1 /* 2 * Low-level SPU handling 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/interrupt.h> 26 #include <linux/list.h> 27 #include <linux/init.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/wait.h> 31 #include <linux/mm.h> 32 #include <linux/io.h> 33 #include <linux/mutex.h> 34 #include <linux/linux_logo.h> 35 #include <linux/syscore_ops.h> 36 #include <asm/spu.h> 37 #include <asm/spu_priv1.h> 38 #include <asm/spu_csa.h> 39 #include <asm/xmon.h> 40 #include <asm/prom.h> 41 #include <asm/kexec.h> 42 43 const struct spu_management_ops *spu_management_ops; 44 EXPORT_SYMBOL_GPL(spu_management_ops); 45 46 const struct spu_priv1_ops *spu_priv1_ops; 47 EXPORT_SYMBOL_GPL(spu_priv1_ops); 48 49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES]; 50 EXPORT_SYMBOL_GPL(cbe_spu_info); 51 52 /* 53 * The spufs fault-handling code needs to call force_sig_info to raise signals 54 * on DMA errors. Export it here to avoid general kernel-wide access to this 55 * function 56 */ 57 EXPORT_SYMBOL_GPL(force_sig_info); 58 59 /* 60 * Protects cbe_spu_info and spu->number. 61 */ 62 static DEFINE_SPINLOCK(spu_lock); 63 64 /* 65 * List of all spus in the system. 66 * 67 * This list is iterated by callers from irq context and callers that 68 * want to sleep. Thus modifications need to be done with both 69 * spu_full_list_lock and spu_full_list_mutex held, while iterating 70 * through it requires either of these locks. 71 * 72 * In addition spu_full_list_lock protects all assignments to 73 * spu->mm. 74 */ 75 static LIST_HEAD(spu_full_list); 76 static DEFINE_SPINLOCK(spu_full_list_lock); 77 static DEFINE_MUTEX(spu_full_list_mutex); 78 79 void spu_invalidate_slbs(struct spu *spu) 80 { 81 struct spu_priv2 __iomem *priv2 = spu->priv2; 82 unsigned long flags; 83 84 spin_lock_irqsave(&spu->register_lock, flags); 85 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) 86 out_be64(&priv2->slb_invalidate_all_W, 0UL); 87 spin_unlock_irqrestore(&spu->register_lock, flags); 88 } 89 EXPORT_SYMBOL_GPL(spu_invalidate_slbs); 90 91 /* This is called by the MM core when a segment size is changed, to 92 * request a flush of all the SPEs using a given mm 93 */ 94 void spu_flush_all_slbs(struct mm_struct *mm) 95 { 96 struct spu *spu; 97 unsigned long flags; 98 99 spin_lock_irqsave(&spu_full_list_lock, flags); 100 list_for_each_entry(spu, &spu_full_list, full_list) { 101 if (spu->mm == mm) 102 spu_invalidate_slbs(spu); 103 } 104 spin_unlock_irqrestore(&spu_full_list_lock, flags); 105 } 106 107 /* The hack below stinks... try to do something better one of 108 * these days... Does it even work properly with NR_CPUS == 1 ? 109 */ 110 static inline void mm_needs_global_tlbie(struct mm_struct *mm) 111 { 112 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; 113 114 /* Global TLBIE broadcast required with SPEs. */ 115 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr); 116 } 117 118 void spu_associate_mm(struct spu *spu, struct mm_struct *mm) 119 { 120 unsigned long flags; 121 122 spin_lock_irqsave(&spu_full_list_lock, flags); 123 spu->mm = mm; 124 spin_unlock_irqrestore(&spu_full_list_lock, flags); 125 if (mm) 126 mm_needs_global_tlbie(mm); 127 } 128 EXPORT_SYMBOL_GPL(spu_associate_mm); 129 130 int spu_64k_pages_available(void) 131 { 132 return mmu_psize_defs[MMU_PAGE_64K].shift != 0; 133 } 134 EXPORT_SYMBOL_GPL(spu_64k_pages_available); 135 136 static void spu_restart_dma(struct spu *spu) 137 { 138 struct spu_priv2 __iomem *priv2 = spu->priv2; 139 140 