xref: /openbmc/linux/arch/powerpc/platforms/Kconfig (revision 6cc23ed2)
1# SPDX-License-Identifier: GPL-2.0
2menu "Platform support"
3
4source "arch/powerpc/platforms/powernv/Kconfig"
5source "arch/powerpc/platforms/pseries/Kconfig"
6source "arch/powerpc/platforms/chrp/Kconfig"
7source "arch/powerpc/platforms/512x/Kconfig"
8source "arch/powerpc/platforms/52xx/Kconfig"
9source "arch/powerpc/platforms/powermac/Kconfig"
10source "arch/powerpc/platforms/maple/Kconfig"
11source "arch/powerpc/platforms/pasemi/Kconfig"
12source "arch/powerpc/platforms/ps3/Kconfig"
13source "arch/powerpc/platforms/cell/Kconfig"
14source "arch/powerpc/platforms/8xx/Kconfig"
15source "arch/powerpc/platforms/82xx/Kconfig"
16source "arch/powerpc/platforms/83xx/Kconfig"
17source "arch/powerpc/platforms/85xx/Kconfig"
18source "arch/powerpc/platforms/86xx/Kconfig"
19source "arch/powerpc/platforms/embedded6xx/Kconfig"
20source "arch/powerpc/platforms/44x/Kconfig"
21source "arch/powerpc/platforms/40x/Kconfig"
22source "arch/powerpc/platforms/amigaone/Kconfig"
23
24config KVM_GUEST
25	bool "KVM Guest support"
26	select EPAPR_PARAVIRT
27	---help---
28	  This option enables various optimizations for running under the KVM
29	  hypervisor. Overhead for the kernel when not running inside KVM should
30	  be minimal.
31
32	  In case of doubt, say Y
33
34config EPAPR_PARAVIRT
35	bool "ePAPR para-virtualization support"
36	help
37	  Enables ePAPR para-virtualization support for guests.
38
39	  In case of doubt, say Y
40
41config PPC_NATIVE
42	bool
43	depends on PPC_BOOK3S_32 || PPC64
44	help
45	  Support for running natively on the hardware, i.e. without
46	  a hypervisor. This option is not user-selectable but should
47	  be selected by all platforms that need it.
48
49config PPC_OF_BOOT_TRAMPOLINE
50	bool "Support booting from Open Firmware or yaboot"
51	depends on PPC_BOOK3S_32 || PPC64
52	default y
53	help
54	  Support from booting from Open Firmware or yaboot using an
55	  Open Firmware client interface. This enables the kernel to
56	  communicate with open firmware to retrieve system information
57	  such as the device tree.
58
59	  In case of doubt, say Y
60
61config PPC_DT_CPU_FTRS
62	bool "Device-tree based CPU feature discovery & setup"
63	depends on PPC_BOOK3S_64
64	default y
65	help
66	  This enables code to use a new device tree binding for describing CPU
67	  compatibility and features. Saying Y here will attempt to use the new
68	  binding if the firmware provides it. Currently only the skiboot
69	  firmware provides this binding.
70	  If you're not sure say Y.
71
72config UDBG_RTAS_CONSOLE
73	bool "RTAS based debug console"
74	depends on PPC_RTAS
75
76config PPC_SMP_MUXED_IPI
77	bool
78	help
79	  Select this option if your platform supports SMP and your
80	  interrupt controller provides less than 4 interrupts to each
81	  cpu.	This will enable the generic code to multiplex the 4
82	  messages on to one ipi.
83
84config IPIC
85	bool
86
87config MPIC
88	bool
89
90config MPIC_TIMER
91	bool "MPIC Global Timer"
92	depends on MPIC && FSL_SOC
93	help
94	  The MPIC global timer is a hardware timer inside the
95	  Freescale PIC complying with OpenPIC standard. When the
96	  specified interval times out, the hardware timer generates
97	  an interrupt. The driver currently is only tested on fsl
98	  chip, but it can potentially support other global timers
99	  complying with the OpenPIC standard.
