xref: /openbmc/linux/arch/powerpc/platforms/8xx/cpm1.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * General Purpose functions for the global management of the
4  * Communication Processor Module.
5  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6  *
7  * In addition to the individual control of the communication
8  * channels, there are a few functions that globally affect the
9  * communication processor.
10  *
11  * Buffer descriptors must be allocated from the dual ported memory
12  * space.  The allocator for that is here.  When the communication
13  * process is reset, we reclaim the memory available.  There is
14  * currently no deallocator for this memory.
15  * The amount of space available is platform dependent.  On the
16  * MBX, the EPPC software loads additional microcode into the
17  * communication processor, and uses some of the DP ram for this
18  * purpose.  Current, the first 512 bytes and the last 256 bytes of
19  * memory are used.  Right now I am conservative and only use the
20  * memory that can never be used for microcode.  If there are
21  * applications that require more DP ram, we can expand the boundaries
22  * but then we have to be careful of any downloaded microcode.
23  */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/rheap.h>
41 #include <asm/prom.h>
42 #include <asm/cpm.h>
43 
44 #include <asm/fs_pd.h>
45 
46 #ifdef CONFIG_8xx_GPIO
47 #include <linux/of_gpio.h>
48 #endif
49 
50 #define CPM_MAP_SIZE    (0x4000)
51 
52 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
53 immap_t __iomem *mpc8xx_immr = (void __iomem *)VIRT_IMMR_BASE;
54 static cpic8xx_t __iomem *cpic_reg;
55 
56 static struct irq_domain *cpm_pic_host;
57 
58 static void cpm_mask_irq(struct irq_data *d)
59 {
60 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
61 
62 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
63 }
64 
65 static void cpm_unmask_irq(struct irq_data *d)
66 {
67 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
68 
69 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
70 }
71 
72 static void cpm_end_irq(struct irq_data *d)
73 {
74 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
75 
76 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
77 }
78 
79 static struct irq_chip cpm_pic = {
80 	.name = "CPM PIC",
81 	.irq_mask = cpm_mask_irq,
82 	.irq_unmask = cpm_unmask_irq,
83 	.irq_eoi = cpm_end_irq,
84 };
85 
86 int cpm_get_irq(void)
87 {
88 	int cpm_vec;
89 
90 	/*
91 	 * Get the vector by setting the ACK bit and then reading
92 	 * the register.
93 	 */
94 	out_be16(&cpic_reg->cpic_civr, 1);
95 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 	cpm_vec >>= 11;
97 
98 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100 
101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 			  irq_hw_number_t hw)
103 {
104 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105 
106 	irq_set_status_flags(virq, IRQ_LEVEL);
107 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 	return 0;
109 }
110 
111 /*
112  * The CPM can generate the error interrupt when there is a race condition
113  * between generating and masking interrupts.  All we have to do is ACK it
114  * and return.  This is a no-op function so we don't need any special
115  * tests in the interrupt handler.
