xref: /openbmc/linux/arch/powerpc/platforms/8xx/cpm1.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * General Purpose functions for the global management of the
4  * Communication Processor Module.
5  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6  *
7  * In addition to the individual control of the communication
8  * channels, there are a few functions that globally affect the
9  * communication processor.
10  *
11  * Buffer descriptors must be allocated from the dual ported memory
12  * space.  The allocator for that is here.  When the communication
13  * process is reset, we reclaim the memory available.  There is
14  * currently no deallocator for this memory.
15  * The amount of space available is platform dependent.  On the
16  * MBX, the EPPC software loads additional microcode into the
17  * communication processor, and uses some of the DP ram for this
18  * purpose.  Current, the first 512 bytes and the last 256 bytes of
19  * memory are used.  Right now I am conservative and only use the
20  * memory that can never be used for microcode.  If there are
21  * applications that require more DP ram, we can expand the boundaries
22  * but then we have to be careful of any downloaded microcode.
23  */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/8xx_immap.h>
39 #include <asm/cpm1.h>
40 #include <asm/io.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE    (0x4000)
52 
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
73 static void cpm_end_irq(struct irq_data *d)
74 {
75 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81 	.name = "CPM PIC",
82 	.irq_mask = cpm_mask_irq,
83 	.irq_unmask = cpm_unmask_irq,
84 	.irq_eoi = cpm_end_irq,
85 };
86 
87 int cpm_get_irq(void)
88 {
89 	int cpm_vec;
90 
91 	/*
92 	 * Get the vector by setting the ACK bit and then reading
93 	 * the register.
94 	 */
95 	out_be16(&cpic_reg->cpic_civr, 1);
96 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
97 	cpm_vec >>= 11;
98 
99 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
100 }
101 
102 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 			  irq_hw_number_t hw)
104 {
105 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106 
107 	irq_set_status_flags(virq, IRQ_LEVEL);
108 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
109 	return 0;
110 }
111 
112 /*
113  * The CPM can generate the error interrupt when there is a race condition
114  * between generating and masking interrupts.  All we have to do is ACK it
115  * and return.  This is a no-op function so we don't need any special
116  * tests in the interrupt handler.
117  */
118 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
119 {
120 	return IRQ_HANDLED;
121 }
122 
123 static struct irqaction cpm_error_irqaction = {
124 	.handler = cpm_error_interrupt,
125 	.flags = IRQF_NO_THREAD,
126 	.name = "error",
127 };
128 
129 static const struct irq_domain_ops cpm_pic_host_ops = {
130 	.map = cpm_pic_host_map,
131 };
132 
133 unsigned int cpm_pic_init(void)
134 {
135 	struct device_node *np = NULL;
136 	struct resource res;
137 	unsigned int sirq = 0, hwirq, eirq;
138 	int ret;
139 
140 	pr_debug("cpm_pic_init\n");
141 
142 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
143 	if (np == NULL)
144 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
145 	if (np == NULL) {
146 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
147 		return sirq;
148 	}
149 
150 	ret = of_address_to_resource(np, 0, &res);
151 	if (ret)
152 		goto end;
153 
154 	cpic_reg = ioremap(res.start, resource_size(&res));
155 	if (cpic_reg == NULL)
156 		goto end;
157 
158 	sirq = irq_of_parse_and_map(np, 0);
159 	if (!sirq)
160 		goto end;
161 
162 	/* Initialize the CPM interrupt controller. */
163 	hwirq = (unsigned int)virq_to_hw(sirq);
164 	out_be32(&cpic_reg->cpic_cicr,
165 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
166 		((hwirq/2) << 13) | CICR_HP_MASK);
167 
168 	out_be32(&cpic_reg->cpic_cimr, 0);
169 
170 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
171 	if (cpm_pic_host == NULL) {
172 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
173 		sirq = 0;
174 		goto end;
175 	}
176 
177 	/* Install our own error handler. */
178 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
179 	if (np == NULL)
180 		np = of_find_node_by_type(NULL, "cpm");
181 	if (np == NULL) {
182 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
183 		goto end;
184 	}
185 
186 	eirq = irq_of_parse_and_map(np, 0);
187 	if (!eirq)
188 		goto end;
189 
190 	if (setup_irq(eirq, &cpm_error_irqaction))
191 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
192 
193 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
194 
195 end:
196 	of_node_put(np);
197 	return sirq;
198 }
199 
200 void __init cpm_reset(void)
201 {
202 	sysconf8xx_t __iomem *siu_conf;
203 
204 	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
205 	if (!mpc8xx_immr) {
206 		printk(KERN_CRIT "Could not map IMMR\n");
207 		return;
208 	}
209 
210 	cpmp = &mpc8xx_immr->im_cpm;
211 
212 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
213 	/* Perform a reset. */
214 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
215 
216 	/* Wait for it. */
217 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219 
220 #ifdef CONFIG_UCODE_PATCH
221 	cpm_load_patch(cpmp);
222 #endif
223 
224 	/*
225 	 * Set SDMA Bus Request priority 5.
