xref: /openbmc/linux/arch/powerpc/perf/power8-pmu.c (revision 4f3db074)
1 /*
2  * Performance counter support for POWER8 processors.
3  *
4  * Copyright 2009 Paul Mackerras, IBM Corporation.
5  * Copyright 2013 Michael Ellerman, IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 #define pr_fmt(fmt)	"power8-pmu: " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <asm/firmware.h>
18 #include <asm/cputable.h>
19 
20 
21 /*
22  * Some power8 event codes.
23  */
24 #define PM_CYC				0x0001e
25 #define PM_GCT_NOSLOT_CYC		0x100f8
26 #define PM_CMPLU_STALL			0x4000a
27 #define PM_INST_CMPL			0x00002
28 #define PM_BRU_FIN			0x10068
29 #define PM_BR_MPRED_CMPL		0x400f6
30 
31 /* All L1 D cache load references counted at finish, gated by reject */
32 #define PM_LD_REF_L1			0x100ee
33 /* Load Missed L1 */
34 #define PM_LD_MISS_L1			0x3e054
35 /* Store Missed L1 */
36 #define PM_ST_MISS_L1			0x300f0
37 /* L1 cache data prefetches */
38 #define PM_L1_PREF			0x0d8b8
39 /* Instruction fetches from L1 */
40 #define PM_INST_FROM_L1			0x04080
41 /* Demand iCache Miss */
42 #define PM_L1_ICACHE_MISS		0x200fd
43 /* Instruction Demand sectors wriittent into IL1 */
44 #define PM_L1_DEMAND_WRITE		0x0408c
45 /* Instruction prefetch written into IL1 */
46 #define PM_IC_PREF_WRITE		0x0408e
47 /* The data cache was reloaded from local core's L3 due to a demand load */
48 #define PM_DATA_FROM_L3			0x4c042
49 /* Demand LD - L3 Miss (not L2 hit and not L3 hit) */
50 #define PM_DATA_FROM_L3MISS		0x300fe
51 /* All successful D-side store dispatches for this thread */
52 #define PM_L2_ST			0x17080
53 /* All successful D-side store dispatches for this thread that were L2 Miss */
54 #define PM_L2_ST_MISS			0x17082
55 /* Total HW L3 prefetches(Load+store) */
56 #define PM_L3_PREF_ALL			0x4e052
57 /* Data PTEG reload */
58 #define PM_DTLB_MISS			0x300fc
59 /* ITLB Reloaded */
60 #define PM_ITLB_MISS			0x400fc
61 
62 
63 /*
64  * Raw event encoding for POWER8:
65  *
66  *        60        56        52        48        44        40        36        32
67  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
68  *   | | [ ]                           [      thresh_cmp     ]   [  thresh_ctl   ]
69  *   | |  |                                                              |
70  *   | |  *- IFM (Linux)                 thresh start/stop OR FAB match -*
71  *   | *- BHRB (Linux)
72  *   *- EBB (Linux)
73  *
74  *        28        24        20        16        12         8         4         0
75  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
76  *   [   ] [  sample ]   [cache]   [ pmc ]   [unit ]   c     m   [    pmcxsel    ]
77  *     |        |           |                          |     |
78  *     |        |           |                          |     *- mark
79  *     |        |           *- L1/L2/L3 cache_sel      |
80  *     |        |                                      |
81  *     |        *- sampling mode for marked events     *- combine
82  *     |
83  *     *- thresh_sel
84  *
85  * Below uses IBM bit numbering.