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) 141 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); 142 else { 143 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); 144 mb(); 145 } 146 } 147 148 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb) 149 { 150 struct spu_priv2 __iomem *priv2 = spu->priv2; 151 152 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n", 153 __func__, slbe, slb->vsid, slb->esid); 154 155 out_be64(&priv2->slb_index_W, slbe); 156 /* set invalid before writing vsid */ 157 out_be64(&priv2->slb_esid_RW, 0); 158 /* now it's safe to write the vsid */ 159 out_be64(&priv2->slb_vsid_RW, slb->vsid); 160 /* setting the new esid makes the entry valid again */ 161 out_be64(&priv2->slb_esid_RW, slb->esid); 162 } 163 164 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) 165 { 166 struct copro_slb slb; 167 int ret; 168 169 ret = copro_calculate_slb(spu->mm, ea, &slb); 170 if (ret) 171 return ret; 172 173 spu_load_slb(spu, spu->slb_replace, &slb); 174 175 spu->slb_replace++; 176 if (spu->slb_replace >= 8) 177 spu->slb_replace = 0; 178 179 spu_restart_dma(spu); 180 spu->stats.slb_flt++; 181 return 0; 182 } 183 184 extern int hash_page(unsigned long ea, unsigned long access, 185 unsigned long trap, unsigned long dsisr); //XXX 186 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) 187 { 188 int ret; 189 190 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea); 191 192 /* 193 * Handle kernel space hash faults immediately. User hash 194 * faults need to be deferred to process context. 195 */ 196 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && 197 (REGION_ID(ea) != USER_REGION_ID)) { 198 199 spin_unlock(&spu->register_lock); 200 ret = hash_page(ea, _PAGE_PRESENT | _PAGE_READ, 0x300, dsisr); 201 spin_lock(&spu->register_lock); 202 203 if (!ret) { 204 spu_restart_dma(spu); 205 return 0; 206 } 207 } 208 209 spu->class_1_dar = ea; 210 spu->class_1_dsisr = dsisr; 211 212 spu->stop_callback(spu, 1); 213 214 spu->class_1_dar = 0; 215 spu->class_1_dsisr = 0; 216 217 return 0; 218 } 219 220 static void __spu_kernel_slb(void *addr, struct copro_slb *slb) 221 { 222 unsigned long ea = (unsigned long)addr; 223 u64 llp; 224 225 if (REGION_ID(ea) == KERNEL_REGION_ID) 226 llp = mmu_psize_defs[mmu_linear_psize].sllp; 227 else 228 llp = mmu_psize_defs[mmu_virtual_psize].sllp; 229 230 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) | 231 SLB_VSID_KERNEL | llp; 232 slb->esid = (ea & ESID_MASK) | SLB_ESID_V; 233 } 234 235 /** 236 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the 237 * address @new_addr is present. 238 */ 239 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs, 240 void *new_addr) 241 { 242 unsigned long ea = (unsigned long)new_addr; 243 int i; 244 245 for (i = 0; i < nr_slbs; i++) 246 if (!((slbs[i].esid ^ ea) & ESID_MASK)) 247 return 1; 248 249 return 0; 250 } 251 252 /** 253 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We 254 * need to map both the context save area, and the save/restore code. 255 * 256 * Because the lscsa and code may cross segment boundaries, we check to see 257 * if mappings are required for the start and end of each range. We currently 258 * assume that the mappings are smaller that one segment - if not, something 259 * is seriously wrong. 