226 	 * On 860T, this also enables FEC priority 6.  I am not sure
227 	 * this is what we really want for some applications, but the
228 	 * manual recommends it.
229 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
230 	 */
231 	siu_conf = immr_map(im_siu_conf);
232 	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
233 		out_be32(&siu_conf->sc_sdcr, 0x40);
234 	else
235 		out_be32(&siu_conf->sc_sdcr, 1);
236 	immr_unmap(siu_conf);
237 }
238 
239 static DEFINE_SPINLOCK(cmd_lock);
240 
241 #define MAX_CR_CMD_LOOPS        10000
242 
243 int cpm_command(u32 command, u8 opcode)
244 {
245 	int i, ret;
246 	unsigned long flags;
247 
248 	if (command & 0xffffff0f)
249 		return -EINVAL;
250 
251 	spin_lock_irqsave(&cmd_lock, flags);
252 
253 	ret = 0;
254 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
255 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
256 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
257 			goto out;
258 
259 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
260 	ret = -EIO;
261 out:
262 	spin_unlock_irqrestore(&cmd_lock, flags);
263 	return ret;
264 }
265 EXPORT_SYMBOL(cpm_command);
266 
267 /*
268  * Set a baud rate generator.  This needs lots of work.  There are
269  * four BRGs, any of which can be wired to any channel.
270  * The internal baud rate clock is the system clock divided by 16.
271  * This assumes the baudrate is 16x oversampled by the uart.
272  */
273 #define BRG_INT_CLK		(get_brgfreq())
274 #define BRG_UART_CLK		(BRG_INT_CLK/16)
275 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
276 
277 void
278 cpm_setbrg(uint brg, uint rate)
279 {
280 	u32 __iomem *bp;
281 
282 	/* This is good enough to get SMCs running..... */
283 	bp = &cpmp->cp_brgc1;
284 	bp += brg;
285 	/*
286 	 * The BRG has a 12-bit counter.  For really slow baud rates (or
287 	 * really fast processors), we may have to further divide by 16.
288 	 */
289 	if (((BRG_UART_CLK / rate) - 1) < 4096)
290 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
291 	else
292 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
293 			      CPM_BRG_EN | CPM_BRG_DIV16);
294 }
295 
296 struct cpm_ioport16 {
297 	__be16 dir, par, odr_sor, dat, intr;
298 	__be16 res[3];
299 };
300 
301 struct cpm_ioport32b {
302 	__be32 dir, par, odr, dat;
303 };
304 
305 struct cpm_ioport32e {
306 	__be32 dir, par, sor, odr, dat;
307 };
308 
309 static void cpm1_set_pin32(int port, int pin, int flags)
310 {
311 	struct cpm_ioport32e __iomem *iop;
312 	pin = 1 << (31 - pin);
313 
314 	if (port == CPM_PORTB)
315 		iop = (struct cpm_ioport32e __iomem *)
316 		      &mpc8xx_immr->im_cpm.cp_pbdir;
317 	else
318 		iop = (struct cpm_ioport32e __iomem *)
319 		      &mpc8xx_immr->im_cpm.cp_pedir;
320 
321 	if (flags & CPM_PIN_OUTPUT)
322 		setbits32(&iop->dir, pin);
323 	else
324 		clrbits32(&iop->dir, pin);
325 
326 	if (!(flags & CPM_PIN_GPIO))
327 		setbits32(&iop->par, pin);
328 	else
329 		clrbits32(&iop->par, pin);
330 
331 	if (port == CPM_PORTB) {
332 		if (flags & CPM_PIN_OPENDRAIN)
333 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 		else
335 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
336 	}
337 
338 	if (port == CPM_PORTE) {
339 		if (flags & CPM_PIN_SECONDARY)
340 			setbits32(&iop->sor, pin);
341 		else
342 			clrbits32(&iop->sor, pin);
343 
344 		if (flags & CPM_PIN_OPENDRAIN)
345 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346 		else
347 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
348 	}
349 }
350 
351 static void cpm1_set_pin16(int port, int pin, int flags)
352 {
353 	struct cpm_ioport16 __iomem *iop =
354 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
355 
356 	pin = 1 << (15 - pin);
357 
358 	if (port != 0)
359 		iop += port - 1;
360 
361 	if (flags & CPM_PIN_OUTPUT)
362 		setbits16(&iop->dir, pin);
363 	else
364 		clrbits16(&iop->dir, pin);
