1 /* 2 * Cell Broadband Engine Performance Monitor 3 * 4 * (C) Copyright IBM Corporation 2001,2006 5 * 6 * Author: 7 * David Erb (djerb@us.ibm.com) 8 * Kevin Corry (kevcorry@us.ibm.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/interrupt.h> 26 #include <linux/types.h> 27 #include <asm/io.h> 28 #include <asm/irq_regs.h> 29 #include <asm/machdep.h> 30 #include <asm/pmc.h> 31 #include <asm/reg.h> 32 #include <asm/spu.h> 33 #include <asm/cell-regs.h> 34 35 #include "interrupt.h" 36 37 /* 38 * When writing to write-only mmio addresses, save a shadow copy. All of the 39 * registers are 32-bit, but stored in the upper-half of a 64-bit field in 40 * pmd_regs. 41 */ 42 43 #define WRITE_WO_MMIO(reg, x) \ 44 do { \ 45 u32 _x = (x); \ 46 struct cbe_pmd_regs __iomem *pmd_regs; \ 47 struct cbe_pmd_shadow_regs *shadow_regs; \ 48 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \ 49 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \ 50 out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \ 51 shadow_regs->reg = _x; \ 52 } while (0) 53 54 #define READ_SHADOW_REG(val, reg) \ 55 do { \ 56 struct cbe_pmd_shadow_regs *shadow_regs; \ 57 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \ 58 (val) = shadow_regs->reg; \ 59 } while (0) 60 61 #define READ_MMIO_UPPER32(val, reg) \ 62 do { \ 63 struct cbe_pmd_regs __iomem *pmd_regs; \ 64 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \ 65 (val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \ 66 } while (0) 67 68 /* 69 * Physical counter registers. 70 * Each physical counter can act as one 32-bit counter or two 16-bit counters. 71 */ 72 73 u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr) 74 { 75 u32 val_in_latch, val = 0; 76 77 if (phys_ctr < NR_PHYS_CTRS) { 78 READ_SHADOW_REG(val_in_latch, counter_value_in_latch); 79 80 /* Read the latch or the actual counter, whichever is newer. */ 81 if (val_in_latch & (1 << phys_ctr)) { 82 READ_SHADOW_REG(val, pm_ctr[phys_ctr]); 83 } else { 84 READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]); 85 } 86 } 87 88 return val; 89 } 90 EXPORT_SYMBOL_GPL(cbe_read_phys_ctr); 91 92 void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val) 93 { 94 struct cbe_pmd_shadow_regs *shadow_regs; 95 u32 pm_ctrl; 96 97 if (phys_ctr < NR_PHYS_CTRS) { 98 /* Writing to a counter only writes to a hardware latch. 99 * The new value is not propagated to the actual counter 100 * until the performance monitor is enabled. 101 */ 102 WRITE_WO_MMIO(pm_ctr[phys_ctr], val); 103 104 pm_ctrl = cbe_read_pm(cpu, pm_control); 105 if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) { 106 /* The counters are already active, so we need to 107 * rewrite the pm_control register to "re-enable" 108 * the PMU. 109 */ 110 cbe_write_pm(cpu, pm_control, pm_ctrl); 111 } else { 112 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); 113 shadow_regs->counter_value_in_latch |= (1 << phys_ctr); 114 } 115 } 116 } 117 EXPORT_SYMBOL_GPL(cbe_write_phys_ctr); 118 119 /* 120 * "Logical" counter registers. 