116  */
117 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
118 {
119 	return IRQ_HANDLED;
120 }
121 
122 static const struct irq_domain_ops cpm_pic_host_ops = {
123 	.map = cpm_pic_host_map,
124 };
125 
126 unsigned int __init cpm_pic_init(void)
127 {
128 	struct device_node *np = NULL;
129 	struct resource res;
130 	unsigned int sirq = 0, hwirq, eirq;
131 	int ret;
132 
133 	pr_debug("cpm_pic_init\n");
134 
135 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
136 	if (np == NULL)
137 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
138 	if (np == NULL) {
139 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
140 		return sirq;
141 	}
142 
143 	ret = of_address_to_resource(np, 0, &res);
144 	if (ret)
145 		goto end;
146 
147 	cpic_reg = ioremap(res.start, resource_size(&res));
148 	if (cpic_reg == NULL)
149 		goto end;
150 
151 	sirq = irq_of_parse_and_map(np, 0);
152 	if (!sirq)
153 		goto end;
154 
155 	/* Initialize the CPM interrupt controller. */
156 	hwirq = (unsigned int)virq_to_hw(sirq);
157 	out_be32(&cpic_reg->cpic_cicr,
158 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
159 		((hwirq/2) << 13) | CICR_HP_MASK);
160 
161 	out_be32(&cpic_reg->cpic_cimr, 0);
162 
163 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
164 	if (cpm_pic_host == NULL) {
165 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
166 		sirq = 0;
167 		goto end;
168 	}
169 
170 	/* Install our own error handler. */
171 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
172 	if (np == NULL)
173 		np = of_find_node_by_type(NULL, "cpm");
174 	if (np == NULL) {
175 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
176 		goto end;
177 	}
178 
179 	eirq = irq_of_parse_and_map(np, 0);
180 	if (!eirq)
181 		goto end;
182 
183 	if (request_irq(eirq, cpm_error_interrupt, IRQF_NO_THREAD, "error",
184 			NULL))
185 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
186 
187 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
188 
189 end:
190 	of_node_put(np);
191 	return sirq;
192 }
193 
194 void __init cpm_reset(void)
195 {
196 	sysconf8xx_t __iomem *siu_conf;
197 
198 	cpmp = &mpc8xx_immr->im_cpm;
199 
200 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
201 	/* Perform a reset. */
202 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
203 
204 	/* Wait for it. */
205 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
206 #endif
207 
208 #ifdef CONFIG_UCODE_PATCH
209 	cpm_load_patch(cpmp);
210 #endif
211 
212 	/*
213 	 * Set SDMA Bus Request priority 5.
214 	 * On 860T, this also enables FEC priority 6.  I am not sure
215 	 * this is what we really want for some applications, but the
216 	 * manual recommends it.
217 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
218 	 */
219 	siu_conf = immr_map(im_siu_conf);
220 	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
221 		out_be32(&siu_conf->sc_sdcr, 0x40);
222 	else
223 		out_be32(&siu_conf->sc_sdcr, 1);
224 	immr_unmap(siu_conf);
225 }
226 
227 static DEFINE_SPINLOCK(cmd_lock);
228 
229 #define MAX_CR_CMD_LOOPS        10000
230 
231 int cpm_command(u32 command, u8 opcode)
232 {
233 	int i, ret;
234 	unsigned long flags;
235 
236 	if (command & 0xffffff0f)
237 		return -EINVAL;
238 
239 	spin_lock_irqsave(&cmd_lock, flags);
240 
241 	ret = 0;
242 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
243 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
244 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
245 			goto out;
246 
247 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
248 	ret = -EIO;
249 out:
250 	spin_unlock_irqrestore(&cmd_lock, flags);
251 	return ret;
252 }
253 EXPORT_SYMBOL(cpm_command);
254 
255 /*
256  * Set a baud rate generator.  This needs lots of work.  There are
257  * four BRGs, any of which can be wired to any channel.
258  * The internal baud rate clock is the system clock divided by 16.
259  * This assumes the baudrate is 16x oversampled by the uart.
260  */
261 #define BRG_INT_CLK		(get_brgfreq())
262 #define BRG_UART_CLK		(BRG_INT_CLK/16)
263 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
264 
265 void
266 cpm_setbrg(uint brg, uint rate)
267 {
268 	u32 __iomem *bp;
269 
270 	/* This is good enough to get SMCs running..... */
271 	bp = &cpmp->cp_brgc1;
272 	bp += brg;
273 	/*
274 	 * The BRG has a 12-bit counter.  For really slow baud rates (or
275 	 * really fast processors), we may have to further divide by 16.