260 */ 261 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa, 262 void *code, int code_size) 263 { 264 struct copro_slb slbs[4]; 265 int i, nr_slbs = 0; 266 /* start and end addresses of both mappings */ 267 void *addrs[] = { 268 lscsa, (void *)lscsa + sizeof(*lscsa) - 1, 269 code, code + code_size - 1 270 }; 271 272 /* check the set of addresses, and create a new entry in the slbs array 273 * if there isn't already a SLB for that address */ 274 for (i = 0; i < ARRAY_SIZE(addrs); i++) { 275 if (__slb_present(slbs, nr_slbs, addrs[i])) 276 continue; 277 278 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]); 279 nr_slbs++; 280 } 281 282 spin_lock_irq(&spu->register_lock); 283 /* Add the set of SLBs */ 284 for (i = 0; i < nr_slbs; i++) 285 spu_load_slb(spu, i, &slbs[i]); 286 spin_unlock_irq(&spu->register_lock); 287 } 288 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs); 289 290 static irqreturn_t 291 spu_irq_class_0(int irq, void *data) 292 { 293 struct spu *spu; 294 unsigned long stat, mask; 295 296 spu = data; 297 298 spin_lock(&spu->register_lock); 299 mask = spu_int_mask_get(spu, 0); 300 stat = spu_int_stat_get(spu, 0) & mask; 301 302 spu->class_0_pending |= stat; 303 spu->class_0_dar = spu_mfc_dar_get(spu); 304 spu->stop_callback(spu, 0); 305 spu->class_0_pending = 0; 306 spu->class_0_dar = 0; 307 308 spu_int_stat_clear(spu, 0, stat); 309 spin_unlock(&spu->register_lock); 310 311 return IRQ_HANDLED; 312 } 313 314 static irqreturn_t 315 spu_irq_class_1(int irq, void *data) 316 { 317 struct spu *spu; 318 unsigned long stat, mask, dar, dsisr; 319 320 spu = data; 321 322 /* atomically read & clear class1 status. */ 323 spin_lock(&spu->register_lock); 324 mask = spu_int_mask_get(spu, 1); 325 stat = spu_int_stat_get(spu, 1) & mask; 326 dar = spu_mfc_dar_get(spu); 327 dsisr = spu_mfc_dsisr_get(spu); 328 if (stat & CLASS1_STORAGE_FAULT_INTR) 329 spu_mfc_dsisr_set(spu, 0ul); 330 spu_int_stat_clear(spu, 1, stat); 331 332 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat, 333 dar, dsisr); 334 335 if (stat & CLASS1_SEGMENT_FAULT_INTR) 336 __spu_trap_data_seg(spu, dar); 337 338 if (stat & CLASS1_STORAGE_FAULT_INTR) 339 __spu_trap_data_map(spu, dar, dsisr); 340 341 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR) 342 ; 343 344 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR) 345 ; 346 347 spu->class_1_dsisr = 0; 348 spu->class_1_dar = 0; 349 350 spin_unlock(&spu->register_lock); 351 352 return stat ? IRQ_HANDLED : IRQ_NONE; 353 } 354 355 static irqreturn_t 356 spu_irq_class_2(int irq, void *data) 357 { 358 struct spu *spu; 359 unsigned long stat; 360 unsigned long mask; 361 const int mailbox_intrs = 362 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR; 363 364 spu = data; 365 spin_lock(&spu->register_lock); 366 stat = spu_int_stat_get(spu, 2); 367 mask = spu_int_mask_get(spu, 2); 368 /* ignore interrupts we're not waiting for */ 369 stat &= mask; 370 /* mailbox interrupts are level triggered. mask them now before 371 * acknowledging */ 372 if (stat & mailbox_intrs) 373 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs)); 374 /* acknowledge all interrupts before the callbacks */ 375 spu_int_stat_clear(spu, 2, stat); 376 377 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); 378 379 if (stat & CLASS2_MAILBOX_INTR) 380 spu->ibox_callback(spu); 381 382 if (stat & CLASS2_SPU_STOP_INTR) 383 spu->stop_callback(spu, 2); 384 385 if (stat & CLASS2_SPU_HALT_INTR) 386 spu->stop_callback(spu, 2); 387 388 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR) 389 spu->mfc_callback(spu); 390 391 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR) 392 spu->wbox_callback(spu); 393 394 spu->stats.class2_intr++; 