100
101config FSL_MPIC_TIMER_WAKEUP
102	tristate "Freescale MPIC global timer wakeup driver"
103	depends on FSL_SOC &&  MPIC_TIMER && PM
104	help
105	  The driver provides a way to wake up the system by MPIC
106	  timer.
107	  e.g. "echo 5 > /sys/devices/system/mpic/timer_wakeup"
108
109config PPC_EPAPR_HV_PIC
110	bool
111	select EPAPR_PARAVIRT
112
113config MPIC_WEIRD
114	bool
115
116config MPIC_MSGR
117	bool "MPIC message register support"
118	depends on MPIC
119	help
120	  Enables support for the MPIC message registers.  These
121	  registers are used for inter-processor communication.
122
123config PPC_I8259
124	bool
125
126config U3_DART
127	bool
128	depends on PPC64
129
130config PPC_RTAS
131	bool
132
133config RTAS_ERROR_LOGGING
134	bool
135	depends on PPC_RTAS
136
137config PPC_RTAS_DAEMON
138	bool
139	depends on PPC_RTAS
140
141config RTAS_PROC
142	bool "Proc interface to RTAS"
143	depends on PPC_RTAS && PROC_FS
144	default y
145
146config RTAS_FLASH
147	tristate "Firmware flash interface"
148	depends on PPC64 && RTAS_PROC
149
150config MMIO_NVRAM
151	bool
152
153config MPIC_U3_HT_IRQS
154	bool
155
156config MPIC_BROKEN_REGREAD
157	bool
158	depends on MPIC
159	help
160	  This option enables a MPIC driver workaround for some chips
161	  that have a bug that causes some interrupt source information
162	  to not read back properly. It is safe to use on other chips as
163	  well, but enabling it uses about 8KB of memory to keep copies
164	  of the register contents in software.
165
166config EEH
167	bool
168	depends on (PPC_POWERNV || PPC_PSERIES) && PCI
169	default y
170
171config PPC_MPC106
172	bool
173
174config PPC_970_NAP
175	bool
176
177config PPC_P7_NAP
178	bool
179
180config PPC_INDIRECT_PIO
181	bool
182	select GENERIC_IOMAP
183
184config PPC_INDIRECT_MMIO
185	bool
186
187config PPC_IO_WORKAROUNDS
188	bool
189
190source "drivers/cpufreq/Kconfig"
191
192menu "CPUIdle driver"
193
194source "drivers/cpuidle/Kconfig"
195
196endmenu
197
198config PPC601_SYNC_FIX
199	bool "Workarounds for PPC601 bugs"
200	depends on PPC_BOOK3S_601 && PPC_PMAC
201	default y
202	help
203	  Some versions of the PPC601 (the first PowerPC chip) have bugs which
204	  mean that extra synchronization instructions are required near
205	  certain instructions, typically those that make major changes to the
206	  CPU state.  These extra instructions reduce performance slightly.
207	  If you say N here, these extra instructions will not be included,
208	  resulting in a kernel which will run faster but may not run at all
209	  on some systems with the PPC601 chip.
210
211	  If in doubt, say Y here.
212
213config TAU
214	bool "On-chip CPU temperature sensor support"
215	depends on PPC_BOOK3S_32
216	help
217	  G3 and G4 processors have an on-chip temperature sensor called the
218	  'Thermal Assist Unit (TAU)', which, in theory, can measure the on-die
219	  temperature within 2-4 degrees Celsius. This option shows the current
220	  on-die temperature in /proc/cpuinfo if the cpu supports it.
221
222	  Unfortunately, on some chip revisions, this sensor is very inaccurate
223	  and in many cases, does not work at all, so don't assume the cpu
224	  temp is actually what /proc/cpuinfo says it is.