86  *
87  * MMCR1[x:y] = unit    (PMCxUNIT)
88  * MMCR1[x]   = combine (PMCxCOMB)
89  *
90  * if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011
91  *	# PM_MRK_FAB_RSP_MATCH
92  *	MMCR1[20:27] = thresh_ctl   (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
93  * else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001
94  *	# PM_MRK_FAB_RSP_MATCH_CYC
95  *	MMCR1[20:27] = thresh_ctl   (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
96  * else
97  *	MMCRA[48:55] = thresh_ctl   (THRESH START/END)
98  *
99  * if thresh_sel:
100  *	MMCRA[45:47] = thresh_sel
101  *
102  * if thresh_cmp:
103  *	MMCRA[22:24] = thresh_cmp[0:2]
104  *	MMCRA[25:31] = thresh_cmp[3:9]
105  *
106  * if unit == 6 or unit == 7
107  *	MMCRC[53:55] = cache_sel[1:3]      (L2EVENT_SEL)
108  * else if unit == 8 or unit == 9:
109  *	if cache_sel[0] == 0: # L3 bank
110  *		MMCRC[47:49] = cache_sel[1:3]  (L3EVENT_SEL0)
111  *	else if cache_sel[0] == 1:
112  *		MMCRC[50:51] = cache_sel[2:3]  (L3EVENT_SEL1)
113  * else if cache_sel[1]: # L1 event
114  *	MMCR1[16] = cache_sel[2]
115  *	MMCR1[17] = cache_sel[3]
116  *
117  * if mark:
118  *	MMCRA[63]    = 1		(SAMPLE_ENABLE)
119  *	MMCRA[57:59] = sample[0:2]	(RAND_SAMP_ELIG)
120  *	MMCRA[61:62] = sample[3:4]	(RAND_SAMP_MODE)
121  *
122  * if EBB and BHRB:
123  *	MMCRA[32:33] = IFM
124  *
125  */
126 
127 #define EVENT_EBB_MASK		1ull
128 #define EVENT_EBB_SHIFT		PERF_EVENT_CONFIG_EBB_SHIFT
129 #define EVENT_BHRB_MASK		1ull
130 #define EVENT_BHRB_SHIFT	62
131 #define EVENT_WANTS_BHRB	(EVENT_BHRB_MASK << EVENT_BHRB_SHIFT)
132 #define EVENT_IFM_MASK		3ull
133 #define EVENT_IFM_SHIFT		60
134 #define EVENT_THR_CMP_SHIFT	40	/* Threshold CMP value */
135 #define EVENT_THR_CMP_MASK	0x3ff
136 #define EVENT_THR_CTL_SHIFT	32	/* Threshold control value (start/stop) */
137 #define EVENT_THR_CTL_MASK	0xffull
138 #define EVENT_THR_SEL_SHIFT	29	/* Threshold select value */
139 #define EVENT_THR_SEL_MASK	0x7
140 #define EVENT_THRESH_SHIFT	29	/* All threshold bits */
141 #define EVENT_THRESH_MASK	0x1fffffull
142 #define EVENT_SAMPLE_SHIFT	24	/* Sampling mode & eligibility */
143 #define EVENT_SAMPLE_MASK	0x1f
144 #define EVENT_CACHE_SEL_SHIFT	20	/* L2/L3 cache select */
145 #define EVENT_CACHE_SEL_MASK	0xf
146 #define EVENT_IS_L1		(4 << EVENT_CACHE_SEL_SHIFT)
147 #define EVENT_PMC_SHIFT		16	/* PMC number (1-based) */
148 #define EVENT_PMC_MASK		0xf
149 #define EVENT_UNIT_SHIFT	12	/* Unit */
150 #define EVENT_UNIT_MASK		0xf
151 #define EVENT_COMBINE_SHIFT	11	/* Combine bit */
152 #define EVENT_COMBINE_MASK	0x1
153 #define EVENT_MARKED_SHIFT	8	/* Marked bit */
154 #define EVENT_MARKED_MASK	0x1
155 #define EVENT_IS_MARKED		(EVENT_MARKED_MASK << EVENT_MARKED_SHIFT)
156 #define EVENT_PSEL_MASK		0xff	/* PMCxSEL value */
157 
158 /* Bits defined by Linux */
159 #define EVENT_LINUX_MASK	\
160 	((EVENT_EBB_MASK  << EVENT_EBB_SHIFT)			|	\
161 	 (EVENT_BHRB_MASK << EVENT_BHRB_SHIFT)			|	\
162 	 (EVENT_IFM_MASK  << EVENT_IFM_SHIFT))
163 
164 #define EVENT_VALID_MASK	\
165 	((EVENT_THRESH_MASK    << EVENT_THRESH_SHIFT)		|	\
