xref: /openbmc/linux/arch/powerpc/platforms/8xx/cpm1.c (revision 547840bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * General Purpose functions for the global management of the
4  * Communication Processor Module.
5  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6  *
7  * In addition to the individual control of the communication
8  * channels, there are a few functions that globally affect the
9  * communication processor.
10  *
11  * Buffer descriptors must be allocated from the dual ported memory
12  * space.  The allocator for that is here.  When the communication
13  * process is reset, we reclaim the memory available.  There is
14  * currently no deallocator for this memory.
15  * The amount of space available is platform dependent.  On the
16  * MBX, the EPPC software loads additional microcode into the
17  * communication processor, and uses some of the DP ram for this
18  * purpose.  Current, the first 512 bytes and the last 256 bytes of
19  * memory are used.  Right now I am conservative and only use the
20  * memory that can never be used for microcode.  If there are
21  * applications that require more DP ram, we can expand the boundaries
22  * but then we have to be careful of any downloaded microcode.
23  */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/8xx_immap.h>
39 #include <asm/cpm1.h>
40 #include <asm/io.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE    (0x4000)
52 
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr = (void __iomem *)VIRT_IMMR_BASE;
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
73 static void cpm_end_irq(struct irq_data *d)
74 {
75 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81 	.name = "CPM PIC",
82 	.irq_mask = cpm_mask_irq,
83 	.irq_unmask = cpm_unmask_irq,
84 	.irq_eoi = cpm_end_irq,
85 };
86 
87 int cpm_get_irq(void)
88 {
89 	int cpm_vec;
90 
91 	/*
92 	 * Get the vector by setting the ACK bit and then reading
93 	 * the register.
94 	 */
95 	out_be16(&cpic_reg->cpic_civr, 1);
96 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
97 	cpm_vec >>= 11;
98 
99 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
100 }
101 
102 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 			  irq_hw_number_t hw)
104 {
105 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106 
107 	irq_set_status_flags(virq, IRQ_LEVEL);
108 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
109 	return 0;
110 }
111 
112 /*
113  * The CPM can generate the error interrupt when there is a race condition
114  * between generating and masking interrupts.  All we have to do is ACK it
115  * and return.  This is a no-op function so we don't need any special
116  * tests in the interrupt handler.
117  */
118 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
119 {
120 	return IRQ_HANDLED;
121 }
122 
123 static const struct irq_domain_ops cpm_pic_host_ops = {
124 	.map = cpm_pic_host_map,
125 };
126 
127 unsigned int __init cpm_pic_init(void)
128 {
129 	struct device_node *np = NULL;
130 	struct resource res;
131 	unsigned int sirq = 0, hwirq, eirq;
132 	int ret;
133 
134 	pr_debug("cpm_pic_init\n");
135 
136 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
137 	if (np == NULL)
138 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
139 	if (np == NULL) {
140 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
141 		return sirq;
142 	}
143 
144 	ret = of_address_to_resource(np, 0, &res);
145 	if (ret)
146 		goto end;
147 
148 	cpic_reg = ioremap(res.start, resource_size(&res));
149 	if (cpic_reg == NULL)
150 		goto end;
151 
152 	sirq = irq_of_parse_and_map(np, 0);
153 	if (!sirq)
154 		goto end;
155 
156 	/* Initialize the CPM interrupt controller. */
157 	hwirq = (unsigned int)virq_to_hw(sirq);
158 	out_be32(&cpic_reg->cpic_cicr,
159 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
160 		((hwirq/2) << 13) | CICR_HP_MASK);
161 
162 	out_be32(&cpic_reg->cpic_cimr, 0);
163 
164 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
165 	if (cpm_pic_host == NULL) {
166 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
167 		sirq = 0;
168 		goto end;
169 	}
170 
171 	/* Install our own error handler. */
172 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
173 	if (np == NULL)
174 		np = of_find_node_by_type(NULL, "cpm");
175 	if (np == NULL) {
176 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
177 		goto end;
178 	}
179 
180 	eirq = irq_of_parse_and_map(np, 0);
181 	if (!eirq)
182 		goto end;
183 
184 	if (request_irq(eirq, cpm_error_interrupt, IRQF_NO_THREAD, "error",
185 			NULL))
186 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
187 
188 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
189 
190 end:
191 	of_node_put(np);
192 	return sirq;
193 }
194 
195 void __init cpm_reset(void)
196 {
197 	sysconf8xx_t __iomem *siu_conf;
198 
199 	cpmp = &mpc8xx_immr->im_cpm;
200 
201 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
202 	/* Perform a reset. */
203 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
204 
205 	/* Wait for it. */
206 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
207 #endif
208 
209 #ifdef CONFIG_UCODE_PATCH
210 	cpm_load_patch(cpmp);
211 #endif
212 
213 	/*
214 	 * Set SDMA Bus Request priority 5.