365 
366 	if (!(flags & CPM_PIN_GPIO))
367 		setbits16(&iop->par, pin);
368 	else
369 		clrbits16(&iop->par, pin);
370 
371 	if (port == CPM_PORTA) {
372 		if (flags & CPM_PIN_OPENDRAIN)
373 			setbits16(&iop->odr_sor, pin);
374 		else
375 			clrbits16(&iop->odr_sor, pin);
376 	}
377 	if (port == CPM_PORTC) {
378 		if (flags & CPM_PIN_SECONDARY)
379 			setbits16(&iop->odr_sor, pin);
380 		else
381 			clrbits16(&iop->odr_sor, pin);
382 		if (flags & CPM_PIN_FALLEDGE)
383 			setbits16(&iop->intr, pin);
384 		else
385 			clrbits16(&iop->intr, pin);
386 	}
387 }
388 
389 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
390 {
391 	if (port == CPM_PORTB || port == CPM_PORTE)
392 		cpm1_set_pin32(port, pin, flags);
393 	else
394 		cpm1_set_pin16(port, pin, flags);
395 }
396 
397 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
398 {
399 	int shift;
400 	int i, bits = 0;
401 	u32 __iomem *reg;
402 	u32 mask = 7;
403 
404 	u8 clk_map[][3] = {
405 		{CPM_CLK_SCC1, CPM_BRG1, 0},
406 		{CPM_CLK_SCC1, CPM_BRG2, 1},
407 		{CPM_CLK_SCC1, CPM_BRG3, 2},
408 		{CPM_CLK_SCC1, CPM_BRG4, 3},
409 		{CPM_CLK_SCC1, CPM_CLK1, 4},
410 		{CPM_CLK_SCC1, CPM_CLK2, 5},
411 		{CPM_CLK_SCC1, CPM_CLK3, 6},
412 		{CPM_CLK_SCC1, CPM_CLK4, 7},
413 
414 		{CPM_CLK_SCC2, CPM_BRG1, 0},
415 		{CPM_CLK_SCC2, CPM_BRG2, 1},
416 		{CPM_CLK_SCC2, CPM_BRG3, 2},
417 		{CPM_CLK_SCC2, CPM_BRG4, 3},
418 		{CPM_CLK_SCC2, CPM_CLK1, 4},
419 		{CPM_CLK_SCC2, CPM_CLK2, 5},
420 		{CPM_CLK_SCC2, CPM_CLK3, 6},
421 		{CPM_CLK_SCC2, CPM_CLK4, 7},
422 
423 		{CPM_CLK_SCC3, CPM_BRG1, 0},
424 		{CPM_CLK_SCC3, CPM_BRG2, 1},
425 		{CPM_CLK_SCC3, CPM_BRG3, 2},
426 		{CPM_CLK_SCC3, CPM_BRG4, 3},
427 		{CPM_CLK_SCC3, CPM_CLK5, 4},
428 		{CPM_CLK_SCC3, CPM_CLK6, 5},
429 		{CPM_CLK_SCC3, CPM_CLK7, 6},
430 		{CPM_CLK_SCC3, CPM_CLK8, 7},
431 
432 		{CPM_CLK_SCC4, CPM_BRG1, 0},
433 		{CPM_CLK_SCC4, CPM_BRG2, 1},
434 		{CPM_CLK_SCC4, CPM_BRG3, 2},
435 		{CPM_CLK_SCC4, CPM_BRG4, 3},
436 		{CPM_CLK_SCC4, CPM_CLK5, 4},
437 		{CPM_CLK_SCC4, CPM_CLK6, 5},
438 		{CPM_CLK_SCC4, CPM_CLK7, 6},
439 		{CPM_CLK_SCC4, CPM_CLK8, 7},
440 
441 		{CPM_CLK_SMC1, CPM_BRG1, 0},
442 		{CPM_CLK_SMC1, CPM_BRG2, 1},
443 		{CPM_CLK_SMC1, CPM_BRG3, 2},
444 		{CPM_CLK_SMC1, CPM_BRG4, 3},
445 		{CPM_CLK_SMC1, CPM_CLK1, 4},
446 		{CPM_CLK_SMC1, CPM_CLK2, 5},
447 		{CPM_CLK_SMC1, CPM_CLK3, 6},
448 		{CPM_CLK_SMC1, CPM_CLK4, 7},
449 
450 		{CPM_CLK_SMC2, CPM_BRG1, 0},
451 		{CPM_CLK_SMC2, CPM_BRG2, 1},
452 		{CPM_CLK_SMC2, CPM_BRG3, 2},
453 		{CPM_CLK_SMC2, CPM_BRG4, 3},
454 		{CPM_CLK_SMC2, CPM_CLK5, 4},
455 		{CPM_CLK_SMC2, CPM_CLK6, 5},
456 		{CPM_CLK_SMC2, CPM_CLK7, 6},
457 		{CPM_CLK_SMC2, CPM_CLK8, 7},
458 	};
459 
460 	switch (target) {
461 	case CPM_CLK_SCC1:
462 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
463 		shift = 0;
464 		break;
465 
466 	case CPM_CLK_SCC2:
467 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
468 		shift = 8;
469 		break;
470 
471 	case CPM_CLK_SCC3:
472 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
473 		shift = 16;
474 		break;
475 
476 	case CPM_CLK_SCC4:
477 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
478 		shift = 24;
479 		break;
480 
481 	case CPM_CLK_SMC1:
482 		reg = &mpc8xx_immr->im_cpm.cp_simode;
483 		shift = 12;
484 		break;
485 
486 	case CPM_CLK_SMC2:
487 		reg = &mpc8xx_immr->im_cpm.cp_simode;
488 		shift = 28;
489 		break;
490 
491 	default:
492 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
493 		return -EINVAL;
494 	}
495 
496 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
497 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
498 			bits = clk_map[i][2];
499 			break;
500 		}
501 	}
502 
503 	if (i == ARRAY_SIZE(clk_map)) {
504 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
505 		return -EINVAL;
506 	}
507 
508 	bits <<= shift;
509 	mask <<= shift;
510 