166 	 (EVENT_SAMPLE_MASK    << EVENT_SAMPLE_SHIFT)		|	\
167 	 (EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT)	|	\
168 	 (EVENT_PMC_MASK       << EVENT_PMC_SHIFT)		|	\
169 	 (EVENT_UNIT_MASK      << EVENT_UNIT_SHIFT)		|	\
170 	 (EVENT_COMBINE_MASK   << EVENT_COMBINE_SHIFT)		|	\
171 	 (EVENT_MARKED_MASK    << EVENT_MARKED_SHIFT)		|	\
172 	  EVENT_LINUX_MASK					|	\
173 	  EVENT_PSEL_MASK)
174 
175 /* MMCRA IFM bits - POWER8 */
176 #define	POWER8_MMCRA_IFM1		0x0000000040000000UL
177 #define	POWER8_MMCRA_IFM2		0x0000000080000000UL
178 #define	POWER8_MMCRA_IFM3		0x00000000C0000000UL
179 
180 #define ONLY_PLM \
181 	(PERF_SAMPLE_BRANCH_USER        |\
182 	 PERF_SAMPLE_BRANCH_KERNEL      |\
183 	 PERF_SAMPLE_BRANCH_HV)
184 
185 /*
186  * Layout of constraint bits:
187  *
188  *        60        56        52        48        44        40        36        32
189  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
190  *   [   fab_match   ]         [       thresh_cmp      ] [   thresh_ctl    ] [   ]
191  *                                                                             |
192  *                                                                 thresh_sel -*
193  *
194  *        28        24        20        16        12         8         4         0
195  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
196  *               [ ] |   [ ]   [  sample ]   [     ]   [6] [5]   [4] [3]   [2] [1]
197  *                |  |    |                     |
198  *      BHRB IFM -*  |    |                     |      Count of events for each PMC.
199  *              EBB -*    |                     |        p1, p2, p3, p4, p5, p6.
200  *      L1 I/D qualifier -*                     |
201  *                     nc - number of counters -*
202  *
203  * The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
204  * we want the low bit of each field to be added to any existing value.
205  *
206  * Everything else is a value field.
207  */
208 
209 #define CNST_FAB_MATCH_VAL(v)	(((v) & EVENT_THR_CTL_MASK) << 56)
210 #define CNST_FAB_MATCH_MASK	CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK)
211 
212 /* We just throw all the threshold bits into the constraint */
213 #define CNST_THRESH_VAL(v)	(((v) & EVENT_THRESH_MASK) << 32)
214 #define CNST_THRESH_MASK	CNST_THRESH_VAL(EVENT_THRESH_MASK)
215 
216 #define CNST_EBB_VAL(v)		(((v) & EVENT_EBB_MASK) << 24)
217 #define CNST_EBB_MASK		CNST_EBB_VAL(EVENT_EBB_MASK)
218 
219 #define CNST_IFM_VAL(v)		(((v) & EVENT_IFM_MASK) << 25)
220 #define CNST_IFM_MASK		CNST_IFM_VAL(EVENT_IFM_MASK)
221 
222 #define CNST_L1_QUAL_VAL(v)	(((v) & 3) << 22)
223 #define CNST_L1_QUAL_MASK	CNST_L1_QUAL_VAL(3)
224 
225 #define CNST_SAMPLE_VAL(v)	(((v) & EVENT_SAMPLE_MASK) << 16)
226 #define CNST_SAMPLE_MASK	CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK)
227 
228 /*
229  * For NC we are counting up to 4 events. This requires three bits, and we need
230  * the fifth event to overflow and set the 4th bit. To achieve that we bias the
231  * fields by 3 in test_adder.
