1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Low-level SPU handling
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  *
7  * Author: Arnd Bergmann <arndb@de.ibm.com>
8  */
9 
10 #undef DEBUG
11 
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <linux/mutex.h>
21 #include <linux/linux_logo.h>
22 #include <linux/syscore_ops.h>
23 #include <asm/spu.h>
24 #include <asm/spu_priv1.h>
25 #include <asm/spu_csa.h>
26 #include <asm/xmon.h>
27 #include <asm/kexec.h>
28 
29 const struct spu_management_ops *spu_management_ops;
30 EXPORT_SYMBOL_GPL(spu_management_ops);
31 
32 const struct spu_priv1_ops *spu_priv1_ops;
33 EXPORT_SYMBOL_GPL(spu_priv1_ops);
34 
35 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
36 EXPORT_SYMBOL_GPL(cbe_spu_info);
37 
38 /*
39  * The spufs fault-handling code needs to call force_sig_fault to raise signals
40  * on DMA errors. Export it here to avoid general kernel-wide access to this
41  * function
42  */
43 EXPORT_SYMBOL_GPL(force_sig_fault);
44 
45 /*
46  * Protects cbe_spu_info and spu->number.
47  */
48 static DEFINE_SPINLOCK(spu_lock);
49 
50 /*
51  * List of all spus in the system.
52  *
53  * This list is iterated by callers from irq context and callers that
54  * want to sleep.  Thus modifications need to be done with both
55  * spu_full_list_lock and spu_full_list_mutex held, while iterating
56  * through it requires either of these locks.
57  *
58  * In addition spu_full_list_lock protects all assignments to
59  * spu->mm.
60  */
61 static LIST_HEAD(spu_full_list);
62 static DEFINE_SPINLOCK(spu_full_list_lock);
63 static DEFINE_MUTEX(spu_full_list_mutex);
64 
65 void spu_invalidate_slbs(struct spu *spu)
66 {
67 	struct spu_priv2 __iomem *priv2 = spu->priv2;
68 	unsigned long flags;
69 
70 	spin_lock_irqsave(&spu->register_lock, flags);
71 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
72 		out_be64(&priv2->slb_invalidate_all_W, 0UL);
73 	spin_unlock_irqrestore(&spu->register_lock, flags);
74 }
75 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
76 
77 /* This is called by the MM core when a segment size is changed, to
78  * request a flush of all the SPEs using a given mm
79  */
80 void spu_flush_all_slbs(struct mm_struct *mm)
81 {
82 	struct spu *spu;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&spu_full_list_lock, flags);
86 	list_for_each_entry(spu, &spu_full_list, full_list) {
87 		if (spu->mm == mm)
88 			spu_invalidate_slbs(spu);
89 	}
90 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
91 }
92 
93 /* The hack below stinks... try to do something better one of
94  * these days... Does it even work properly with NR_CPUS == 1 ?
95  */
96 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
97 {
98 	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
99 
100 	/* Global TLBIE broadcast required with SPEs. */
101 	bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
102 }
103 
104 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
105 {
106 	unsigned long flags;
107 
108 	spin_lock_irqsave(&spu_full_list_lock, flags);
109 	spu->mm = mm;
110 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
111 	if (mm)
112 		mm_needs_global_tlbie(mm);
113 }
114 EXPORT_SYMBOL_GPL(spu_associate_mm);
115 
116 int spu_64k_pages_available(void)
117 {
118 	return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
119 }
120 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
121 
122 static void spu_restart_dma(struct spu *spu)
123 {
124 	struct spu_priv2 __iomem *priv2 = spu->priv2;
125 
126 	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
127 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
128 	else {
129 		set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
130 		mb();
131 	}
132 }
133 
134 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
135 {
136 	struct spu_priv2 __iomem *priv2 = spu->priv2;
137 
138 	pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
139 			__func__, slbe, slb->vsid, slb->esid);
140 
141 	out_be64(&priv2->slb_index_W, slbe);
142 	/* set invalid before writing vsid */
143 	out_be64(&priv2->slb_esid_RW, 0);
144 	/* now it's safe to write the vsid */
145 	out_be64(&priv2->slb_vsid_RW, slb->vsid);
146 	/* setting the new esid makes the entry valid again */
147 	out_be64(&priv2->slb_esid_RW, slb->esid);
148 }
149 
150 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
151 {
152 	struct copro_slb slb;
153 	int ret;
154 
155 	ret = copro_calculate_slb(spu->mm, ea, &slb);
156 	if (ret)
157 		return ret;
158 
159 	spu_load_slb(spu, spu->slb_replace, &slb);
160 
161 	spu->slb_replace++;
162 	if (spu->slb_replace >= 8)
163 		spu->slb_replace = 0;
164 
165 	spu_restart_dma(spu);
166 	spu->stats.slb_flt++;
167 	return 0;
168 }
169 
170 extern int hash_page(unsigned long ea, unsigned long access,
171 		     unsigned long trap, unsigned long dsisr); //XXX
172 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
173 {
174 	int ret;
175 
176 	pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
177 
178 	/*
179 	 * Handle kernel space hash faults immediately. User hash
180 	 * faults need to be deferred to process context.
