1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Low-level SPU handling
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  *
7  * Author: Arnd Bergmann <arndb@de.ibm.com>
8  */
9 
10 #undef DEBUG
11 
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <linux/mutex.h>
21 #include <linux/linux_logo.h>
22 #include <linux/syscore_ops.h>
23 #include <asm/spu.h>
24 #include <asm/spu_priv1.h>
25 #include <asm/spu_csa.h>
26 #include <asm/xmon.h>
27 #include <asm/prom.h>
28 #include <asm/kexec.h>
29 
30 const struct spu_management_ops *spu_management_ops;
31 EXPORT_SYMBOL_GPL(spu_management_ops);
32 
33 const struct spu_priv1_ops *spu_priv1_ops;
34 EXPORT_SYMBOL_GPL(spu_priv1_ops);
35 
36 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
37 EXPORT_SYMBOL_GPL(cbe_spu_info);
38 
39 /*
40  * The spufs fault-handling code needs to call force_sig_fault to raise signals
41  * on DMA errors. Export it here to avoid general kernel-wide access to this
42  * function
43  */
44 EXPORT_SYMBOL_GPL(force_sig_fault);
45 
46 /*
47  * Protects cbe_spu_info and spu->number.
48  */
49 static DEFINE_SPINLOCK(spu_lock);
50 
51 /*
52  * List of all spus in the system.
53  *
54  * This list is iterated by callers from irq context and callers that
55  * want to sleep.  Thus modifications need to be done with both
56  * spu_full_list_lock and spu_full_list_mutex held, while iterating
57  * through it requires either of these locks.
58  *
59  * In addition spu_full_list_lock protects all assignments to
60  * spu->mm.
61  */
62 static LIST_HEAD(spu_full_list);
63 static DEFINE_SPINLOCK(spu_full_list_lock);
64 static DEFINE_MUTEX(spu_full_list_mutex);
65 
66 void spu_invalidate_slbs(struct spu *spu)
67 {
68 	struct spu_priv2 __iomem *priv2 = spu->priv2;
69 	unsigned long flags;
70 
71 	spin_lock_irqsave(&spu->register_lock, flags);
72 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
73 		out_be64(&priv2->slb_invalidate_all_W, 0UL);
74 	spin_unlock_irqrestore(&spu->register_lock, flags);
75 }
76 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
77 
78 /* This is called by the MM core when a segment size is changed, to
79  * request a flush of all the SPEs using a given mm
80  */
81 void spu_flush_all_slbs(struct mm_struct *mm)
82 {
83 	struct spu *spu;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&spu_full_list_lock, flags);
87 	list_for_each_entry(spu, &spu_full_list, full_list) {
88 		if (spu->mm == mm)
89 			spu_invalidate_slbs(spu);
90 	}
91 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
92 }
93 
94 /* The hack below stinks... try to do something better one of
95  * these days... Does it even work properly with NR_CPUS == 1 ?
96  */
97 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
98 {
99 	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
100 
101 	/* Global TLBIE broadcast required with SPEs. */
102 	bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
103 }
104 
105 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&spu_full_list_lock, flags);
110 	spu->mm = mm;
111 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
112 	if (mm)
113 		mm_needs_global_tlbie(mm);
114 }
115 EXPORT_SYMBOL_GPL(spu_associate_mm);
116 
117 int spu_64k_pages_available(void)
118 {
119 	return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
120 }
121 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
122 
123 static void spu_restart_dma(struct spu *spu)
124 {
125 	struct spu_priv2 __iomem *priv2 = spu->priv2;
126 
127 	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
128 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
129 	else {
130 		set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
131 		mb();
132 	}
133 }
134 
135 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
136 {
137 	struct spu_priv2 __iomem *priv2 = spu->priv2;
138 
139 	pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
140 			__func__, slbe, slb->vsid, slb->esid);
141 
142 	out_be64(&priv2->slb_index_W, slbe);
143 	/* set invalid before writing vsid */
144 	out_be64(&priv2->slb_esid_RW, 0);
145 	/* now it's safe to write the vsid */
146 	out_be64(&priv2->slb_vsid_RW, slb->vsid);
147 	/* setting the new esid makes the entry valid again */
148 	out_be64(&priv2->slb_esid_RW, slb->esid);
149 }
150 
151 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
152 {
153 	struct copro_slb slb;
154 	int ret;
155 
156 	ret = copro_calculate_slb(spu->mm, ea, &slb);
157 	if (ret)
158 		return ret;
159 
160 	spu_load_slb(spu, spu->slb_replace, &slb);
161 
162 	spu->slb_replace++;
163 	if (spu->slb_replace >= 8)
164 		spu->slb_replace = 0;
165 
166 	spu_restart_dma(spu);
167 	spu->stats.slb_flt++;
168 	return 0;
169 }
170 
171 extern int hash_page(unsigned long ea, unsigned long access,
172 		     unsigned long trap, unsigned long dsisr); //XXX
173 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
174 {
175 	int ret;
176 
177 	pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
178 
179 	/*
180 	 * Handle kernel space hash faults immediately. User hash
181 	 * faults need to be deferred to process context.