276 	 */
277 	if (((BRG_UART_CLK / rate) - 1) < 4096)
278 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
279 	else
280 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
281 			      CPM_BRG_EN | CPM_BRG_DIV16);
282 }
283 
284 struct cpm_ioport16 {
285 	__be16 dir, par, odr_sor, dat, intr;
286 	__be16 res[3];
287 };
288 
289 struct cpm_ioport32b {
290 	__be32 dir, par, odr, dat;
291 };
292 
293 struct cpm_ioport32e {
294 	__be32 dir, par, sor, odr, dat;
295 };
296 
297 static void __init cpm1_set_pin32(int port, int pin, int flags)
298 {
299 	struct cpm_ioport32e __iomem *iop;
300 	pin = 1 << (31 - pin);
301 
302 	if (port == CPM_PORTB)
303 		iop = (struct cpm_ioport32e __iomem *)
304 		      &mpc8xx_immr->im_cpm.cp_pbdir;
305 	else
306 		iop = (struct cpm_ioport32e __iomem *)
307 		      &mpc8xx_immr->im_cpm.cp_pedir;
308 
309 	if (flags & CPM_PIN_OUTPUT)
310 		setbits32(&iop->dir, pin);
311 	else
312 		clrbits32(&iop->dir, pin);
313 
314 	if (!(flags & CPM_PIN_GPIO))
315 		setbits32(&iop->par, pin);
316 	else
317 		clrbits32(&iop->par, pin);
318 
319 	if (port == CPM_PORTB) {
320 		if (flags & CPM_PIN_OPENDRAIN)
321 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
322 		else
323 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
324 	}
325 
326 	if (port == CPM_PORTE) {
327 		if (flags & CPM_PIN_SECONDARY)
328 			setbits32(&iop->sor, pin);
329 		else
330 			clrbits32(&iop->sor, pin);
331 
332 		if (flags & CPM_PIN_OPENDRAIN)
333 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
334 		else
335 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
336 	}
337 }
338 
339 static void __init cpm1_set_pin16(int port, int pin, int flags)
340 {
341 	struct cpm_ioport16 __iomem *iop =
342 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
343 
344 	pin = 1 << (15 - pin);
345 
346 	if (port != 0)
347 		iop += port - 1;
348 
349 	if (flags & CPM_PIN_OUTPUT)
350 		setbits16(&iop->dir, pin);
351 	else
352 		clrbits16(&iop->dir, pin);
353 
354 	if (!(flags & CPM_PIN_GPIO))
355 		setbits16(&iop->par, pin);
356 	else
357 		clrbits16(&iop->par, pin);
358 
359 	if (port == CPM_PORTA) {
360 		if (flags & CPM_PIN_OPENDRAIN)
361 			setbits16(&iop->odr_sor, pin);
362 		else
363 			clrbits16(&iop->odr_sor, pin);
364 	}
365 	if (port == CPM_PORTC) {
366 		if (flags & CPM_PIN_SECONDARY)
367 			setbits16(&iop->odr_sor, pin);
368 		else
369 			clrbits16(&iop->odr_sor, pin);
370 		if (flags & CPM_PIN_FALLEDGE)
371 			setbits16(&iop->intr, pin);
372 		else
373 			clrbits16(&iop->intr, pin);
374 	}
375 }
376 
377 void __init cpm1_set_pin(enum cpm_port port, int pin, int flags)
378 {
379 	if (port == CPM_PORTB || port == CPM_PORTE)
380 		cpm1_set_pin32(port, pin, flags);
381 	else
382 		cpm1_set_pin16(port, pin, flags);
383 }
384 
385 int __init cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
386 {
387 	int shift;
388 	int i, bits = 0;
389 	u32 __iomem *reg;
390 	u32 mask = 7;
391 
392 	u8 clk_map[][3] = {
393 		{CPM_CLK_SCC1, CPM_BRG1, 0},
394 		{CPM_CLK_SCC1, CPM_BRG2, 1},
395 		{CPM_CLK_SCC1, CPM_BRG3, 2},
396 		{CPM_CLK_SCC1, CPM_BRG4, 3},
397 		{CPM_CLK_SCC1, CPM_CLK1, 4},
398 		{CPM_CLK_SCC1, CPM_CLK2, 5},
399 		{CPM_CLK_SCC1, CPM_CLK3, 6},
400 		{CPM_CLK_SCC1, CPM_CLK4, 7},
401 
402 		{CPM_CLK_SCC2, CPM_BRG1, 0},
403 		{CPM_CLK_SCC2, CPM_BRG2, 1},
404 		{CPM_CLK_SCC2, CPM_BRG3, 2},
405 		{CPM_CLK_SCC2, CPM_BRG4, 3},