215 	 * On 860T, this also enables FEC priority 6.  I am not sure
216 	 * this is what we really want for some applications, but the
217 	 * manual recommends it.
218 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
219 	 */
220 	siu_conf = immr_map(im_siu_conf);
221 	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
222 		out_be32(&siu_conf->sc_sdcr, 0x40);
223 	else
224 		out_be32(&siu_conf->sc_sdcr, 1);
225 	immr_unmap(siu_conf);
226 }
227 
228 static DEFINE_SPINLOCK(cmd_lock);
229 
230 #define MAX_CR_CMD_LOOPS        10000
231 
232 int cpm_command(u32 command, u8 opcode)
233 {
234 	int i, ret;
235 	unsigned long flags;
236 
237 	if (command & 0xffffff0f)
238 		return -EINVAL;
239 
240 	spin_lock_irqsave(&cmd_lock, flags);
241 
242 	ret = 0;
243 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
244 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
245 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
246 			goto out;
247 
248 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
249 	ret = -EIO;
250 out:
251 	spin_unlock_irqrestore(&cmd_lock, flags);
252 	return ret;
253 }
254 EXPORT_SYMBOL(cpm_command);
255 
256 /*
257  * Set a baud rate generator.  This needs lots of work.  There are
258  * four BRGs, any of which can be wired to any channel.
259  * The internal baud rate clock is the system clock divided by 16.
260  * This assumes the baudrate is 16x oversampled by the uart.
261  */
262 #define BRG_INT_CLK		(get_brgfreq())
263 #define BRG_UART_CLK		(BRG_INT_CLK/16)
264 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
265 
266 void
267 cpm_setbrg(uint brg, uint rate)
268 {
269 	u32 __iomem *bp;
270 
271 	/* This is good enough to get SMCs running..... */
272 	bp = &cpmp->cp_brgc1;
273 	bp += brg;
274 	/*
275 	 * The BRG has a 12-bit counter.  For really slow baud rates (or
276 	 * really fast processors), we may have to further divide by 16.
277 	 */
278 	if (((BRG_UART_CLK / rate) - 1) < 4096)
279 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
280 	else
281 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
282 			      CPM_BRG_EN | CPM_BRG_DIV16);
283 }
284 
285 struct cpm_ioport16 {
286 	__be16 dir, par, odr_sor, dat, intr;
287 	__be16 res[3];
288 };
289 
290 struct cpm_ioport32b {
291 	__be32 dir, par, odr, dat;
292 };
293 
294 struct cpm_ioport32e {
295 	__be32 dir, par, sor, odr, dat;
296 };
297 
298 static void __init cpm1_set_pin32(int port, int pin, int flags)
299 {
300 	struct cpm_ioport32e __iomem *iop;
301 	pin = 1 << (31 - pin);
302 
303 	if (port == CPM_PORTB)
304 		iop = (struct cpm_ioport32e __iomem *)
305 		      &mpc8xx_immr->im_cpm.cp_pbdir;
306 	else
307 		iop = (struct cpm_ioport32e __iomem *)
308 		      &mpc8xx_immr->im_cpm.cp_pedir;
309 
310 	if (flags & CPM_PIN_OUTPUT)
311 		setbits32(&iop->dir, pin);
312 	else
313 		clrbits32(&iop->dir, pin);
314 
315 	if (!(flags & CPM_PIN_GPIO))
316 		setbits32(&iop->par, pin);
317 	else
318 		clrbits32(&iop->par, pin);
319 
320 	if (port == CPM_PORTB) {
321 		if (flags & CPM_PIN_OPENDRAIN)
322 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
323 		else
324 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
325 	}
326 
327 	if (port == CPM_PORTE) {
328 		if (flags & CPM_PIN_SECONDARY)
329 			setbits32(&iop->sor, pin);
330 		else
331 			clrbits32(&iop->sor, pin);
332 
333 		if (flags & CPM_PIN_OPENDRAIN)
334 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
335 		else
336 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
337 	}
338 }
339 
340 static void __init cpm1_set_pin16(int port, int pin, int flags)
341 {
342 	struct cpm_ioport16 __iomem *iop =
343 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
344 
345 	pin = 1 << (15 - pin);
346 
347 	if (port != 0)
348 		iop += port - 1;
349 
350 	if (flags & CPM_PIN_OUTPUT)
351 		setbits16(&iop->dir, pin);
352 	else
353 		clrbits16(&iop->dir, pin);