182 	 */
183 	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
184 	    (get_region_id(ea) != USER_REGION_ID)) {
185 
186 		spin_unlock(&spu->register_lock);
187 		ret = hash_page(ea,
188 				_PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
189 				0x300, dsisr);
190 		spin_lock(&spu->register_lock);
191 
192 		if (!ret) {
193 			spu_restart_dma(spu);
194 			return 0;
195 		}
196 	}
197 
198 	spu->class_1_dar = ea;
199 	spu->class_1_dsisr = dsisr;
200 
201 	spu->stop_callback(spu, 1);
202 
203 	spu->class_1_dar = 0;
204 	spu->class_1_dsisr = 0;
205 
206 	return 0;
207 }
208 
209 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
210 {
211 	unsigned long ea = (unsigned long)addr;
212 	u64 llp;
213 
214 	if (get_region_id(ea) == LINEAR_MAP_REGION_ID)
215 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
216 	else
217 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
218 
219 	slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
220 		SLB_VSID_KERNEL | llp;
221 	slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
222 }
223 
224 /**
225  * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
226  * address @new_addr is present.
227  */
228 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
229 		void *new_addr)
230 {
231 	unsigned long ea = (unsigned long)new_addr;
232 	int i;
233 
234 	for (i = 0; i < nr_slbs; i++)
235 		if (!((slbs[i].esid ^ ea) & ESID_MASK))
236 			return 1;
237 
238 	return 0;
239 }
240 
241 /**
242  * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
243  * need to map both the context save area, and the save/restore code.
244  *
245  * Because the lscsa and code may cross segment boundaries, we check to see
246  * if mappings are required for the start and end of each range. We currently
247  * assume that the mappings are smaller that one segment - if not, something
248  * is seriously wrong.
249  */
250 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
251 		void *code, int code_size)
252 {
253 	struct copro_slb slbs[4];
254 	int i, nr_slbs = 0;
255 	/* start and end addresses of both mappings */
256 	void *addrs[] = {
257 		lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
258 		code, code + code_size - 1
259 	};
260 
261 	/* check the set of addresses, and create a new entry in the slbs array
262 	 * if there isn't already a SLB for that address */
263 	for (i = 0; i < ARRAY_SIZE(addrs); i++) {
264 		if (__slb_present(slbs, nr_slbs, addrs[i]))
265 			continue;
266 
267 		__spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
268 		nr_slbs++;
269 	}
270 
271 	spin_lock_irq(&spu->register_lock);
272 	/* Add the set of SLBs */
273 	for (i = 0; i < nr_slbs; i++)
274 		spu_load_slb(spu, i, &slbs[i]);
275 	spin_unlock_irq(&spu->register_lock);
276 }
277 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
278 
279 static irqreturn_t
280 spu_irq_class_0(int irq, void *data)
281 {
282 	struct spu *spu;
283 	unsigned long stat, mask;
284 
285 	spu = data;
286 
287 	spin_lock(&spu->register_lock);
288 	mask = spu_int_mask_get(spu, 0);
289 	stat = spu_int_stat_get(spu, 0) & mask;
290 
291 	spu->class_0_pending |= stat;
292 	spu->class_0_dar = spu_mfc_dar_get(spu);
293 	spu->stop_callback(spu, 0);
294 	spu->class_0_pending = 0;
295 	spu->class_0_dar = 0;
296 
297 	spu_int_stat_clear(spu, 0, stat);
298 	spin_unlock(&spu->register_lock);
