1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * VAS user space API for its accelerators (Only NX-GZIP is supported now) 4 * Copyright (C) 2019 Haren Myneni, IBM Corp 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/cdev.h> 10 #include <linux/fs.h> 11 #include <linux/slab.h> 12 #include <linux/uaccess.h> 13 #include <linux/kthread.h> 14 #include <linux/sched/signal.h> 15 #include <linux/mmu_context.h> 16 #include <linux/io.h> 17 #include <asm/vas.h> 18 #include <uapi/asm/vas-api.h> 19 20 /* 21 * The driver creates the device node that can be used as follows: 22 * For NX-GZIP 23 * 24 * fd = open("/dev/crypto/nx-gzip", O_RDWR); 25 * rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr); 26 * paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL). 27 * vas_copy(&crb, 0, 1); 28 * vas_paste(paste_addr, 0, 1); 29 * close(fd) or exit process to close window. 30 * 31 * where "vas_copy" and "vas_paste" are defined in copy-paste.h. 32 * copy/paste returns to the user space directly. So refer NX hardware 33 * documententation for exact copy/paste usage and completion / error 34 * conditions. 35 */ 36 37 /* 38 * Wrapper object for the nx-gzip device - there is just one instance of 39 * this node for the whole system. 40 */ 41 static struct coproc_dev { 42 struct cdev cdev; 43 struct device *device; 44 char *name; 45 dev_t devt; 46 struct class *class; 47 enum vas_cop_type cop_type; 48 const struct vas_user_win_ops *vops; 49 } coproc_device; 50 51 struct coproc_instance { 52 struct coproc_dev *coproc; 53 struct vas_window *txwin; 54 }; 55 56 static char *coproc_devnode(struct device *dev, umode_t *mode) 57 { 58 return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev)); 59 } 60 61 /* 62 * Take reference to pid and mm 63 */ 64 int get_vas_user_win_ref(struct vas_user_win_ref *task_ref) 65 { 66 /* 67 * Window opened by a child thread may not be closed when 68 * it exits. So take reference to its pid and release it 69 * when the window is free by parent thread. 70 * Acquire a reference to the task's pid to make sure 71 * pid will not be re-used - needed only for multithread 72 * applications. 73 */ 74 task_ref->pid = get_task_pid(current, PIDTYPE_PID); 75 /* 76 * Acquire a reference to the task's mm. 77 */ 78 task_ref->mm = get_task_mm(current); 79 if (!task_ref->mm) { 80 put_pid(task_ref->pid); 81 pr_err("VAS: pid(%d): mm_struct is not found\n", 82 current->pid); 83 return -EPERM; 84 } 85 86 mmgrab(task_ref->mm); 87 mmput(task_ref->mm); 88 /* 89 * Process closes window during exit. In the case of 90 * multithread application, the child thread can open 91 * window and can exit without closing it. So takes tgid 92 * reference until window closed to make sure tgid is not 93 * reused. 94 */ 95 task_ref->tgid = find_get_pid(task_tgid_vnr(current)); 96 97 return 0; 98 } 99 100 /* 101 * Successful return must release the task reference with 102 * put_task_struct 103 */ 104 static bool ref_get_pid_and_task(struct vas_user_win_ref *task_ref, 105 struct task_struct **tskp, struct pid **pidp) 106 { 107 struct task_struct *tsk; 108 struct pid *pid; 109 110 pid = task_ref->pid; 111 tsk = get_pid_task(pid, PIDTYPE_PID); 112 if (!tsk) { 113 pid = task_ref->tgid; 114 tsk = get_pid_task(pid, PIDTYPE_PID); 115 /* 116 * Parent thread (tgid) will be closing window when it 117 * exits. So should not get here. 118 */ 119 if (WARN_ON_ONCE(!tsk)) 120 return false; 121 } 122 123 /* Return if the task is exiting. */ 124 if (tsk->flags & PF_EXITING) { 125 put_task_struct(tsk); 126 return false; 127 } 128 129 *tskp = tsk; 130 *pidp = pid; 131 132 return true; 133 } 134 135 /* 136 * Update the CSB to indicate a translation error. 