406 		{CPM_CLK_SCC2, CPM_CLK1, 4},
407 		{CPM_CLK_SCC2, CPM_CLK2, 5},
408 		{CPM_CLK_SCC2, CPM_CLK3, 6},
409 		{CPM_CLK_SCC2, CPM_CLK4, 7},
410 
411 		{CPM_CLK_SCC3, CPM_BRG1, 0},
412 		{CPM_CLK_SCC3, CPM_BRG2, 1},
413 		{CPM_CLK_SCC3, CPM_BRG3, 2},
414 		{CPM_CLK_SCC3, CPM_BRG4, 3},
415 		{CPM_CLK_SCC3, CPM_CLK5, 4},
416 		{CPM_CLK_SCC3, CPM_CLK6, 5},
417 		{CPM_CLK_SCC3, CPM_CLK7, 6},
418 		{CPM_CLK_SCC3, CPM_CLK8, 7},
419 
420 		{CPM_CLK_SCC4, CPM_BRG1, 0},
421 		{CPM_CLK_SCC4, CPM_BRG2, 1},
422 		{CPM_CLK_SCC4, CPM_BRG3, 2},
423 		{CPM_CLK_SCC4, CPM_BRG4, 3},
424 		{CPM_CLK_SCC4, CPM_CLK5, 4},
425 		{CPM_CLK_SCC4, CPM_CLK6, 5},
426 		{CPM_CLK_SCC4, CPM_CLK7, 6},
427 		{CPM_CLK_SCC4, CPM_CLK8, 7},
428 
429 		{CPM_CLK_SMC1, CPM_BRG1, 0},
430 		{CPM_CLK_SMC1, CPM_BRG2, 1},
431 		{CPM_CLK_SMC1, CPM_BRG3, 2},
432 		{CPM_CLK_SMC1, CPM_BRG4, 3},
433 		{CPM_CLK_SMC1, CPM_CLK1, 4},
434 		{CPM_CLK_SMC1, CPM_CLK2, 5},
435 		{CPM_CLK_SMC1, CPM_CLK3, 6},
436 		{CPM_CLK_SMC1, CPM_CLK4, 7},
437 
438 		{CPM_CLK_SMC2, CPM_BRG1, 0},
439 		{CPM_CLK_SMC2, CPM_BRG2, 1},
440 		{CPM_CLK_SMC2, CPM_BRG3, 2},
441 		{CPM_CLK_SMC2, CPM_BRG4, 3},
442 		{CPM_CLK_SMC2, CPM_CLK5, 4},
443 		{CPM_CLK_SMC2, CPM_CLK6, 5},
444 		{CPM_CLK_SMC2, CPM_CLK7, 6},
445 		{CPM_CLK_SMC2, CPM_CLK8, 7},
446 	};
447 
448 	switch (target) {
449 	case CPM_CLK_SCC1:
450 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
451 		shift = 0;
452 		break;
453 
454 	case CPM_CLK_SCC2:
455 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
456 		shift = 8;
457 		break;
458 
459 	case CPM_CLK_SCC3:
460 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
461 		shift = 16;
462 		break;
463 
464 	case CPM_CLK_SCC4:
465 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
466 		shift = 24;
467 		break;
468 
469 	case CPM_CLK_SMC1:
470 		reg = &mpc8xx_immr->im_cpm.cp_simode;
471 		shift = 12;
472 		break;
473 
474 	case CPM_CLK_SMC2:
475 		reg = &mpc8xx_immr->im_cpm.cp_simode;
476 		shift = 28;
477 		break;
478 
479 	default:
480 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
481 		return -EINVAL;
482 	}
483 
484 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
485 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
486 			bits = clk_map[i][2];
487 			break;
488 		}
489 	}
490 
491 	if (i == ARRAY_SIZE(clk_map)) {
492 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
493 		return -EINVAL;
494 	}
495 
496 	bits <<= shift;
497 	mask <<= shift;
498 
499 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
500 		if (mode == CPM_CLK_RTX) {
501 			bits |= bits << 3;
502 			mask |= mask << 3;
503 		} else if (mode == CPM_CLK_RX) {
504 			bits <<= 3;
505 			mask <<= 3;
506 		}
507 	}
508 
509 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
510 
511 	return 0;
512 }
513 
514 /*
515  * GPIO LIB API implementation
516  */
517 #ifdef CONFIG_8xx_GPIO
518 
519 struct cpm1_gpio16_chip {
520 	struct of_mm_gpio_chip mm_gc;
521 	spinlock_t lock;
522 
523 	/* shadowed data register to clear/set bits safely */
524 	u16 cpdata;
525 
526 	/* IRQ associated with Pins when relevant */
527 	int irq[16];
528 };
529 
530 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
531 {
532 	struct cpm1_gpio16_chip *cpm1_gc =
533 		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
534 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
535 
536 	cpm1_gc->cpdata = in_be16(&iop->dat);
537 }
538 