232  */
233 #define CNST_NC_SHIFT		12
234 #define CNST_NC_VAL		(1 << CNST_NC_SHIFT)
235 #define CNST_NC_MASK		(8 << CNST_NC_SHIFT)
236 #define POWER8_TEST_ADDER	(3 << CNST_NC_SHIFT)
237 
238 /*
239  * For the per-PMC fields we have two bits. The low bit is added, so if two
240  * events ask for the same PMC the sum will overflow, setting the high bit,
241  * indicating an error. So our mask sets the high bit.
242  */
243 #define CNST_PMC_SHIFT(pmc)	((pmc - 1) * 2)
244 #define CNST_PMC_VAL(pmc)	(1 << CNST_PMC_SHIFT(pmc))
245 #define CNST_PMC_MASK(pmc)	(2 << CNST_PMC_SHIFT(pmc))
246 
247 /* Our add_fields is defined as: */
248 #define POWER8_ADD_FIELDS	\
249 	CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \
250 	CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL
251 
252 
253 /* Bits in MMCR1 for POWER8 */
254 #define MMCR1_UNIT_SHIFT(pmc)		(60 - (4 * ((pmc) - 1)))
255 #define MMCR1_COMBINE_SHIFT(pmc)	(35 - ((pmc) - 1))
256 #define MMCR1_PMCSEL_SHIFT(pmc)		(24 - (((pmc) - 1)) * 8)
257 #define MMCR1_FAB_SHIFT			36
258 #define MMCR1_DC_QUAL_SHIFT		47
259 #define MMCR1_IC_QUAL_SHIFT		46
260 
261 /* Bits in MMCRA for POWER8 */
262 #define MMCRA_SAMP_MODE_SHIFT		1
263 #define MMCRA_SAMP_ELIG_SHIFT		4
264 #define MMCRA_THR_CTL_SHIFT		8
265 #define MMCRA_THR_SEL_SHIFT		16
266 #define MMCRA_THR_CMP_SHIFT		32
267 #define MMCRA_SDAR_MODE_TLB		(1ull << 42)
268 #define MMCRA_IFM_SHIFT			30
269 
270 /* Bits in MMCR2 for POWER8 */
271 #define MMCR2_FCS(pmc)			(1ull << (63 - (((pmc) - 1) * 9)))
272 #define MMCR2_FCP(pmc)			(1ull << (62 - (((pmc) - 1) * 9)))
273 #define MMCR2_FCH(pmc)			(1ull << (57 - (((pmc) - 1) * 9)))
274 
275 
276 static inline bool event_is_fab_match(u64 event)
277 {
278 	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
279 	event &= 0xff0fe;
280 
281 	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
282 	return (event == 0x30056 || event == 0x4f052);
283 }
284 
285 static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp)
286 {
287 	unsigned int unit, pmc, cache, ebb;
288 	unsigned long mask, value;
289 
290 	mask = value = 0;
291 
292 	if (event & ~EVENT_VALID_MASK)
293 		return -1;
294 
295 	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
296 	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
297 	cache = (event >> EVENT_CACHE_SEL_SHIFT)  & EVENT_CACHE_SEL_MASK;
298 	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
299 
300 	if (pmc) {
301 		u64 base_event;
302 
303 		if (pmc > 6)
304 			return -1;
305 
306 		/* Ignore Linux defined bits when checking event below */
307 		base_event = event & ~EVENT_LINUX_MASK;
308 
309 		if (pmc >= 5 && base_event != 0x500fa && base_event != 0x600f4)
310 			return -1;
311 
312 		mask  |= CNST_PMC_MASK(pmc);
313 		value |= CNST_PMC_VAL(pmc);
314 	}
315 
316 	if (pmc <= 4) {
317 		/*
318 		 * Add to number of counters in use. Note this includes events with
319 		 * a PMC of 0 - they still need a PMC, it's just assigned later.