137 * 138 * User space will be polling on CSB after the request is issued. 139 * If NX can handle the request without any issues, it updates CSB. 140 * Whereas if NX encounters page fault, the kernel will handle the 141 * fault and update CSB with translation error. 142 * 143 * If we are unable to update the CSB means copy_to_user failed due to 144 * invalid csb_addr, send a signal to the process. 145 */ 146 void vas_update_csb(struct coprocessor_request_block *crb, 147 struct vas_user_win_ref *task_ref) 148 { 149 struct coprocessor_status_block csb; 150 struct kernel_siginfo info; 151 struct task_struct *tsk; 152 void __user *csb_addr; 153 struct pid *pid; 154 int rc; 155 156 /* 157 * NX user space windows can not be opened for task->mm=NULL 158 * and faults will not be generated for kernel requests. 159 */ 160 if (WARN_ON_ONCE(!task_ref->mm)) 161 return; 162 163 csb_addr = (void __user *)be64_to_cpu(crb->csb_addr); 164 165 memset(&csb, 0, sizeof(csb)); 166 csb.cc = CSB_CC_FAULT_ADDRESS; 167 csb.ce = CSB_CE_TERMINATION; 168 csb.cs = 0; 169 csb.count = 0; 170 171 /* 172 * NX operates and returns in BE format as defined CRB struct. 173 * So saves fault_storage_addr in BE as NX pastes in FIFO and 174 * expects user space to convert to CPU format. 175 */ 176 csb.address = crb->stamp.nx.fault_storage_addr; 177 csb.flags = 0; 178 179 /* 180 * Process closes send window after all pending NX requests are 181 * completed. In multi-thread applications, a child thread can 182 * open a window and can exit without closing it. May be some 183 * requests are pending or this window can be used by other 184 * threads later. We should handle faults if NX encounters 185 * pages faults on these requests. Update CSB with translation 186 * error and fault address. If csb_addr passed by user space is 187 * invalid, send SEGV signal to pid saved in window. If the 188 * child thread is not running, send the signal to tgid. 189 * Parent thread (tgid) will close this window upon its exit. 190 * 191 * pid and mm references are taken when window is opened by 192 * process (pid). So tgid is used only when child thread opens 193 * a window and exits without closing it. 194 */ 195 196 if (!ref_get_pid_and_task(task_ref, &tsk, &pid)) 197 return; 198 199 kthread_use_mm(task_ref->mm); 200 rc = copy_to_user(csb_addr, &csb, sizeof(csb)); 201 /* 202 * User space polls on csb.flags (first byte). So add barrier 203 * then copy first byte with csb flags update. 204 */ 205 if (!rc) { 206 csb.flags = CSB_V; 207 /* Make sure update to csb.flags is visible now */ 208 smp_mb(); 209 rc = copy_to_user(csb_addr, &csb, sizeof(u8)); 210 } 211 kthread_unuse_mm(task_ref->mm); 212 put_task_struct(tsk); 213 214 /* Success */ 215 if (!rc) 216 return; 217 218 219 pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n", 220 csb_addr, pid_vnr(pid)); 221 222 clear_siginfo(&info); 223 info.si_signo = SIGSEGV; 224 info.si_errno = EFAULT; 225 info.si_code = SEGV_MAPERR; 226 info.si_addr = csb_addr; 227 /* 228 * process will be polling on csb.flags after request is sent to 229 * NX. So generally CSB update should not fail except when an 230 * application passes invalid csb_addr. So an error message will 231 * be displayed and leave it to user space whether to ignore or 232 * handle this signal. 