511 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
512 		if (mode == CPM_CLK_RTX) {
513 			bits |= bits << 3;
514 			mask |= mask << 3;
515 		} else if (mode == CPM_CLK_RX) {
516 			bits <<= 3;
517 			mask <<= 3;
518 		}
519 	}
520 
521 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
522 
523 	return 0;
524 }
525 
526 /*
527  * GPIO LIB API implementation
528  */
529 #ifdef CONFIG_8xx_GPIO
530 
531 struct cpm1_gpio16_chip {
532 	struct of_mm_gpio_chip mm_gc;
533 	spinlock_t lock;
534 
535 	/* shadowed data register to clear/set bits safely */
536 	u16 cpdata;
537 
538 	/* IRQ associated with Pins when relevant */
539 	int irq[16];
540 };
541 
542 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
543 {
544 	struct cpm1_gpio16_chip *cpm1_gc =
545 		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
546 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
547 
548 	cpm1_gc->cpdata = in_be16(&iop->dat);
549 }
550 
551 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
552 {
553 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
554 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
555 	u16 pin_mask;
556 
557 	pin_mask = 1 << (15 - gpio);
558 
559 	return !!(in_be16(&iop->dat) & pin_mask);
560 }
561 
562 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
563 	int value)
564 {
565 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
566 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
567 
568 	if (value)
569 		cpm1_gc->cpdata |= pin_mask;
570 	else
571 		cpm1_gc->cpdata &= ~pin_mask;
572 
573 	out_be16(&iop->dat, cpm1_gc->cpdata);
574 }
575 
576 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
577 {
578 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
579 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
580 	unsigned long flags;
581 	u16 pin_mask = 1 << (15 - gpio);
582 
583 	spin_lock_irqsave(&cpm1_gc->lock, flags);
584 
585 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
586 
587 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
588 }
589 
590 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
591 {
592 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
593 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
594 
595 	return cpm1_gc->irq[gpio] ? : -ENXIO;
596 }
597 
598 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
599 {
600 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
601 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
602 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
603 	unsigned long flags;
604 	u16 pin_mask = 1 << (15 - gpio);
605 
606 	spin_lock_irqsave(&cpm1_gc->lock, flags);
607 
608 	setbits16(&iop->dir, pin_mask);
609 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
610 
611 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
612 
613 	return 0;
614 }
615 
616 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
617 {
618 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
619 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
620 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
621 	unsigned long flags;
622 	u16 pin_mask = 1 << (15 - gpio);
623 
624 	spin_lock_irqsave(&cpm1_gc->lock, flags);
625 
626 	clrbits16(&iop->dir, pin_mask);
627 
628 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
629 
630 	return 0;
631 }
632 
633 int cpm1_gpiochip_add16(struct device *dev)
634 {
635 	struct device_node *np = dev->of_node;
636 	struct cpm1_gpio16_chip *cpm1_gc;
637 	struct of_mm_gpio_chip *mm_gc;
638 	struct gpio_chip *gc;
639 	u16 mask;
640 
641 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
642 	if (!cpm1_gc)
643 		return -ENOMEM;
644 
645 	spin_lock_init(&cpm1_gc->lock);
646 
647 	if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
648 		int i, j;
649 
650 		for (i = 0, j = 0; i < 16; i++)
651 			if (mask & (1 << (15 - i)))
652 				cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