395 396 spin_unlock(&spu->register_lock); 397 398 return stat ? IRQ_HANDLED : IRQ_NONE; 399 } 400 401 static int spu_request_irqs(struct spu *spu) 402 { 403 int ret = 0; 404 405 if (spu->irqs[0]) { 406 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", 407 spu->number); 408 ret = request_irq(spu->irqs[0], spu_irq_class_0, 409 0, spu->irq_c0, spu); 410 if (ret) 411 goto bail0; 412 } 413 if (spu->irqs[1]) { 414 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", 415 spu->number); 416 ret = request_irq(spu->irqs[1], spu_irq_class_1, 417 0, spu->irq_c1, spu); 418 if (ret) 419 goto bail1; 420 } 421 if (spu->irqs[2]) { 422 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", 423 spu->number); 424 ret = request_irq(spu->irqs[2], spu_irq_class_2, 425 0, spu->irq_c2, spu); 426 if (ret) 427 goto bail2; 428 } 429 return 0; 430 431 bail2: 432 if (spu->irqs[1]) 433 free_irq(spu->irqs[1], spu); 434 bail1: 435 if (spu->irqs[0]) 436 free_irq(spu->irqs[0], spu); 437 bail0: 438 return ret; 439 } 440 441 static void spu_free_irqs(struct spu *spu) 442 { 443 if (spu->irqs[0]) 444 free_irq(spu->irqs[0], spu); 445 if (spu->irqs[1]) 446 free_irq(spu->irqs[1], spu); 447 if (spu->irqs[2]) 448 free_irq(spu->irqs[2], spu); 449 } 450 451 void spu_init_channels(struct spu *spu) 452 { 453 static const struct { 454 unsigned channel; 455 unsigned count; 456 } zero_list[] = { 457 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, 458 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, 459 }, count_list[] = { 460 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, 461 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, 462 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, 463 }; 464 struct spu_priv2 __iomem *priv2; 465 int i; 466 467 priv2 = spu->priv2; 468 469 /* initialize all channel data to zero */ 470 for (i = 0; i < ARRAY_SIZE(zero_list); i++) { 471 int count; 472 473 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); 474 for (count = 0; count < zero_list[i].count; count++) 475 out_be64(&priv2->spu_chnldata_RW, 0); 476 } 477 478 /* initialize channel counts to meaningful values */ 479 for (i = 0; i < ARRAY_SIZE(count_list); i++) { 480 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); 481 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); 482 } 483 } 484 EXPORT_SYMBOL_GPL(spu_init_channels); 485 486 static struct bus_type spu_subsys = { 487 .name = "spu", 488 .dev_name = "spu", 489 }; 490 491 int spu_add_dev_attr(struct device_attribute *attr) 492 { 493 struct spu *spu; 494 495 mutex_lock(&spu_full_list_mutex); 496 list_for_each_entry(spu, &spu_full_list, full_list) 497 device_create_file(&spu->dev, attr); 498 mutex_unlock(&spu_full_list_mutex); 499 500 return 0; 501 } 502 EXPORT_SYMBOL_GPL(spu_add_dev_attr); 503 504 int spu_add_dev_attr_group(struct attribute_group *attrs) 505 { 506 struct spu *spu; 507 int rc = 0; 508 509 mutex_lock(&spu_full_list_mutex); 510 list_for_each_entry(spu, &spu_full_list, full_list) { 511 rc = sysfs_create_group(&spu->dev.kobj, attrs); 512 513 /* we're in trouble here, but try unwinding anyway */ 514 if (rc) { 515 printk(KERN_ERR "%s: can't create sysfs group '%s'\n", 516 __func__, attrs->name); 517 518 list_for_each_entry_continue_reverse(spu, 519 &spu_full_list, full_list) 520 sysfs_remove_group(&spu->dev.kobj, attrs); 521 break; 522 } 523 } 524 525 mutex_unlock(&spu_full_list_mutex); 526 527 return rc; 528 } 529 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group); 