233 */ 234 rcu_read_lock(); 235 rc = kill_pid_info(SIGSEGV, &info, pid); 236 rcu_read_unlock(); 237 238 pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__, 239 pid_vnr(pid), rc); 240 } 241 242 void vas_dump_crb(struct coprocessor_request_block *crb) 243 { 244 struct data_descriptor_entry *dde; 245 struct nx_fault_stamp *nx; 246 247 dde = &crb->source; 248 pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n", 249 be64_to_cpu(dde->address), be32_to_cpu(dde->length), 250 dde->count, dde->index, dde->flags); 251 252 dde = &crb->target; 253 pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n", 254 be64_to_cpu(dde->address), be32_to_cpu(dde->length), 255 dde->count, dde->index, dde->flags); 256 257 nx = &crb->stamp.nx; 258 pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n", 259 be32_to_cpu(nx->pswid), 260 be64_to_cpu(crb->stamp.nx.fault_storage_addr), 261 nx->flags, nx->fault_status); 262 } 263 264 static int coproc_open(struct inode *inode, struct file *fp) 265 { 266 struct coproc_instance *cp_inst; 267 268 cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL); 269 if (!cp_inst) 270 return -ENOMEM; 271 272 cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev, 273 cdev); 274 fp->private_data = cp_inst; 275 276 return 0; 277 } 278 279 static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg) 280 { 281 void __user *uptr = (void __user *)arg; 282 struct vas_tx_win_open_attr uattr; 283 struct coproc_instance *cp_inst; 284 struct vas_window *txwin; 285 int rc; 286 287 cp_inst = fp->private_data; 288 289 /* 290 * One window for file descriptor 291 */ 292 if (cp_inst->txwin) 293 return -EEXIST; 294 295 rc = copy_from_user(&uattr, uptr, sizeof(uattr)); 296 if (rc) { 297 pr_err("%s(): copy_from_user() returns %d\n", __func__, rc); 298 return -EFAULT; 299 } 300 301 if (uattr.version != 1) { 302 pr_err("Invalid window open API version\n"); 303 return -EINVAL; 304 } 305 306 if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->open_win) { 307 pr_err("VAS API is not registered\n"); 308 return -EACCES; 309 } 310 311 txwin = cp_inst->coproc->vops->open_win(uattr.vas_id, uattr.flags, 312 cp_inst->coproc->cop_type); 313 if (IS_ERR(txwin)) { 314 pr_err("%s() VAS window open failed, %ld\n", __func__, 315 PTR_ERR(txwin)); 316 return PTR_ERR(txwin); 317 } 318 319 cp_inst->txwin = txwin; 320 321 return 0; 322 } 323 324 static int coproc_release(struct inode *inode, struct file *fp) 325 { 326 struct coproc_instance *cp_inst = fp->private_data; 327 int rc; 328 329 if (cp_inst->txwin) { 330 if (cp_inst->coproc->vops && 331 cp_inst->coproc->vops->close_win) { 332 rc = cp_inst->coproc->vops->close_win(cp_inst->txwin); 333 if (rc) 334 return rc; 335 } 336 cp_inst->txwin = NULL; 337 } 338 339 kfree(cp_inst); 340 fp->private_data = NULL; 341 342 /* 343 * We don't know here if user has other receive windows 344 * open, so we can't really call clear_thread_tidr(). 345 * So, once the process calls set_thread_tidr(), the 346 * TIDR value sticks around until process exits, resulting 347 * in an extra copy in restore_sprs(). 348 */ 349 350 return 0; 351 } 352 353 static int coproc_mmap(struct file *fp, struct vm_area_struct *vma) 354 { 355 struct coproc_instance *cp_inst = fp->private_data; 356 struct vas_window *txwin; 357 unsigned long pfn; 358 u64 paste_addr; 359 pgprot_t prot; 360 int rc; 361 362 txwin = cp_inst->txwin; 363 364 if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) { 365 pr_debug("%s(): size 0x%zx, PAGE_SIZE 0x%zx\n", __func__, 366 (vma->vm_end - vma->vm_start), PAGE_SIZE); 367 return -EINVAL; 368 } 369 370 /* Ensure instance has an open send window */ 371 if (!txwin) { 372 pr_err("%s(): No send window open?