320 		 * Don't count events on PMC 5 & 6, there is only one valid event
321 		 * on each of those counters, and they are handled above.
322 		 */
323 		mask  |= CNST_NC_MASK;
324 		value |= CNST_NC_VAL;
325 	}
326 
327 	if (unit >= 6 && unit <= 9) {
328 		/*
329 		 * L2/L3 events contain a cache selector field, which is
330 		 * supposed to be programmed into MMCRC. However MMCRC is only
331 		 * HV writable, and there is no API for guest kernels to modify
332 		 * it. The solution is for the hypervisor to initialise the
333 		 * field to zeroes, and for us to only ever allow events that
334 		 * have a cache selector of zero. The bank selector (bit 3) is
335 		 * irrelevant, as long as the rest of the value is 0.
336 		 */
337 		if (cache & 0x7)
338 			return -1;
339 
340 	} else if (event & EVENT_IS_L1) {
341 		mask  |= CNST_L1_QUAL_MASK;
342 		value |= CNST_L1_QUAL_VAL(cache);
343 	}
344 
345 	if (event & EVENT_IS_MARKED) {
346 		mask  |= CNST_SAMPLE_MASK;
347 		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
348 	}
349 
350 	/*
351 	 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
352 	 * the threshold control bits are used for the match value.
353 	 */
354 	if (event_is_fab_match(event)) {
355 		mask  |= CNST_FAB_MATCH_MASK;
356 		value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
357 	} else {
358 		/*
359 		 * Check the mantissa upper two bits are not zero, unless the
360 		 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
361 		 */
362 		unsigned int cmp, exp;
363 
364 		cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
365 		exp = cmp >> 7;
366 
367 		if (exp && (cmp & 0x60) == 0)
368 			return -1;
369 
370 		mask  |= CNST_THRESH_MASK;
371 		value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
372 	}
373 
374 	if (!pmc && ebb)
375 		/* EBB events must specify the PMC */
376 		return -1;
377 
378 	if (event & EVENT_WANTS_BHRB) {
379 		if (!ebb)
380 			/* Only EBB events can request BHRB */
381 			return -1;
382 
383 		mask  |= CNST_IFM_MASK;
384 		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
385 	}
386 
387 	/*
388 	 * All events must agree on EBB, either all request it or none.
389 	 * EBB events are pinned & exclusive, so this should never actually
390 	 * hit, but we leave it as a fallback in case.
391 	 */
392 	mask  |= CNST_EBB_VAL(ebb);
393 	value |= CNST_EBB_MASK;
394 
395 	*maskp = mask;
396 	*valp = value;
397 
398 	return 0;
399 }
400 
401 static int power8_compute_mmcr(u64 event[], int n_ev,
402 			       unsigned int hwc[], unsigned long mmcr[],
403 			       struct perf_event *pevents[])
404 {
405 	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
406 	unsigned int pmc, pmc_inuse;
407 	int i;
408 
409 	pmc_inuse = 0;
410 
411 	/* First pass to count resource use */
412 	for (i = 0; i < n_ev; ++i) {
413 		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
414 		if (pmc)
415 			pmc_inuse |= 1 << pmc;
416 	}
417 
418 	/* In continous sampling mode, update SDAR on TLB miss */
419 	mmcra = MMCRA_SDAR_MODE_TLB;
420 	mmcr1 = mmcr2 = 0;
421 
422 	/* Second pass: assign PMCs, set all MMCR1 fields */
423 	for (i = 0; i < n_ev; ++i) {
424 		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
425 		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
426 		combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK;
427 		psel    =  event[i] & EVENT_PSEL_MASK;
428 
429 		if (!pmc) {
430 			for (pmc = 1; pmc <= 4; ++pmc) {
431 				if (!(pmc_inuse & (1 << pmc)))
432 					break;
433 			}
434 
435 			pmc_inuse |= 1 << pmc;
436 		}
437 
438 		if (pmc <= 4) {
439 			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
440 			mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc);
441 			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
442 		}
443 
444 		if (event[i] & EVENT_IS_L1) {
445 			cache = event[i] >> EVENT_CACHE_SEL_SHIFT;
446 			mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT;
447 			cache >>= 1;
448 			mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT;
449 		}
450 
451 		if (event[i] & EVENT_IS_MARKED) {
452 			mmcra |= MMCRA_SAMPLE_ENABLE;
453 
454 			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
455 			if (val) {
456 				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
457 				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
458 			}
459 		}
460 
461 		/*
462 		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
463 		 * the threshold bits are used for the match value.