530 531 532 void spu_remove_dev_attr(struct device_attribute *attr) 533 { 534 struct spu *spu; 535 536 mutex_lock(&spu_full_list_mutex); 537 list_for_each_entry(spu, &spu_full_list, full_list) 538 device_remove_file(&spu->dev, attr); 539 mutex_unlock(&spu_full_list_mutex); 540 } 541 EXPORT_SYMBOL_GPL(spu_remove_dev_attr); 542 543 void spu_remove_dev_attr_group(struct attribute_group *attrs) 544 { 545 struct spu *spu; 546 547 mutex_lock(&spu_full_list_mutex); 548 list_for_each_entry(spu, &spu_full_list, full_list) 549 sysfs_remove_group(&spu->dev.kobj, attrs); 550 mutex_unlock(&spu_full_list_mutex); 551 } 552 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group); 553 554 static int spu_create_dev(struct spu *spu) 555 { 556 int ret; 557 558 spu->dev.id = spu->number; 559 spu->dev.bus = &spu_subsys; 560 ret = device_register(&spu->dev); 561 if (ret) { 562 printk(KERN_ERR "Can't register SPU %d with sysfs\n", 563 spu->number); 564 return ret; 565 } 566 567 sysfs_add_device_to_node(&spu->dev, spu->node); 568 569 return 0; 570 } 571 572 static int __init create_spu(void *data) 573 { 574 struct spu *spu; 575 int ret; 576 static int number; 577 unsigned long flags; 578 579 ret = -ENOMEM; 580 spu = kzalloc(sizeof (*spu), GFP_KERNEL); 581 if (!spu) 582 goto out; 583 584 spu->alloc_state = SPU_FREE; 585 586 spin_lock_init(&spu->register_lock); 587 spin_lock(&spu_lock); 588 spu->number = number++; 589 spin_unlock(&spu_lock); 590 591 ret = spu_create_spu(spu, data); 592 593 if (ret) 594 goto out_free; 595 596 spu_mfc_sdr_setup(spu); 597 spu_mfc_sr1_set(spu, 0x33); 598 ret = spu_request_irqs(spu); 599 if (ret) 600 goto out_destroy; 601 602 ret = spu_create_dev(spu); 603 if (ret) 604 goto out_free_irqs; 605 606 mutex_lock(&cbe_spu_info[spu->node].list_mutex); 607 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus); 608 cbe_spu_info[spu->node].n_spus++; 609 mutex_unlock(&cbe_spu_info[spu->node].list_mutex); 610 611 mutex_lock(&spu_full_list_mutex); 612 spin_lock_irqsave(&spu_full_list_lock, flags); 613 list_add(&spu->full_list, &spu_full_list); 614 spin_unlock_irqrestore(&spu_full_list_lock, flags); 615 mutex_unlock(&spu_full_list_mutex); 616 617 spu->stats.util_state = SPU_UTIL_IDLE_LOADED; 618 spu->stats.tstamp = ktime_get_ns(); 619 620 INIT_LIST_HEAD(&spu->aff_list); 621 622 goto out; 623 624 out_free_irqs: 625 spu_free_irqs(spu); 626 out_destroy: 627 spu_destroy_spu(spu); 628 out_free: 629 kfree(spu); 630 out: 631 return ret; 632 } 633 634 static const char *spu_state_names[] = { 635 "user", "system", "iowait", "idle" 636 }; 637 638 static unsigned long long spu_acct_time(struct spu *spu, 639 enum spu_utilization_state state) 640 { 641 unsigned long long time = spu->stats.times[state]; 642 643 /* 644 * If the spu is idle or the context is stopped, utilization 645 * statistics are not updated. Apply the time delta from the 646 * last recorded state of the spu. 647 */ 648 if (spu->stats.util_state == state) 649 time += ktime_get_ns() - spu->stats.tstamp; 650 651 return time / NSEC_PER_MSEC; 652 } 653 654 655 static ssize_t spu_stat_show(struct device *dev, 656 struct device_attribute *attr, char *buf) 657 { 658 struct spu *spu = container_of(dev, struct spu, dev); 659 660 return sprintf(buf, "%s %llu %llu %llu %llu " 661 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 662 spu_state_names[spu->stats.util_state], 663 spu_acct_time(spu, SPU_UTIL_USER), 664 spu_acct_time(spu, SPU_UTIL_SYSTEM), 665 spu_acct_time(spu, SPU_UTIL_IOWAIT), 