354 
355 	if (!(flags & CPM_PIN_GPIO))
356 		setbits16(&iop->par, pin);
357 	else
358 		clrbits16(&iop->par, pin);
359 
360 	if (port == CPM_PORTA) {
361 		if (flags & CPM_PIN_OPENDRAIN)
362 			setbits16(&iop->odr_sor, pin);
363 		else
364 			clrbits16(&iop->odr_sor, pin);
365 	}
366 	if (port == CPM_PORTC) {
367 		if (flags & CPM_PIN_SECONDARY)
368 			setbits16(&iop->odr_sor, pin);
369 		else
370 			clrbits16(&iop->odr_sor, pin);
371 		if (flags & CPM_PIN_FALLEDGE)
372 			setbits16(&iop->intr, pin);
373 		else
374 			clrbits16(&iop->intr, pin);
375 	}
376 }
377 
378 void __init cpm1_set_pin(enum cpm_port port, int pin, int flags)
379 {
380 	if (port == CPM_PORTB || port == CPM_PORTE)
381 		cpm1_set_pin32(port, pin, flags);
382 	else
383 		cpm1_set_pin16(port, pin, flags);
384 }
385 
386 int __init cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
387 {
388 	int shift;
389 	int i, bits = 0;
390 	u32 __iomem *reg;
391 	u32 mask = 7;
392 
393 	u8 clk_map[][3] = {
394 		{CPM_CLK_SCC1, CPM_BRG1, 0},
395 		{CPM_CLK_SCC1, CPM_BRG2, 1},
396 		{CPM_CLK_SCC1, CPM_BRG3, 2},
397 		{CPM_CLK_SCC1, CPM_BRG4, 3},
398 		{CPM_CLK_SCC1, CPM_CLK1, 4},
399 		{CPM_CLK_SCC1, CPM_CLK2, 5},
400 		{CPM_CLK_SCC1, CPM_CLK3, 6},
401 		{CPM_CLK_SCC1, CPM_CLK4, 7},
402 
403 		{CPM_CLK_SCC2, CPM_BRG1, 0},
404 		{CPM_CLK_SCC2, CPM_BRG2, 1},
405 		{CPM_CLK_SCC2, CPM_BRG3, 2},
406 		{CPM_CLK_SCC2, CPM_BRG4, 3},
407 		{CPM_CLK_SCC2, CPM_CLK1, 4},
408 		{CPM_CLK_SCC2, CPM_CLK2, 5},
409 		{CPM_CLK_SCC2, CPM_CLK3, 6},
410 		{CPM_CLK_SCC2, CPM_CLK4, 7},
411 
412 		{CPM_CLK_SCC3, CPM_BRG1, 0},
413 		{CPM_CLK_SCC3, CPM_BRG2, 1},
414 		{CPM_CLK_SCC3, CPM_BRG3, 2},
415 		{CPM_CLK_SCC3, CPM_BRG4, 3},
416 		{CPM_CLK_SCC3, CPM_CLK5, 4},
417 		{CPM_CLK_SCC3, CPM_CLK6, 5},
418 		{CPM_CLK_SCC3, CPM_CLK7, 6},
419 		{CPM_CLK_SCC3, CPM_CLK8, 7},
420 
421 		{CPM_CLK_SCC4, CPM_BRG1, 0},
422 		{CPM_CLK_SCC4, CPM_BRG2, 1},
423 		{CPM_CLK_SCC4, CPM_BRG3, 2},
424 		{CPM_CLK_SCC4, CPM_BRG4, 3},
425 		{CPM_CLK_SCC4, CPM_CLK5, 4},
426 		{CPM_CLK_SCC4, CPM_CLK6, 5},
427 		{CPM_CLK_SCC4, CPM_CLK7, 6},
428 		{CPM_CLK_SCC4, CPM_CLK8, 7},
429 
430 		{CPM_CLK_SMC1, CPM_BRG1, 0},
431 		{CPM_CLK_SMC1, CPM_BRG2, 1},
432 		{CPM_CLK_SMC1, CPM_BRG3, 2},
433 		{CPM_CLK_SMC1, CPM_BRG4, 3},
434 		{CPM_CLK_SMC1, CPM_CLK1, 4},
435 		{CPM_CLK_SMC1, CPM_CLK2, 5},
436 		{CPM_CLK_SMC1, CPM_CLK3, 6},
437 		{CPM_CLK_SMC1, CPM_CLK4, 7},
438 
439 		{CPM_CLK_SMC2, CPM_BRG1, 0},
440 		{CPM_CLK_SMC2, CPM_BRG2, 1},
441 		{CPM_CLK_SMC2, CPM_BRG3, 2},
442 		{CPM_CLK_SMC2, CPM_BRG4, 3},
443 		{CPM_CLK_SMC2, CPM_CLK5, 4},
444 		{CPM_CLK_SMC2, CPM_CLK6, 5},
445 		{CPM_CLK_SMC2, CPM_CLK7, 6},
446 		{CPM_CLK_SMC2, CPM_CLK8, 7},
447 	};
448 
449 	switch (target) {
450 	case CPM_CLK_SCC1:
451 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
452 		shift = 0;
453 		break;
454 
455 	case CPM_CLK_SCC2:
456 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
457 		shift = 8;
458 		break;
459 
460 	case CPM_CLK_SCC3:
461 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
462 		shift = 16;
463 		break;
464 
465 	case CPM_CLK_SCC4:
466 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
467 		shift = 24;
468 		break;
469 
470 	case CPM_CLK_SMC1:
471 		reg = &mpc8xx_immr->im_cpm.cp_simode;
472 		shift = 12;
473 		break;
474 
475 	case CPM_CLK_SMC2:
476 		reg = &mpc8xx_immr->im_cpm.cp_simode;
477 		shift = 28;
478 		break;
479 
480 	default:
481 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
482 		return -EINVAL;
483 	}
484 
485 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
486 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
487 			bits = clk_map[i][2];
488 			break;
489 		}
490 	}
491 
492 	if (i == ARRAY_SIZE(clk_map)) {
493 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
494 		return -EINVAL;
495 	}
496 
497 	bits <<= shift;
498 	mask <<= shift;
499 