181 	 */
182 	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
183 	    (get_region_id(ea) != USER_REGION_ID)) {
184 
185 		spin_unlock(&spu->register_lock);
186 		ret = hash_page(ea,
187 				_PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
188 				0x300, dsisr);
189 		spin_lock(&spu->register_lock);
190 
191 		if (!ret) {
192 			spu_restart_dma(spu);
193 			return 0;
194 		}
195 	}
196 
197 	spu->class_1_dar = ea;
198 	spu->class_1_dsisr = dsisr;
199 
200 	spu->stop_callback(spu, 1);
201 
202 	spu->class_1_dar = 0;
203 	spu->class_1_dsisr = 0;
204 
205 	return 0;
206 }
207 
208 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
209 {
210 	unsigned long ea = (unsigned long)addr;
211 	u64 llp;
212 
213 	if (get_region_id(ea) == LINEAR_MAP_REGION_ID)
214 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
215 	else
216 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
217 
218 	slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
219 		SLB_VSID_KERNEL | llp;
220 	slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
221 }
222 
223 /**
224  * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
225  * address @new_addr is present.
226  */
227 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
228 		void *new_addr)
229 {
230 	unsigned long ea = (unsigned long)new_addr;
231 	int i;
232 
233 	for (i = 0; i < nr_slbs; i++)
234 		if (!((slbs[i].esid ^ ea) & ESID_MASK))
235 			return 1;
236 
237 	return 0;
238 }
239 
240 /**
241  * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
242  * need to map both the context save area, and the save/restore code.
243  *
244  * Because the lscsa and code may cross segment boundaries, we check to see
245  * if mappings are required for the start and end of each range. We currently
246  * assume that the mappings are smaller that one segment - if not, something
247  * is seriously wrong.
248  */
249 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
250 		void *code, int code_size)
251 {
252 	struct copro_slb slbs[4];
253 	int i, nr_slbs = 0;
254 	/* start and end addresses of both mappings */
255 	void *addrs[] = {
256 		lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
257 		code, code + code_size - 1
258 	};
259 
260 	/* check the set of addresses, and create a new entry in the slbs array
261 	 * if there isn't already a SLB for that address */
262 	for (i = 0; i < ARRAY_SIZE(addrs); i++) {
263 		if (__slb_present(slbs, nr_slbs, addrs[i]))
264 			continue;
265 
266 		__spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
267 		nr_slbs++;
268 	}
269 
270 	spin_lock_irq(&spu->register_lock);
271 	/* Add the set of SLBs */
272 	for (i = 0; i < nr_slbs; i++)
273 		spu_load_slb(spu, i, &slbs[i]);
274 	spin_unlock_irq(&spu->register_lock);
275 }
276 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
277 
278 static irqreturn_t
279 spu_irq_class_0(int irq, void *data)
280 {
281 	struct spu *spu;
282 	unsigned long stat, mask;
283 
284 	spu = data;
285 
286 	spin_lock(&spu->register_lock);
287 	mask = spu_int_mask_get(spu, 0);
288 	stat = spu_int_stat_get(spu, 0) & mask;
289 
290 	spu->class_0_pending |= stat;
291 	spu->class_0_dar = spu_mfc_dar_get(spu);
292 	spu->stop_callback(spu, 0);
293 	spu->class_0_pending = 0;
294 	spu->class_0_dar = 0;
295 
296 	spu_int_stat_clear(spu, 0, stat);
297 	spin_unlock(&spu->register_lock);