121 * These will read/write 16-bits or 32-bits depending on the 122 * current size of the counter. Counters 4 - 7 are always 16-bit. 123 */ 124 125 u32 cbe_read_ctr(u32 cpu, u32 ctr) 126 { 127 u32 val; 128 u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1); 129 130 val = cbe_read_phys_ctr(cpu, phys_ctr); 131 132 if (cbe_get_ctr_size(cpu, phys_ctr) == 16) 133 val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff); 134 135 return val; 136 } 137 EXPORT_SYMBOL_GPL(cbe_read_ctr); 138 139 void cbe_write_ctr(u32 cpu, u32 ctr, u32 val) 140 { 141 u32 phys_ctr; 142 u32 phys_val; 143 144 phys_ctr = ctr & (NR_PHYS_CTRS - 1); 145 146 if (cbe_get_ctr_size(cpu, phys_ctr) == 16) { 147 phys_val = cbe_read_phys_ctr(cpu, phys_ctr); 148 149 if (ctr < NR_PHYS_CTRS) 150 val = (val << 16) | (phys_val & 0xffff); 151 else 152 val = (val & 0xffff) | (phys_val & 0xffff0000); 153 } 154 155 cbe_write_phys_ctr(cpu, phys_ctr, val); 156 } 157 EXPORT_SYMBOL_GPL(cbe_write_ctr); 158 159 /* 160 * Counter-control registers. 161 * Each "logical" counter has a corresponding control register. 162 */ 163 164 u32 cbe_read_pm07_control(u32 cpu, u32 ctr) 165 { 166 u32 pm07_control = 0; 167 168 if (ctr < NR_CTRS) 169 READ_SHADOW_REG(pm07_control, pm07_control[ctr]); 170 171 return pm07_control; 172 } 173 EXPORT_SYMBOL_GPL(cbe_read_pm07_control); 174 175 void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val) 176 { 177 if (ctr < NR_CTRS) 178 WRITE_WO_MMIO(pm07_control[ctr], val); 179 } 180 EXPORT_SYMBOL_GPL(cbe_write_pm07_control); 181 182 /* 183 * Other PMU control registers. Most of these are write-only. 184 */ 185 186 u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg) 187 { 188 u32 val = 0; 189 190 switch (reg) { 191 case group_control: 192 READ_SHADOW_REG(val, group_control); 193 break; 194 195 case debug_bus_control: 196 READ_SHADOW_REG(val, debug_bus_control); 197 break; 198 199 case trace_address: 200 READ_MMIO_UPPER32(val, trace_address); 201 break; 202 203 case ext_tr_timer: 204 READ_SHADOW_REG(val, ext_tr_timer); 205 break; 206 207 case pm_status: 208 READ_MMIO_UPPER32(val, pm_status); 209 break; 210 211 case pm_control: 212 READ_SHADOW_REG(val, pm_control); 213 break; 214 215 case pm_interval: 216 READ_MMIO_UPPER32(val, pm_interval); 217 break; 218 219 case pm_start_stop: 220 READ_SHADOW_REG(val, pm_start_stop); 221 break; 222 } 223 224 return val; 225 } 226 EXPORT_SYMBOL_GPL(cbe_read_pm); 227 228 void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val) 229 { 230 switch (reg) { 231 case group_control: 232 WRITE_WO_MMIO(group_control, val); 233 break; 234 235 case debug_bus_control: 236 WRITE_WO_MMIO(debug_bus_control, val); 237 break; 238 239 case trace_address: 240 WRITE_WO_MMIO(trace_address, val); 241 break; 242 243 case ext_tr_timer: 244 WRITE_WO_MMIO(ext_tr_timer, val); 245 break; 246 247 case pm_status: 248 WRITE_WO_MMIO(pm_status, val); 249 break; 250 251 case pm_control: 252 WRITE_WO_MMIO(pm_control, val); 253 break; 254 255 case pm_interval: 256 WRITE_WO_MMIO(pm_interval, val); 257 break; 258 259 case pm_start_stop: 260 WRITE_WO_MMIO(pm_start_stop, val); 261 break; 262 } 263 } 264 EXPORT_SYMBOL_GPL(cbe_write_pm); 265 266 /* 267 * Get/set the size of a physical counter to either 16 or 32 bits. 268 */ 269 270 u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr) 271 { 272 u32 pm_ctrl, size = 0; 273 274 if (phys_ctr < NR_PHYS_CTRS) { 275 pm_ctrl = cbe_read_pm(cpu, pm_control); 276 size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32; 277 } 278 279 return size; 280 } 281 EXPORT_SYMBOL_GPL(cbe_get_ctr_size); 282 283 void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size) 284 { 285 u32 pm_ctrl; 286 287 if (phys_ctr < NR_PHYS_CTRS) { 288 pm_ctrl = cbe_read_pm(cpu, pm_control); 289 switch (ctr_size) { 290 case 16: 291 pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr); 292 break; 293 294 case 32: 295 pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr); 296 break; 297 } 298 cbe_write_pm(cpu, pm_control, pm_ctrl); 299 } 300 } 301 EXPORT_SYMBOL_GPL(cbe_set_ctr_size); 302 303 /* 304 * Enable/disable the entire performance monitoring unit. 305 * When we enable the PMU, all pending writes to counters get committed. 