\n", __func__); 373 return -EINVAL; 374 } 375 376 if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->paste_addr) { 377 pr_err("%s(): VAS API is not registered\n", __func__); 378 return -EACCES; 379 } 380 381 paste_addr = cp_inst->coproc->vops->paste_addr(txwin); 382 if (!paste_addr) { 383 pr_err("%s(): Window paste address failed\n", __func__); 384 return -EINVAL; 385 } 386 387 pfn = paste_addr >> PAGE_SHIFT; 388 389 /* flags, page_prot from cxl_mmap(), except we want cachable */ 390 vma->vm_flags |= VM_IO | VM_PFNMAP; 391 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); 392 393 prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY); 394 395 rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 396 vma->vm_end - vma->vm_start, prot); 397 398 pr_devel("%s(): paste addr %llx at %lx, rc %d\n", __func__, 399 paste_addr, vma->vm_start, rc); 400 401 return rc; 402 } 403 404 static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) 405 { 406 switch (cmd) { 407 case VAS_TX_WIN_OPEN: 408 return coproc_ioc_tx_win_open(fp, arg); 409 default: 410 return -EINVAL; 411 } 412 } 413 414 static struct file_operations coproc_fops = { 415 .open = coproc_open, 416 .release = coproc_release, 417 .mmap = coproc_mmap, 418 .unlocked_ioctl = coproc_ioctl, 419 }; 420 421 /* 422 * Supporting only nx-gzip coprocessor type now, but this API code 423 * extended to other coprocessor types later. 424 */ 425 int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type, 426 const char *name, 427 const struct vas_user_win_ops *vops) 428 { 429 int rc = -EINVAL; 430 dev_t devno; 431 432 rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name); 433 if (rc) { 434 pr_err("Unable to allocate coproc major number: %i\n", rc); 435 return rc; 436 } 437 438 pr_devel("%s device allocated, dev [%i,%i]\n", name, 439 MAJOR(coproc_device.devt), MINOR(coproc_device.devt)); 440 441 coproc_device.class = class_create(mod, name); 442 if (IS_ERR(coproc_device.class)) { 443 rc = PTR_ERR(coproc_device.class); 444 pr_err("Unable to create %s class %d\n", name, rc); 445 goto err_class; 446 } 447 coproc_device.class->devnode = coproc_devnode; 448 coproc_device.cop_type = cop_type; 449 coproc_device.vops = vops; 450 451 coproc_fops.owner = mod; 452 cdev_init(&coproc_device.cdev, &coproc_fops); 453 454 devno = MKDEV(MAJOR(coproc_device.devt), 0); 455 rc = cdev_add(&coproc_device.cdev, devno, 1); 456 if (rc) { 457 pr_err("cdev_add() failed %d\n", rc); 458 goto err_cdev; 459 } 460 461 coproc_device.device = device_create(coproc_device.class, NULL, 462 devno, NULL, name, MINOR(devno)); 463 if (IS_ERR(coproc_device.device)) { 464 rc = PTR_ERR(coproc_device.device); 465 pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc); 466 goto err; 467 } 468 469 pr_devel("%s: Added dev [%d,%d]\n", __func__, MAJOR(devno), 470 MINOR(devno)); 471 472 return 0; 473 474 err: 475 cdev_del(&coproc_device.cdev); 476 err_cdev: 477 class_destroy(coproc_device.class); 478 err_class: 479 unregister_chrdev_region(coproc_device.devt, 1); 480 return rc; 481 } 482 483 void vas_unregister_coproc_api(void) 484 { 485 dev_t devno; 486 487 cdev_del(&coproc_device.cdev); 488 devno = MKDEV(MAJOR(coproc_device.devt), 0); 489 device_destroy(coproc_device.class, devno); 490 491 class_destroy(coproc_device.class); 492 unregister_chrdev_region(coproc_device.devt, 1); 493 } 494