298 
299 	return IRQ_HANDLED;
300 }
301 
302 static irqreturn_t
303 spu_irq_class_1(int irq, void *data)
304 {
305 	struct spu *spu;
306 	unsigned long stat, mask, dar, dsisr;
307 
308 	spu = data;
309 
310 	/* atomically read & clear class1 status. */
311 	spin_lock(&spu->register_lock);
312 	mask  = spu_int_mask_get(spu, 1);
313 	stat  = spu_int_stat_get(spu, 1) & mask;
314 	dar   = spu_mfc_dar_get(spu);
315 	dsisr = spu_mfc_dsisr_get(spu);
316 	if (stat & CLASS1_STORAGE_FAULT_INTR)
317 		spu_mfc_dsisr_set(spu, 0ul);
318 	spu_int_stat_clear(spu, 1, stat);
319 
320 	pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
321 			dar, dsisr);
322 
323 	if (stat & CLASS1_SEGMENT_FAULT_INTR)
324 		__spu_trap_data_seg(spu, dar);
325 
326 	if (stat & CLASS1_STORAGE_FAULT_INTR)
327 		__spu_trap_data_map(spu, dar, dsisr);
328 
329 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
330 		;
331 
332 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
333 		;
334 
335 	spu->class_1_dsisr = 0;
336 	spu->class_1_dar = 0;
337 
338 	spin_unlock(&spu->register_lock);
339 
340 	return stat ? IRQ_HANDLED : IRQ_NONE;
341 }
342 
343 static irqreturn_t
344 spu_irq_class_2(int irq, void *data)
345 {
346 	struct spu *spu;
347 	unsigned long stat;
348 	unsigned long mask;
349 	const int mailbox_intrs =
350 		CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
351 
352 	spu = data;
353 	spin_lock(&spu->register_lock);
354 	stat = spu_int_stat_get(spu, 2);
355 	mask = spu_int_mask_get(spu, 2);
356 	/* ignore interrupts we're not waiting for */
357 	stat &= mask;
358 	/* mailbox interrupts are level triggered. mask them now before
359 	 * acknowledging */
360 	if (stat & mailbox_intrs)
361 		spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
362 	/* acknowledge all interrupts before the callbacks */
363 	spu_int_stat_clear(spu, 2, stat);
364 
365 	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
366 
367 	if (stat & CLASS2_MAILBOX_INTR)
368 		spu->ibox_callback(spu);
369 
370 	if (stat & CLASS2_SPU_STOP_INTR)
371 		spu->stop_callback(spu, 2);
372 
373 	if (stat & CLASS2_SPU_HALT_INTR)
374 		spu->stop_callback(spu, 2);
375 
376 	if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
377 		spu->mfc_callback(spu);
378 
379 	if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
380 		spu->wbox_callback(spu);
381 
382 	spu->stats.class2_intr++;
383 
384 	spin_unlock(&spu->register_lock);
385 
386 	return stat ? IRQ_HANDLED : IRQ_NONE;
387 }
388 
389 static int __init spu_request_irqs(struct spu *spu)
390 {
391 	int ret = 0;
392 
393 	if (spu->irqs[0]) {
394 		snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
395 			 spu->number);
396 		ret = request_irq(spu->irqs[0], spu_irq_class_0,
397 				  0, spu->irq_c0, spu);
398 		if (ret)
399 			goto bail0;
400 	}
401 	if (spu->irqs[1]) {
402 		snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
403 			 spu->number);
404 		ret = request_irq(spu->irqs[1], spu_irq_class_1,
405 				  0, spu->irq_c1, spu);
406 		if (ret)
407 			goto bail1;
408 	}
409 	if (spu->irqs[2]) {
410 		snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
411 			 spu->number);
412 		ret = request_irq(spu->irqs[2], spu_irq_class_2,
413 				  0, spu->irq_c2, spu);
414 		if (ret)
415 			goto bail2;
416 	}
417 	return 0;
418 
419 bail2:
420 	if (spu->irqs[1])
421 		free_irq(spu->irqs[1], spu);