306 */ 307 308 void cbe_enable_pm(u32 cpu) 309 { 310 struct cbe_pmd_shadow_regs *shadow_regs; 311 u32 pm_ctrl; 312 313 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); 314 shadow_regs->counter_value_in_latch = 0; 315 316 pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON; 317 cbe_write_pm(cpu, pm_control, pm_ctrl); 318 } 319 EXPORT_SYMBOL_GPL(cbe_enable_pm); 320 321 void cbe_disable_pm(u32 cpu) 322 { 323 u32 pm_ctrl; 324 pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON; 325 cbe_write_pm(cpu, pm_control, pm_ctrl); 326 } 327 EXPORT_SYMBOL_GPL(cbe_disable_pm); 328 329 /* 330 * Reading from the trace_buffer. 331 * The trace buffer is two 64-bit registers. Reading from 332 * the second half automatically increments the trace_address. 333 */ 334 335 void cbe_read_trace_buffer(u32 cpu, u64 *buf) 336 { 337 struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu); 338 339 *buf++ = in_be64(&pmd_regs->trace_buffer_0_63); 340 *buf++ = in_be64(&pmd_regs->trace_buffer_64_127); 341 } 342 EXPORT_SYMBOL_GPL(cbe_read_trace_buffer); 343 344 /* 345 * Enabling/disabling interrupts for the entire performance monitoring unit. 346 */ 347 348 u32 cbe_get_and_clear_pm_interrupts(u32 cpu) 349 { 350 /* Reading pm_status clears the interrupt bits. */ 351 return cbe_read_pm(cpu, pm_status); 352 } 353 EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts); 354 355 void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask) 356 { 357 /* Set which node and thread will handle the next interrupt. */ 358 iic_set_interrupt_routing(cpu, thread, 0); 359 360 /* Enable the interrupt bits in the pm_status register. */ 361 if (mask) 362 cbe_write_pm(cpu, pm_status, mask); 363 } 364 EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts); 365 366 void cbe_disable_pm_interrupts(u32 cpu) 367 { 368 cbe_get_and_clear_pm_interrupts(cpu); 369 cbe_write_pm(cpu, pm_status, 0); 370 } 371 EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts); 372 373 static irqreturn_t cbe_pm_irq(int irq, void *dev_id) 374 { 375 perf_irq(get_irq_regs()); 376 return IRQ_HANDLED; 377 } 378 379 static int __init cbe_init_pm_irq(void) 380 { 381 unsigned int irq; 382 int rc, node; 383 384 for_each_node(node) { 385 irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI | 386 (node << IIC_IRQ_NODE_SHIFT)); 387 if (irq == NO_IRQ) { 388 printk("ERROR: Unable to allocate irq for node %d\n", 389 node); 390 return -EINVAL; 391 } 392 393 rc = request_irq(irq, cbe_pm_irq, 394 IRQF_DISABLED, "cbe-pmu-0", NULL); 395 if (rc) { 396 printk("ERROR: Request for irq on node %d failed\n", 397 node); 398 return rc; 399 } 400 } 401 402 return 0; 403 } 404 machine_arch_initcall(cell, cbe_init_pm_irq); 405 406 void cbe_sync_irq(int node) 407 { 408 unsigned int irq; 409 410 irq = irq_find_mapping(NULL, 411 IIC_IRQ_IOEX_PMI 412 | (node << IIC_IRQ_NODE_SHIFT)); 413 414 if (irq == NO_IRQ) { 415 printk(KERN_WARNING "ERROR, unable to get existing irq %d " \ 416 "for node %d\n", irq, node); 417 return; 418 } 419 420 synchronize_irq(irq); 421 } 422 EXPORT_SYMBOL_GPL(cbe_sync_irq); 423 424