539 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
540 {
541 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
542 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
543 	u16 pin_mask;
544 
545 	pin_mask = 1 << (15 - gpio);
546 
547 	return !!(in_be16(&iop->dat) & pin_mask);
548 }
549 
550 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
551 	int value)
552 {
553 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
554 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
555 
556 	if (value)
557 		cpm1_gc->cpdata |= pin_mask;
558 	else
559 		cpm1_gc->cpdata &= ~pin_mask;
560 
561 	out_be16(&iop->dat, cpm1_gc->cpdata);
562 }
563 
564 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
565 {
566 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
567 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
568 	unsigned long flags;
569 	u16 pin_mask = 1 << (15 - gpio);
570 
571 	spin_lock_irqsave(&cpm1_gc->lock, flags);
572 
573 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
574 
575 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
576 }
577 
578 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
579 {
580 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
581 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
582 
583 	return cpm1_gc->irq[gpio] ? : -ENXIO;
584 }
585 
586 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
587 {
588 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
589 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
590 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
591 	unsigned long flags;
592 	u16 pin_mask = 1 << (15 - gpio);
593 
594 	spin_lock_irqsave(&cpm1_gc->lock, flags);
595 
596 	setbits16(&iop->dir, pin_mask);
597 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
598 
599 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
600 
601 	return 0;
602 }
603 
604 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
605 {
606 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
607 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
608 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
609 	unsigned long flags;
610 	u16 pin_mask = 1 << (15 - gpio);
611 
612 	spin_lock_irqsave(&cpm1_gc->lock, flags);
613 
614 	clrbits16(&iop->dir, pin_mask);
615 
616 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
617 
618 	return 0;
619 }
620 
621 int cpm1_gpiochip_add16(struct device *dev)
622 {
623 	struct device_node *np = dev->of_node;
624 	struct cpm1_gpio16_chip *cpm1_gc;
625 	struct of_mm_gpio_chip *mm_gc;
626 	struct gpio_chip *gc;
627 	u16 mask;
628 
629 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
630 	if (!cpm1_gc)
631 		return -ENOMEM;
632 
633 	spin_lock_init(&cpm1_gc->lock);
634 
635 	if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
636 		int i, j;
637 
638 		for (i = 0, j = 0; i < 16; i++)
639 			if (mask & (1 << (15 - i)))
640 				cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
641 	}
642 
643 	mm_gc = &cpm1_gc->mm_gc;
644 	gc = &mm_gc->gc;
645 
646 	mm_gc->save_regs = cpm1_gpio16_save_regs;
647 	gc->ngpio = 16;
648 	gc->direction_input = cpm1_gpio16_dir_in;
649 	gc->direction_output = cpm1_gpio16_dir_out;
650 	gc->get = cpm1_gpio16_get;
651 	gc->set = cpm1_gpio16_set;
652 	gc->to_irq = cpm1_gpio16_to_irq;
653 	gc->parent = dev;
654 	gc->owner = THIS_MODULE;
655 
656 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