225
226config TAU_INT
227	bool "Interrupt driven TAU driver (DANGEROUS)"
228	depends on TAU
229	---help---
230	  The TAU supports an interrupt driven mode which causes an interrupt
231	  whenever the temperature goes out of range. This is the fastest way
232	  to get notified the temp has exceeded a range. With this option off,
233	  a timer is used to re-check the temperature periodically.
234
235	  However, on some cpus it appears that the TAU interrupt hardware
236	  is buggy and can cause a situation which would lead unexplained hard
237	  lockups.
238
239	  Unless you are extending the TAU driver, or enjoy kernel/hardware
240	  debugging, leave this option off.
241
242config TAU_AVERAGE
243	bool "Average high and low temp"
244	depends on TAU
245	---help---
246	  The TAU hardware can compare the temperature to an upper and lower
247	  bound.  The default behavior is to show both the upper and lower
248	  bound in /proc/cpuinfo. If the range is large, the temperature is
249	  either changing a lot, or the TAU hardware is broken (likely on some
250	  G4's). If the range is small (around 4 degrees), the temperature is
251	  relatively stable.  If you say Y here, a single temperature value,
252	  halfway between the upper and lower bounds, will be reported in
253	  /proc/cpuinfo.
254
255	  If in doubt, say N here.
256
257config QE_GPIO
258	bool "QE GPIO support"
259	depends on QUICC_ENGINE
260	select GPIOLIB
261	help
262	  Say Y here if you're going to use hardware that connects to the
263	  QE GPIOs.
264
265config CPM2
266	bool "Enable support for the CPM2 (Communications Processor Module)"
267	depends on (FSL_SOC_BOOKE && PPC32) || 8260
268	select CPM
269	select HAVE_PCI
270	select GPIOLIB
271	help
272	  The CPM2 (Communications Processor Module) is a coprocessor on
273	  embedded CPUs made by Freescale.  Selecting this option means that
274	  you wish to build a kernel for a machine with a CPM2 coprocessor
275	  on it (826x, 827x, 8560).
276
277config FSL_ULI1575
278	bool
279	select GENERIC_ISA_DMA
280	help
281	  Supports for the ULI1575 PCIe south bridge that exists on some
282	  Freescale reference boards. The boards all use the ULI in pretty
283	  much the same way.
284
285config CPM
286	bool
287	select GENERIC_ALLOCATOR
288
289config OF_RTC
290	bool
291	help
292	  Uses information from the OF or flattened device tree to instantiate
293	  platform devices for direct mapped RTC chips like the DS1742 or DS1743.
294
295config GEN_RTC
296	bool "Use the platform RTC operations from user space"
297	select RTC_CLASS
298	select RTC_DRV_GENERIC
299	help
300	  This option provides backwards compatibility with the old gen_rtc.ko
301	  module that was traditionally used for old PowerPC machines.
302	  Platforms should migrate to enabling the RTC_DRV_GENERIC by hand
303	  replacing their get_rtc_time/set_rtc_time callbacks with
304	  a proper RTC device driver.
305
306config SIMPLE_GPIO
307	bool "Support for simple, memory-mapped GPIO controllers"
308	depends on PPC
309	select GPIOLIB
310	help
311	  Say Y here to support simple, memory-mapped GPIO controllers.
312	  These are usually BCSRs used to control board's switches, LEDs,
313	  chip-selects, Ethernet/USB PHY's power and various other small
314	  on-board peripherals.
315
316config MCU_MPC8349EMITX
317	bool "MPC8349E-mITX MCU driver"
318	depends on I2C=y && PPC_83xx
319	select GPIOLIB
320	help
321	  Say Y here to enable soft power-off functionality on the Freescale
322	  boards with the MPC8349E-mITX-compatible MCU chips. This driver will
323	  also register MCU GPIOs with the generic GPIO API, so you'll able
324	  to use MCU pins as GPIOs.
325
326config XILINX_PCI
327	bool "Xilinx PCI host bridge support"
328	depends on PCI && XILINX_VIRTEX
329
330endmenu
331