500 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
501 		if (mode == CPM_CLK_RTX) {
502 			bits |= bits << 3;
503 			mask |= mask << 3;
504 		} else if (mode == CPM_CLK_RX) {
505 			bits <<= 3;
506 			mask <<= 3;
507 		}
508 	}
509 
510 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
511 
512 	return 0;
513 }
514 
515 /*
516  * GPIO LIB API implementation
517  */
518 #ifdef CONFIG_8xx_GPIO
519 
520 struct cpm1_gpio16_chip {
521 	struct of_mm_gpio_chip mm_gc;
522 	spinlock_t lock;
523 
524 	/* shadowed data register to clear/set bits safely */
525 	u16 cpdata;
526 
527 	/* IRQ associated with Pins when relevant */
528 	int irq[16];
529 };
530 
531 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
532 {
533 	struct cpm1_gpio16_chip *cpm1_gc =
534 		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
535 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
536 
537 	cpm1_gc->cpdata = in_be16(&iop->dat);
538 }
539 
540 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
541 {
542 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
543 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
544 	u16 pin_mask;
545 
546 	pin_mask = 1 << (15 - gpio);
547 
548 	return !!(in_be16(&iop->dat) & pin_mask);
549 }
550 
551 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
552 	int value)
553 {
554 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
555 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
556 
557 	if (value)
558 		cpm1_gc->cpdata |= pin_mask;
559 	else
560 		cpm1_gc->cpdata &= ~pin_mask;
561 
562 	out_be16(&iop->dat, cpm1_gc->cpdata);
563 }
564 
565 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
566 {
567 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
568 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
569 	unsigned long flags;
570 	u16 pin_mask = 1 << (15 - gpio);
571 
572 	spin_lock_irqsave(&cpm1_gc->lock, flags);
573 
574 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
575 
576 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
577 }
578 
579 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
580 {
581 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
582 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
583 
584 	return cpm1_gc->irq[gpio] ? : -ENXIO;
585 }
586 
587 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
588 {
589 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
590 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
591 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
592 	unsigned long flags;
593 	u16 pin_mask = 1 << (15 - gpio);
594 
595 	spin_lock_irqsave(&cpm1_gc->lock, flags);
596 
597 	setbits16(&iop->dir, pin_mask);
598 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
599 
600 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
601 
602 	return 0;
603 }
604 
605 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
606 {
607 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
608 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
609 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
610 	unsigned long flags;
611 	u16 pin_mask = 1 << (15 - gpio);
612 
613 	spin_lock_irqsave(&cpm1_gc->lock, flags);
614 
615 	clrbits16(&iop->dir, pin_mask);
616 
617 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
618 
619 	return 0;
620 }
621 
622 int cpm1_gpiochip_add16(struct device *dev)
623 {
624 	struct device_node *np = dev->of_node;
625 	struct cpm1_gpio16_chip *cpm1_gc;
626 	struct of_mm_gpio_chip *mm_gc;
627 	struct gpio_chip *gc;
628 	u16 mask;
629 
630 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
631 	if (!cpm1_gc)
632 		return -ENOMEM;
633 
634 	spin_lock_init(&cpm1_gc->lock);
635 
636 	if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
637 		int i, j;
638 
639 		for (i = 0, j = 0; i < 16; i++)
640 			if (mask & (1 << (15 - i)))
641 				cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