299 
300 	return IRQ_HANDLED;
301 }
302 
303 static irqreturn_t
304 spu_irq_class_1(int irq, void *data)
305 {
306 	struct spu *spu;
307 	unsigned long stat, mask, dar, dsisr;
308 
309 	spu = data;
310 
311 	/* atomically read & clear class1 status. */
312 	spin_lock(&spu->register_lock);
313 	mask  = spu_int_mask_get(spu, 1);
314 	stat  = spu_int_stat_get(spu, 1) & mask;
315 	dar   = spu_mfc_dar_get(spu);
316 	dsisr = spu_mfc_dsisr_get(spu);
317 	if (stat & CLASS1_STORAGE_FAULT_INTR)
318 		spu_mfc_dsisr_set(spu, 0ul);
319 	spu_int_stat_clear(spu, 1, stat);
320 
321 	pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
322 			dar, dsisr);
323 
324 	if (stat & CLASS1_SEGMENT_FAULT_INTR)
325 		__spu_trap_data_seg(spu, dar);
326 
327 	if (stat & CLASS1_STORAGE_FAULT_INTR)
328 		__spu_trap_data_map(spu, dar, dsisr);
329 
330 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
331 		;
332 
333 	if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
334 		;
335 
336 	spu->class_1_dsisr = 0;
337 	spu->class_1_dar = 0;
338 
339 	spin_unlock(&spu->register_lock);
340 
341 	return stat ? IRQ_HANDLED : IRQ_NONE;
342 }
343 
344 static irqreturn_t
345 spu_irq_class_2(int irq, void *data)
346 {
347 	struct spu *spu;
348 	unsigned long stat;
349 	unsigned long mask;
350 	const int mailbox_intrs =
351 		CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
352 
353 	spu = data;
354 	spin_lock(&spu->register_lock);
355 	stat = spu_int_stat_get(spu, 2);
356 	mask = spu_int_mask_get(spu, 2);
357 	/* ignore interrupts we're not waiting for */
358 	stat &= mask;
359 	/* mailbox interrupts are level triggered. mask them now before
360 	 * acknowledging */
361 	if (stat & mailbox_intrs)
362 		spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
363 	/* acknowledge all interrupts before the callbacks */
364 	spu_int_stat_clear(spu, 2, stat);
365 
366 	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
367 
368 	if (stat & CLASS2_MAILBOX_INTR)
369 		spu->ibox_callback(spu);
370 
371 	if (stat & CLASS2_SPU_STOP_INTR)
372 		spu->stop_callback(spu, 2);
373 
374 	if (stat & CLASS2_SPU_HALT_INTR)
375 		spu->stop_callback(spu, 2);
376 
377 	if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
378 		spu->mfc_callback(spu);
379 
380 	if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
381 		spu->wbox_callback(spu);
382 
383 	spu->stats.class2_intr++;
384 
385 	spin_unlock(&spu->register_lock);
386 
387 	return stat ? IRQ_HANDLED : IRQ_NONE;
388 }
389 
390 static int spu_request_irqs(struct spu *spu)
391 {
392 	int ret = 0;
393 
394 	if (spu->irqs[0]) {
395 		snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
396 			 spu->number);
397 		ret = request_irq(spu->irqs[0], spu_irq_class_0,
398 				  0, spu->irq_c0, spu);
399 		if (ret)
400 			goto bail0;
401 	}
402 	if (spu->irqs[1]) {
403 		snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
404 			 spu->number);
405 		ret = request_irq(spu->irqs[1], spu_irq_class_1,
406 				  0, spu->irq_c1, spu);
407 		if (ret)
408 			goto bail1;
409 	}
410 	if (spu->irqs[2]) {
411 		snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
412 			 spu->number);
413 		ret = request_irq(spu->irqs[2], spu_irq_class_2,
414 				  0, spu->irq_c2, spu);
415 		if (ret)
416 			goto bail2;
417 	}
418 	return 0;
419 
420 bail2:
421 	if (spu->irqs[1])