657 }
658 
659 struct cpm1_gpio32_chip {
660 	struct of_mm_gpio_chip mm_gc;
661 	spinlock_t lock;
662 
663 	/* shadowed data register to clear/set bits safely */
664 	u32 cpdata;
665 };
666 
667 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
668 {
669 	struct cpm1_gpio32_chip *cpm1_gc =
670 		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
671 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
672 
673 	cpm1_gc->cpdata = in_be32(&iop->dat);
674 }
675 
676 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
677 {
678 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
679 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
680 	u32 pin_mask;
681 
682 	pin_mask = 1 << (31 - gpio);
683 
684 	return !!(in_be32(&iop->dat) & pin_mask);
685 }
686 
687 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
688 	int value)
689 {
690 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
691 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
692 
693 	if (value)
694 		cpm1_gc->cpdata |= pin_mask;
695 	else
696 		cpm1_gc->cpdata &= ~pin_mask;
697 
698 	out_be32(&iop->dat, cpm1_gc->cpdata);
699 }
700 
701 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
702 {
703 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
704 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
705 	unsigned long flags;
706 	u32 pin_mask = 1 << (31 - gpio);
707 
708 	spin_lock_irqsave(&cpm1_gc->lock, flags);
709 
710 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
711 
712 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
713 }
714 
715 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
716 {
717 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
718 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
719 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
720 	unsigned long flags;
721 	u32 pin_mask = 1 << (31 - gpio);
722 
723 	spin_lock_irqsave(&cpm1_gc->lock, flags);
724 
725 	setbits32(&iop->dir, pin_mask);
726 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
727 
728 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
729 
730 	return 0;
731 }
732 
733 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
734 {
735 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
736 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
737 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
738 	unsigned long flags;
739 	u32 pin_mask = 1 << (31 - gpio);
740 
741 	spin_lock_irqsave(&cpm1_gc->lock, flags);
742 
743 	clrbits32(&iop->dir, pin_mask);
744 
745 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
746 
747 	return 0;
748 }
749 
750 int cpm1_gpiochip_add32(struct device *dev)
751 {
752 	struct device_node *np = dev->of_node;
753 	struct cpm1_gpio32_chip *cpm1_gc;
754 	struct of_mm_gpio_chip *mm_gc;
755 	struct gpio_chip *gc;
756 
757 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
758 	if (!cpm1_gc)
759 		return -ENOMEM;
760 
761 	spin_lock_init(&cpm1_gc->lock);
762 
763 	mm_gc = &cpm1_gc->mm_gc;
764 	gc = &mm_gc->gc;
765 
766 	mm_gc->save_regs = cpm1_gpio32_save_regs;
767 	gc->ngpio = 32;
768 	gc->direction_input = cpm1_gpio32_dir_in;
769 	gc->direction_output = cpm1_gpio32_dir_out;
770 	gc->get = cpm1_gpio32_get;
771 	gc->set = cpm1_gpio32_set;
772 	gc->parent = dev;
773 	gc->owner = THIS_MODULE;
774 
775 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
776 }
777 
778 #endif /* CONFIG_8xx_GPIO */
779