422 bail1:
423 	if (spu->irqs[0])
424 		free_irq(spu->irqs[0], spu);
425 bail0:
426 	return ret;
427 }
428 
429 static void spu_free_irqs(struct spu *spu)
430 {
431 	if (spu->irqs[0])
432 		free_irq(spu->irqs[0], spu);
433 	if (spu->irqs[1])
434 		free_irq(spu->irqs[1], spu);
435 	if (spu->irqs[2])
436 		free_irq(spu->irqs[2], spu);
437 }
438 
439 void spu_init_channels(struct spu *spu)
440 {
441 	static const struct {
442 		 unsigned channel;
443 		 unsigned count;
444 	} zero_list[] = {
445 		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
446 		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
447 	}, count_list[] = {
448 		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
449 		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
450 		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
451 	};
452 	struct spu_priv2 __iomem *priv2;
453 	int i;
454 
455 	priv2 = spu->priv2;
456 
457 	/* initialize all channel data to zero */
458 	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
459 		int count;
460 
461 		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
462 		for (count = 0; count < zero_list[i].count; count++)
463 			out_be64(&priv2->spu_chnldata_RW, 0);
464 	}
465 
466 	/* initialize channel counts to meaningful values */
467 	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
468 		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
469 		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
470 	}
471 }
472 EXPORT_SYMBOL_GPL(spu_init_channels);
473 
474 static struct bus_type spu_subsys = {
475 	.name = "spu",
476 	.dev_name = "spu",
477 };
478 
479 int spu_add_dev_attr(struct device_attribute *attr)
480 {
481 	struct spu *spu;
482 
483 	mutex_lock(&spu_full_list_mutex);
484 	list_for_each_entry(spu, &spu_full_list, full_list)
485 		device_create_file(&spu->dev, attr);
486 	mutex_unlock(&spu_full_list_mutex);
487 
488 	return 0;
489 }
490 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
491 
492 int spu_add_dev_attr_group(const struct attribute_group *attrs)
493 {
494 	struct spu *spu;
495 	int rc = 0;
496 
497 	mutex_lock(&spu_full_list_mutex);
498 	list_for_each_entry(spu, &spu_full_list, full_list) {
499 		rc = sysfs_create_group(&spu->dev.kobj, attrs);
500 
501 		/* we're in trouble here, but try unwinding anyway */
502 		if (rc) {
503 			printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
504 					__func__, attrs->name);
505 
506 			list_for_each_entry_continue_reverse(spu,
507 					&spu_full_list, full_list)
508 				sysfs_remove_group(&spu->dev.kobj, attrs);
509 			break;
510 		}
511 	}
512 
513 	mutex_unlock(&spu_full_list_mutex);
514 
515 	return rc;
516 }
517 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
518 
519 
520 void spu_remove_dev_attr(struct device_attribute *attr)
521 {
522 	struct spu *spu;
523 
524 	mutex_lock(&spu_full_list_mutex);
525 	list_for_each_entry(spu, &spu_full_list, full_list)
526 		device_remove_file(&spu->dev, attr);
527 	mutex_unlock(&spu_full_list_mutex);
528 }
529 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
530 
531 void spu_remove_dev_attr_group(const struct attribute_group *attrs)
532 {
533 	struct spu *spu;
534 
535 	mutex_lock(&spu_full_list_mutex);
536 	list_for_each_entry(spu, &spu_full_list, full_list)
537 		sysfs_remove_group(&spu->dev.kobj, attrs);
538 	mutex_unlock(&spu_full_list_mutex);