422 		free_irq(spu->irqs[1], spu);
423 bail1:
424 	if (spu->irqs[0])
425 		free_irq(spu->irqs[0], spu);
426 bail0:
427 	return ret;
428 }
429 
430 static void spu_free_irqs(struct spu *spu)
431 {
432 	if (spu->irqs[0])
433 		free_irq(spu->irqs[0], spu);
434 	if (spu->irqs[1])
435 		free_irq(spu->irqs[1], spu);
436 	if (spu->irqs[2])
437 		free_irq(spu->irqs[2], spu);
438 }
439 
440 void spu_init_channels(struct spu *spu)
441 {
442 	static const struct {
443 		 unsigned channel;
444 		 unsigned count;
445 	} zero_list[] = {
446 		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
447 		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
448 	}, count_list[] = {
449 		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
450 		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
451 		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
452 	};
453 	struct spu_priv2 __iomem *priv2;
454 	int i;
455 
456 	priv2 = spu->priv2;
457 
458 	/* initialize all channel data to zero */
459 	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
460 		int count;
461 
462 		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
463 		for (count = 0; count < zero_list[i].count; count++)
464 			out_be64(&priv2->spu_chnldata_RW, 0);
465 	}
466 
467 	/* initialize channel counts to meaningful values */
468 	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
469 		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
470 		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
471 	}
472 }
473 EXPORT_SYMBOL_GPL(spu_init_channels);
474 
475 static struct bus_type spu_subsys = {
476 	.name = "spu",
477 	.dev_name = "spu",
478 };
479 
480 int spu_add_dev_attr(struct device_attribute *attr)
481 {
482 	struct spu *spu;
483 
484 	mutex_lock(&spu_full_list_mutex);
485 	list_for_each_entry(spu, &spu_full_list, full_list)
486 		device_create_file(&spu->dev, attr);
487 	mutex_unlock(&spu_full_list_mutex);
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
492 
493 int spu_add_dev_attr_group(struct attribute_group *attrs)
494 {
495 	struct spu *spu;
496 	int rc = 0;
497 
498 	mutex_lock(&spu_full_list_mutex);
499 	list_for_each_entry(spu, &spu_full_list, full_list) {
500 		rc = sysfs_create_group(&spu->dev.kobj, attrs);
501 
502 		/* we're in trouble here, but try unwinding anyway */
503 		if (rc) {
504 			printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
505 					__func__, attrs->name);
506 
507 			list_for_each_entry_continue_reverse(spu,
508 					&spu_full_list, full_list)
509 				sysfs_remove_group(&spu->dev.kobj, attrs);
510 			break;
511 		}
512 	}
513 
514 	mutex_unlock(&spu_full_list_mutex);
515 
516 	return rc;
517 }
518 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
519 
520 
521 void spu_remove_dev_attr(struct device_attribute *attr)
522 {
523 	struct spu *spu;
524 
525 	mutex_lock(&spu_full_list_mutex);
526 	list_for_each_entry(spu, &spu_full_list, full_list)
527 		device_remove_file(&spu->dev, attr);
528 	mutex_unlock(&spu_full_list_mutex);
529 }
530 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
531 
532 void spu_remove_dev_attr_group(struct attribute_group *attrs)
533 {
534 	struct spu *spu;
535 
536 	mutex_lock(&spu_full_list_mutex);
537 	list_for_each_entry(spu, &spu_full_list, full_list)
538 		sysfs_remove_group(&spu->dev.kobj, attrs);
539 	mutex_unlock(&spu_full_list_mutex);