642 	}
643 
644 	mm_gc = &cpm1_gc->mm_gc;
645 	gc = &mm_gc->gc;
646 
647 	mm_gc->save_regs = cpm1_gpio16_save_regs;
648 	gc->ngpio = 16;
649 	gc->direction_input = cpm1_gpio16_dir_in;
650 	gc->direction_output = cpm1_gpio16_dir_out;
651 	gc->get = cpm1_gpio16_get;
652 	gc->set = cpm1_gpio16_set;
653 	gc->to_irq = cpm1_gpio16_to_irq;
654 	gc->parent = dev;
655 	gc->owner = THIS_MODULE;
656 
657 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
658 }
659 
660 struct cpm1_gpio32_chip {
661 	struct of_mm_gpio_chip mm_gc;
662 	spinlock_t lock;
663 
664 	/* shadowed data register to clear/set bits safely */
665 	u32 cpdata;
666 };
667 
668 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
669 {
670 	struct cpm1_gpio32_chip *cpm1_gc =
671 		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
672 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
673 
674 	cpm1_gc->cpdata = in_be32(&iop->dat);
675 }
676 
677 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
678 {
679 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
680 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
681 	u32 pin_mask;
682 
683 	pin_mask = 1 << (31 - gpio);
684 
685 	return !!(in_be32(&iop->dat) & pin_mask);
686 }
687 
688 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
689 	int value)
690 {
691 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
692 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
693 
694 	if (value)
695 		cpm1_gc->cpdata |= pin_mask;
696 	else
697 		cpm1_gc->cpdata &= ~pin_mask;
698 
699 	out_be32(&iop->dat, cpm1_gc->cpdata);
700 }
701 
702 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
703 {
704 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
705 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
706 	unsigned long flags;
707 	u32 pin_mask = 1 << (31 - gpio);
708 
709 	spin_lock_irqsave(&cpm1_gc->lock, flags);
710 
711 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
712 
713 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
714 }
715 
716 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
717 {
718 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
719 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
720 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
721 	unsigned long flags;
722 	u32 pin_mask = 1 << (31 - gpio);
723 
724 	spin_lock_irqsave(&cpm1_gc->lock, flags);
725 
726 	setbits32(&iop->dir, pin_mask);
727 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
728 
729 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
730 
731 	return 0;
732 }
733 
734 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
735 {
736 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
737 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
738 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
739 	unsigned long flags;
740 	u32 pin_mask = 1 << (31 - gpio);
741 
742 	spin_lock_irqsave(&cpm1_gc->lock, flags);
743 
744 	clrbits32(&iop->dir, pin_mask);
745 
746 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
747 
748 	return 0;
749 }
750 
751 int cpm1_gpiochip_add32(struct device *dev)
752 {
753 	struct device_node *np = dev->of_node;
754 	struct cpm1_gpio32_chip *cpm1_gc;
755 	struct of_mm_gpio_chip *mm_gc;
756 	struct gpio_chip *gc;
757 
758 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
759 	if (!cpm1_gc)
760 		return -ENOMEM;
761 
762 	spin_lock_init(&cpm1_gc->lock);
763 
764 	mm_gc = &cpm1_gc->mm_gc;
765 	gc = &mm_gc->gc;
766 
767 	mm_gc->save_regs = cpm1_gpio32_save_regs;
768 	gc->ngpio = 32;
769 	gc->direction_input = cpm1_gpio32_dir_in;
770 	gc->direction_output = cpm1_gpio32_dir_out;
771 	gc->get = cpm1_gpio32_get;
772 	gc->set = cpm1_gpio32_set;
773 	gc->parent = dev;
774 	gc->owner = THIS_MODULE;
775 
776 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
777 }
778 
779 #endif /* CONFIG_8xx_GPIO */
780