 
692 	/*
693 	 * If the spu is idle or the context is stopped, utilization
694 	 * statistics are not updated.  Apply the time delta from the
695 	 * last recorded state of the spu.
696 	 */
697 	if (spu->stats.util_state == state) {
698 		ktime_get_ts(&ts);
699 		time += timespec_to_ns(&ts) - spu->stats.tstamp;
700 	}
701 
702 	return time / NSEC_PER_MSEC;
703 }
704 
705 
706 static ssize_t spu_stat_show(struct sys_device *sysdev,
707 				struct sysdev_attribute *attr, char *buf)
708 {
709 	struct spu *spu = container_of(sysdev, struct spu, sysdev);
710 
711 	return sprintf(buf, "%s %llu %llu %llu %llu "
712 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
713 		spu_state_names[spu->stats.util_state],
714 		spu_acct_time(spu, SPU_UTIL_USER),
715 		spu_acct_time(spu, SPU_UTIL_SYSTEM),
716 		spu_acct_time(spu, SPU_UTIL_IOWAIT),
717 		spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
718 		spu->stats.vol_ctx_switch,
719 		spu->stats.invol_ctx_switch,
720 		spu->stats.slb_flt,
721 		spu->stats.hash_flt,
722 		spu->stats.min_flt,
723 		spu->stats.maj_flt,
724 		spu->stats.class2_intr,
725 		spu->stats.libassist);
726 }
727 
728 static SYSDEV_ATTR(stat, 0644, spu_stat_show, NULL);
729 
730 static int __init init_spu_base(void)
731 {
732 	int i, ret = 0;
733 
734 	for (i = 0; i < MAX_NUMNODES; i++) {
735 		mutex_init(&cbe_spu_info[i].list_mutex);
736 		INIT_LIST_HEAD(&cbe_spu_info[i].spus);
737 	}
738 
739 	if (!spu_management_ops)
740 		goto out;
741 
742 	/* create sysdev class for spus */
743 	ret = sysdev_class_register(&spu_sysdev_class);
744 	if (ret)
745 		goto out;
746 
747 	ret = spu_enumerate_spus(create_spu);
748 
749 	if (ret < 0) {
750 		printk(KERN_WARNING "%s: Error initializing spus\n",
751 			__func__);
752 		goto out_unregister_sysdev_class;
753 	}
754 
755 	if (ret > 0)
756 		fb_append_extra_logo(&logo_spe_clut224, ret);
757 
758 	mutex_lock(&spu_full_list_mutex);
759 	xmon_register_spus(&spu_full_list);
760 	crash_register_spus(&spu_full_list);
761 	mutex_unlock(&spu_full_list_mutex);
762 	spu_add_sysdev_attr(&attr_stat);
763 
764 	spu_init_affinity();
765 
766 	return 0;
767 
768  out_unregister_sysdev_class:
769 	sysdev_class_unregister(&spu_sysdev_class);
770  out:
771 	return ret;
772 }
773 module_init(init_spu_base);
774 
775 MODULE_LICENSE("GPL");
776 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
777