540 }
541 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
542 
543 static int spu_create_dev(struct spu *spu)
544 {
545 	int ret;
546 
547 	spu->dev.id = spu->number;
548 	spu->dev.bus = &spu_subsys;
549 	ret = device_register(&spu->dev);
550 	if (ret) {
551 		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
552 				spu->number);
553 		return ret;
554 	}
555 
556 	sysfs_add_device_to_node(&spu->dev, spu->node);
557 
558 	return 0;
559 }
560 
561 static int __init create_spu(void *data)
562 {
563 	struct spu *spu;
564 	int ret;
565 	static int number;
566 	unsigned long flags;
567 
568 	ret = -ENOMEM;
569 	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
570 	if (!spu)
571 		goto out;
572 
573 	spu->alloc_state = SPU_FREE;
574 
575 	spin_lock_init(&spu->register_lock);
576 	spin_lock(&spu_lock);
577 	spu->number = number++;
578 	spin_unlock(&spu_lock);
579 
580 	ret = spu_create_spu(spu, data);
581 
582 	if (ret)
583 		goto out_free;
584 
585 	spu_mfc_sdr_setup(spu);
586 	spu_mfc_sr1_set(spu, 0x33);
587 	ret = spu_request_irqs(spu);
588 	if (ret)
589 		goto out_destroy;
590 
591 	ret = spu_create_dev(spu);
592 	if (ret)
593 		goto out_free_irqs;
594 
595 	mutex_lock(&cbe_spu_info[spu->node].list_mutex);
596 	list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
597 	cbe_spu_info[spu->node].n_spus++;
598 	mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
599 
600 	mutex_lock(&spu_full_list_mutex);
601 	spin_lock_irqsave(&spu_full_list_lock, flags);
602 	list_add(&spu->full_list, &spu_full_list);
603 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
604 	mutex_unlock(&spu_full_list_mutex);
605 
606 	spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
607 	spu->stats.tstamp = ktime_get_ns();
608 
609 	INIT_LIST_HEAD(&spu->aff_list);
610 
611 	goto out;
612 
613 out_free_irqs:
614 	spu_free_irqs(spu);
615 out_destroy:
616 	spu_destroy_spu(spu);
617 out_free:
618 	kfree(spu);
619 out:
620 	return ret;
621 }
622 
623 static const char *spu_state_names[] = {
624 	"user", "system", "iowait", "idle"
625 };
626 
627 static unsigned long long spu_acct_time(struct spu *spu,
628 		enum spu_utilization_state state)
629 {
630 	unsigned long long time = spu->stats.times[state];
631 
632 	/*
633 	 * If the spu is idle or the context is stopped, utilization
634 	 * statistics are not updated.  Apply the time delta from the
635 	 * last recorded state of the spu.
636 	 */
637 	if (spu->stats.util_state == state)
638 		time += ktime_get_ns() - spu->stats.tstamp;
639 
640 	return time / NSEC_PER_MSEC;
641 }
642 
643 
644 static ssize_t spu_stat_show(struct device *dev,
645 				struct device_attribute *attr, char *buf)
646 {
647 	struct spu *spu = container_of(dev, struct spu, dev);
648 
649 	return sprintf(buf, "%s %llu %llu %llu %llu "
650 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
651 		spu_state_names[spu->stats.util_state],
652 		spu_acct_time(spu, SPU_UTIL_USER),
653 		spu_acct_time(spu, SPU_UTIL_SYSTEM),
654 		spu_acct_time(spu, SPU_UTIL_IOWAIT),
655 		spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
656 		spu->stats.vol_ctx_switch,
657 		spu->stats.invol_ctx_switch,
658 		spu->stats.slb_flt,
659 		spu->stats.hash_flt,
660 		spu->stats.min_flt,
661 		spu->stats.maj_flt,
662 		spu->stats.class2_intr,
663 		spu->stats.libassist);
664 }
665 