653 	}
654 
655 	mm_gc = &cpm1_gc->mm_gc;
656 	gc = &mm_gc->gc;
657 
658 	mm_gc->save_regs = cpm1_gpio16_save_regs;
659 	gc->ngpio = 16;
660 	gc->direction_input = cpm1_gpio16_dir_in;
661 	gc->direction_output = cpm1_gpio16_dir_out;
662 	gc->get = cpm1_gpio16_get;
663 	gc->set = cpm1_gpio16_set;
664 	gc->to_irq = cpm1_gpio16_to_irq;
665 	gc->parent = dev;
666 	gc->owner = THIS_MODULE;
667 
668 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
669 }
670 
671 struct cpm1_gpio32_chip {
672 	struct of_mm_gpio_chip mm_gc;
673 	spinlock_t lock;
674 
675 	/* shadowed data register to clear/set bits safely */
676 	u32 cpdata;
677 };
678 
679 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
680 {
681 	struct cpm1_gpio32_chip *cpm1_gc =
682 		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
683 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
684 
685 	cpm1_gc->cpdata = in_be32(&iop->dat);
686 }
687 
688 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
689 {
690 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
691 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
692 	u32 pin_mask;
693 
694 	pin_mask = 1 << (31 - gpio);
695 
696 	return !!(in_be32(&iop->dat) & pin_mask);
697 }
698 
699 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
700 	int value)
701 {
702 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
703 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
704 
705 	if (value)
706 		cpm1_gc->cpdata |= pin_mask;
707 	else
708 		cpm1_gc->cpdata &= ~pin_mask;
709 
710 	out_be32(&iop->dat, cpm1_gc->cpdata);
711 }
712 
713 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
714 {
715 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
716 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
717 	unsigned long flags;
718 	u32 pin_mask = 1 << (31 - gpio);
719 
720 	spin_lock_irqsave(&cpm1_gc->lock, flags);
721 
722 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
723 
724 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
725 }
726 
727 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
728 {
729 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
730 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
731 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
732 	unsigned long flags;
733 	u32 pin_mask = 1 << (31 - gpio);
734 
735 	spin_lock_irqsave(&cpm1_gc->lock, flags);
736 
737 	setbits32(&iop->dir, pin_mask);
738 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
739 
740 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
741 
742 	return 0;
743 }
744 
745 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
746 {
747 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
748 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
749 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
750 	unsigned long flags;
751 	u32 pin_mask = 1 << (31 - gpio);
752 
753 	spin_lock_irqsave(&cpm1_gc->lock, flags);
754 
755 	clrbits32(&iop->dir, pin_mask);
756 
757 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
758 
759 	return 0;
760 }
761 
762 int cpm1_gpiochip_add32(struct device *dev)
763 {
764 	struct device_node *np = dev->of_node;
765 	struct cpm1_gpio32_chip *cpm1_gc;
766 	struct of_mm_gpio_chip *mm_gc;
767 	struct gpio_chip *gc;
768 
769 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
770 	if (!cpm1_gc)
771 		return -ENOMEM;
772 
773 	spin_lock_init(&cpm1_gc->lock);
774 
775 	mm_gc = &cpm1_gc->mm_gc;
776 	gc = &mm_gc->gc;
777 
778 	mm_gc->save_regs = cpm1_gpio32_save_regs;
779 	gc->ngpio = 32;
780 	gc->direction_input = cpm1_gpio32_dir_in;
781 	gc->direction_output = cpm1_gpio32_dir_out;
782 	gc->get = cpm1_gpio32_get;
783 	gc->set = cpm1_gpio32_set;
784 	gc->parent = dev;
785 	gc->owner = THIS_MODULE;
786 
787 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
788 }
789 
790 #endif /* CONFIG_8xx_GPIO */
791