539 }
540 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
541 
542 static int __init spu_create_dev(struct spu *spu)
543 {
544 	int ret;
545 
546 	spu->dev.id = spu->number;
547 	spu->dev.bus = &spu_subsys;
548 	ret = device_register(&spu->dev);
549 	if (ret) {
550 		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
551 				spu->number);
552 		return ret;
553 	}
554 
555 	sysfs_add_device_to_node(&spu->dev, spu->node);
556 
557 	return 0;
558 }
559 
560 static int __init create_spu(void *data)
561 {
562 	struct spu *spu;
563 	int ret;
564 	static int number;
565 	unsigned long flags;
566 
567 	ret = -ENOMEM;
568 	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
569 	if (!spu)
570 		goto out;
571 
572 	spu->alloc_state = SPU_FREE;
573 
574 	spin_lock_init(&spu->register_lock);
575 	spin_lock(&spu_lock);
576 	spu->number = number++;
577 	spin_unlock(&spu_lock);
578 
579 	ret = spu_create_spu(spu, data);
580 
581 	if (ret)
582 		goto out_free;
583 
584 	spu_mfc_sdr_setup(spu);
585 	spu_mfc_sr1_set(spu, 0x33);
586 	ret = spu_request_irqs(spu);
587 	if (ret)
588 		goto out_destroy;
589 
590 	ret = spu_create_dev(spu);
591 	if (ret)
592 		goto out_free_irqs;
593 
594 	mutex_lock(&cbe_spu_info[spu->node].list_mutex);
595 	list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
596 	cbe_spu_info[spu->node].n_spus++;
597 	mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
598 
599 	mutex_lock(&spu_full_list_mutex);
600 	spin_lock_irqsave(&spu_full_list_lock, flags);
601 	list_add(&spu->full_list, &spu_full_list);
602 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
603 	mutex_unlock(&spu_full_list_mutex);
604 
605 	spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
606 	spu->stats.tstamp = ktime_get_ns();
607 
608 	INIT_LIST_HEAD(&spu->aff_list);
609 
610 	goto out;
611 
612 out_free_irqs:
613 	spu_free_irqs(spu);
614 out_destroy:
615 	spu_destroy_spu(spu);
616 out_free:
617 	kfree(spu);
618 out:
619 	return ret;
620 }
621 
622 static const char *spu_state_names[] = {
623 	"user", "system", "iowait", "idle"
624 };
625 
626 static unsigned long long spu_acct_time(struct spu *spu,
627 		enum spu_utilization_state state)
628 {
629 	unsigned long long time = spu->stats.times[state];
630 
631 	/*
632 	 * If the spu is idle or the context is stopped, utilization
633 	 * statistics are not updated.  Apply the time delta from the
634 	 * last recorded state of the spu.
635 	 */
636 	if (spu->stats.util_state == state)
637 		time += ktime_get_ns() - spu->stats.tstamp;
638 
639 	return time / NSEC_PER_MSEC;
640 }
641 
642 
643 static ssize_t spu_stat_show(struct device *dev,
644 				struct device_attribute *attr, char *buf)
645 {
646 	struct spu *spu = container_of(dev, struct spu, dev);
647 
648 	return sprintf(buf, "%s %llu %llu %llu %llu "
649 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
650 		spu_state_names[spu->stats.util_state],
651 		spu_acct_time(spu, SPU_UTIL_USER),
652 		spu_acct_time(spu, SPU_UTIL_SYSTEM),
653 		spu_acct_time(spu, SPU_UTIL_IOWAIT),
654 		spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
655 		spu->stats.vol_ctx_switch,
656 		spu->stats.invol_ctx_switch,
657 		spu->stats.slb_flt,
658 		spu->stats.hash_flt,
659 		spu->stats.min_flt,
660 		spu->stats.maj_flt,
661 		spu->stats.class2_intr,
662 		spu->stats.libassist);
663 }
664 