666 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED), 667 spu->stats.vol_ctx_switch, 668 spu->stats.invol_ctx_switch, 669 spu->stats.slb_flt, 670 spu->stats.hash_flt, 671 spu->stats.min_flt, 672 spu->stats.maj_flt, 673 spu->stats.class2_intr, 674 spu->stats.libassist); 675 } 676 677 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL); 678 679 #ifdef CONFIG_KEXEC_CORE 680 681 struct crash_spu_info { 682 struct spu *spu; 683 u32 saved_spu_runcntl_RW; 684 u32 saved_spu_status_R; 685 u32 saved_spu_npc_RW; 686 u64 saved_mfc_sr1_RW; 687 u64 saved_mfc_dar; 688 u64 saved_mfc_dsisr; 689 }; 690 691 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */ 692 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS]; 693 694 static void crash_kexec_stop_spus(void) 695 { 696 struct spu *spu; 697 int i; 698 u64 tmp; 699 700 for (i = 0; i < CRASH_NUM_SPUS; i++) { 701 if (!crash_spu_info[i].spu) 702 continue; 703 704 spu = crash_spu_info[i].spu; 705 706 crash_spu_info[i].saved_spu_runcntl_RW = 707 in_be32(&spu->problem->spu_runcntl_RW); 708 crash_spu_info[i].saved_spu_status_R = 709 in_be32(&spu->problem->spu_status_R); 710 crash_spu_info[i].saved_spu_npc_RW = 711 in_be32(&spu->problem->spu_npc_RW); 712 713 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu); 714 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu); 715 tmp = spu_mfc_sr1_get(spu); 716 crash_spu_info[i].saved_mfc_sr1_RW = tmp; 717 718 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; 719 spu_mfc_sr1_set(spu, tmp); 720 721 __delay(200); 722 } 723 } 724 725 static void crash_register_spus(struct list_head *list) 726 { 727 struct spu *spu; 728 int ret; 729 730 list_for_each_entry(spu, list, full_list) { 731 if (WARN_ON(spu->number >= CRASH_NUM_SPUS)) 732 continue; 733 734 crash_spu_info[spu->number].spu = spu; 735 } 736 737 ret = crash_shutdown_register(&crash_kexec_stop_spus); 738 if (ret) 739 printk(KERN_ERR "Could not register SPU crash handler"); 740 } 741 742 #else 743 static inline void crash_register_spus(struct list_head *list) 744 { 745 } 746 #endif 747 748 static void spu_shutdown(void) 749 { 750 struct spu *spu; 751 752 mutex_lock(&spu_full_list_mutex); 753 list_for_each_entry(spu, &spu_full_list, full_list) { 754 spu_free_irqs(spu); 755 spu_destroy_spu(spu); 756 } 757 mutex_unlock(&spu_full_list_mutex); 758 } 759 760 static struct syscore_ops spu_syscore_ops = { 761 .shutdown = spu_shutdown, 762 }; 763 764 static int __init init_spu_base(void) 765 { 766 int i, ret = 0; 767 768 for (i = 0; i < MAX_NUMNODES; i++) { 769 mutex_init(&cbe_spu_info[i].list_mutex); 770 INIT_LIST_HEAD(&cbe_spu_info[i].spus); 771 } 772 773 if (!spu_management_ops) 774 goto out; 775 776 /* create system subsystem for spus */ 777 ret = subsys_system_register(&spu_subsys, NULL); 778 if (ret) 779 goto out; 780 781 ret = spu_enumerate_spus(create_spu); 782 783 if (ret < 0) { 784 printk(KERN_WARNING "%s: Error initializing spus\n", 785 __func__); 786 goto out_unregister_subsys; 787 } 788 789 if (ret > 0) 790 fb_append_extra_logo(&logo_spe_clut224, ret); 791 792 mutex_lock(&spu_full_list_mutex); 793 xmon_register_spus(&spu_full_list); 794 crash_register_spus(&spu_full_list); 795 mutex_unlock(&spu_full_list_mutex); 796 spu_add_dev_attr(&dev_attr_stat); 797 register_syscore_ops(&spu_syscore_ops); 798 799 spu_init_affinity(); 800 801 return 0; 802 803 out_unregister_subsys: 804 bus_unregister(&spu_subsys); 805 out: 806 return ret; 807 } 808 device_initcall(init_spu_base); 809