666 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
667 
668 #ifdef CONFIG_KEXEC_CORE
669 
670 struct crash_spu_info {
671 	struct spu *spu;
672 	u32 saved_spu_runcntl_RW;
673 	u32 saved_spu_status_R;
674 	u32 saved_spu_npc_RW;
675 	u64 saved_mfc_sr1_RW;
676 	u64 saved_mfc_dar;
677 	u64 saved_mfc_dsisr;
678 };
679 
680 #define CRASH_NUM_SPUS	16	/* Enough for current hardware */
681 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
682 
683 static void crash_kexec_stop_spus(void)
684 {
685 	struct spu *spu;
686 	int i;
687 	u64 tmp;
688 
689 	for (i = 0; i < CRASH_NUM_SPUS; i++) {
690 		if (!crash_spu_info[i].spu)
691 			continue;
692 
693 		spu = crash_spu_info[i].spu;
694 
695 		crash_spu_info[i].saved_spu_runcntl_RW =
696 			in_be32(&spu->problem->spu_runcntl_RW);
697 		crash_spu_info[i].saved_spu_status_R =
698 			in_be32(&spu->problem->spu_status_R);
699 		crash_spu_info[i].saved_spu_npc_RW =
700 			in_be32(&spu->problem->spu_npc_RW);
701 
702 		crash_spu_info[i].saved_mfc_dar    = spu_mfc_dar_get(spu);
703 		crash_spu_info[i].saved_mfc_dsisr  = spu_mfc_dsisr_get(spu);
704 		tmp = spu_mfc_sr1_get(spu);
705 		crash_spu_info[i].saved_mfc_sr1_RW = tmp;
706 
707 		tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
708 		spu_mfc_sr1_set(spu, tmp);
709 
710 		__delay(200);
711 	}
712 }
713 
714 static void crash_register_spus(struct list_head *list)
715 {
716 	struct spu *spu;
717 	int ret;
718 
719 	list_for_each_entry(spu, list, full_list) {
720 		if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
721 			continue;
722 
723 		crash_spu_info[spu->number].spu = spu;
724 	}
725 
726 	ret = crash_shutdown_register(&crash_kexec_stop_spus);
727 	if (ret)
728 		printk(KERN_ERR "Could not register SPU crash handler");
729 }
730 
731 #else
732 static inline void crash_register_spus(struct list_head *list)
733 {
734 }
735 #endif
736 
737 static void spu_shutdown(void)
738 {
739 	struct spu *spu;
740 
741 	mutex_lock(&spu_full_list_mutex);
742 	list_for_each_entry(spu, &spu_full_list, full_list) {
743 		spu_free_irqs(spu);
744 		spu_destroy_spu(spu);
745 	}
746 	mutex_unlock(&spu_full_list_mutex);
747 }
748 
749 static struct syscore_ops spu_syscore_ops = {
750 	.shutdown = spu_shutdown,
751 };
752 
753 static int __init init_spu_base(void)
754 {
755 	int i, ret = 0;
756 
757 	for (i = 0; i < MAX_NUMNODES; i++) {
758 		mutex_init(&cbe_spu_info[i].list_mutex);
759 		INIT_LIST_HEAD(&cbe_spu_info[i].spus);
760 	}
761 
762 	if (!spu_management_ops)
763 		goto out;
764 
765 	/* create system subsystem for spus */
766 	ret = subsys_system_register(&spu_subsys, NULL);
767 	if (ret)
768 		goto out;
769 
770 	ret = spu_enumerate_spus(create_spu);
771 
772 	if (ret < 0) {
773 		printk(KERN_WARNING "%s: Error initializing spus\n",
774 			__func__);
775 		goto out_unregister_subsys;
776 	}
777 
778 	if (ret > 0)
779 		fb_append_extra_logo(&logo_spe_clut224, ret);
780 
781 	mutex_lock(&spu_full_list_mutex);
782 	xmon_register_spus(&spu_full_list);
783 	crash_register_spus(&spu_full_list);
784 	mutex_unlock(&spu_full_list_mutex);
785 	spu_add_dev_attr(&dev_attr_stat);
786 	register_syscore_ops(&spu_syscore_ops);
787 
788 	spu_init_affinity();
789 
790 	return 0;
791 
792  out_unregister_subsys:
793 	bus_unregister(&spu_subsys);
794  out:
795 	return ret;
796 }
797 device_initcall(init_spu_base);
798