665 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
666 
667 #ifdef CONFIG_KEXEC_CORE
668 
669 struct crash_spu_info {
670 	struct spu *spu;
671 	u32 saved_spu_runcntl_RW;
672 	u32 saved_spu_status_R;
673 	u32 saved_spu_npc_RW;
674 	u64 saved_mfc_sr1_RW;
675 	u64 saved_mfc_dar;
676 	u64 saved_mfc_dsisr;
677 };
678 
679 #define CRASH_NUM_SPUS	16	/* Enough for current hardware */
680 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
681 
682 static void crash_kexec_stop_spus(void)
683 {
684 	struct spu *spu;
685 	int i;
686 	u64 tmp;
687 
688 	for (i = 0; i < CRASH_NUM_SPUS; i++) {
689 		if (!crash_spu_info[i].spu)
690 			continue;
691 
692 		spu = crash_spu_info[i].spu;
693 
694 		crash_spu_info[i].saved_spu_runcntl_RW =
695 			in_be32(&spu->problem->spu_runcntl_RW);
696 		crash_spu_info[i].saved_spu_status_R =
697 			in_be32(&spu->problem->spu_status_R);
698 		crash_spu_info[i].saved_spu_npc_RW =
699 			in_be32(&spu->problem->spu_npc_RW);
700 
701 		crash_spu_info[i].saved_mfc_dar    = spu_mfc_dar_get(spu);
702 		crash_spu_info[i].saved_mfc_dsisr  = spu_mfc_dsisr_get(spu);
703 		tmp = spu_mfc_sr1_get(spu);
704 		crash_spu_info[i].saved_mfc_sr1_RW = tmp;
705 
706 		tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
707 		spu_mfc_sr1_set(spu, tmp);
708 
709 		__delay(200);
710 	}
711 }
712 
713 static void __init crash_register_spus(struct list_head *list)
714 {
715 	struct spu *spu;
716 	int ret;
717 
718 	list_for_each_entry(spu, list, full_list) {
719 		if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
720 			continue;
721 
722 		crash_spu_info[spu->number].spu = spu;
723 	}
724 
725 	ret = crash_shutdown_register(&crash_kexec_stop_spus);
726 	if (ret)
727 		printk(KERN_ERR "Could not register SPU crash handler");
728 }
729 
730 #else
731 static inline void crash_register_spus(struct list_head *list)
732 {
733 }
734 #endif
735 
736 static void spu_shutdown(void)
737 {
738 	struct spu *spu;
739 
740 	mutex_lock(&spu_full_list_mutex);
741 	list_for_each_entry(spu, &spu_full_list, full_list) {
742 		spu_free_irqs(spu);
743 		spu_destroy_spu(spu);
744 	}
745 	mutex_unlock(&spu_full_list_mutex);
746 }
747 
748 static struct syscore_ops spu_syscore_ops = {
749 	.shutdown = spu_shutdown,
750 };
751 
752 static int __init init_spu_base(void)
753 {
754 	int i, ret = 0;
755 
756 	for (i = 0; i < MAX_NUMNODES; i++) {
757 		mutex_init(&cbe_spu_info[i].list_mutex);
758 		INIT_LIST_HEAD(&cbe_spu_info[i].spus);
759 	}
760 
761 	if (!spu_management_ops)
762 		goto out;
763 
764 	/* create system subsystem for spus */
765 	ret = subsys_system_register(&spu_subsys, NULL);
766 	if (ret)
767 		goto out;
768 
769 	ret = spu_enumerate_spus(create_spu);
770 
771 	if (ret < 0) {
772 		printk(KERN_WARNING "%s: Error initializing spus\n",
773 			__func__);
774 		goto out_unregister_subsys;
775 	}
776 
777 	if (ret > 0)
778 		fb_append_extra_logo(&logo_spe_clut224, ret);
779 
780 	mutex_lock(&spu_full_list_mutex);
781 	xmon_register_spus(&spu_full_list);
782 	crash_register_spus(&spu_full_list);
783 	mutex_unlock(&spu_full_list_mutex);
784 	spu_add_dev_attr(&dev_attr_stat);
785 	register_syscore_ops(&spu_syscore_ops);
786 
787 	spu_init_affinity();
788 
789 	return 0;
790 
791  out_unregister_subsys:
792 	bus_unregister(&spu_subsys);
793  out:
794 	return ret;
795 }
796 device_initcall(init_spu_base);
797