464 		 */
465 		if (event_is_fab_match(event[i])) {
466 			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
467 				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
468 		} else {
469 			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
470 			mmcra |= val << MMCRA_THR_CTL_SHIFT;
471 			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
472 			mmcra |= val << MMCRA_THR_SEL_SHIFT;
473 			val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
474 			mmcra |= val << MMCRA_THR_CMP_SHIFT;
475 		}
476 
477 		if (event[i] & EVENT_WANTS_BHRB) {
478 			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
479 			mmcra |= val << MMCRA_IFM_SHIFT;
480 		}
481 
482 		if (pevents[i]->attr.exclude_user)
483 			mmcr2 |= MMCR2_FCP(pmc);
484 
485 		if (pevents[i]->attr.exclude_hv)
486 			mmcr2 |= MMCR2_FCH(pmc);
487 
488 		if (pevents[i]->attr.exclude_kernel) {
489 			if (cpu_has_feature(CPU_FTR_HVMODE))
490 				mmcr2 |= MMCR2_FCH(pmc);
491 			else
492 				mmcr2 |= MMCR2_FCS(pmc);
493 		}
494 
495 		hwc[i] = pmc - 1;
496 	}
497 
498 	/* Return MMCRx values */
499 	mmcr[0] = 0;
500 
501 	/* pmc_inuse is 1-based */
502 	if (pmc_inuse & 2)
503 		mmcr[0] = MMCR0_PMC1CE;
504 
505 	if (pmc_inuse & 0x7c)
506 		mmcr[0] |= MMCR0_PMCjCE;
507 
508 	/* If we're not using PMC 5 or 6, freeze them */
509 	if (!(pmc_inuse & 0x60))
510 		mmcr[0] |= MMCR0_FC56;
511 
512 	mmcr[1] = mmcr1;
513 	mmcr[2] = mmcra;
514 	mmcr[3] = mmcr2;
515 
516 	return 0;
517 }
518 
519 #define MAX_ALT	2
520 
521 /* Table of alternatives, sorted by column 0 */
522 static const unsigned int event_alternatives[][MAX_ALT] = {
523 	{ 0x10134, 0x301e2 },		/* PM_MRK_ST_CMPL */
524 	{ 0x10138, 0x40138 },		/* PM_BR_MRK_2PATH */
525 	{ 0x18082, 0x3e05e },		/* PM_L3_CO_MEPF */
526 	{ 0x1d14e, 0x401e8 },		/* PM_MRK_DATA_FROM_L2MISS */
527 	{ 0x1e054, 0x4000a },		/* PM_CMPLU_STALL */
528 	{ 0x20036, 0x40036 },		/* PM_BR_2PATH */
529 	{ 0x200f2, 0x300f2 },		/* PM_INST_DISP */
530 	{ 0x200f4, 0x600f4 },		/* PM_RUN_CYC */
531 	{ 0x2013c, 0x3012e },		/* PM_MRK_FILT_MATCH */
532 	{ 0x3e054, 0x400f0 },		/* PM_LD_MISS_L1 */
533 	{ 0x400fa, 0x500fa },		/* PM_RUN_INST_CMPL */
534 };
535 
536 /*
537  * Scan the alternatives table for a match and return the
538  * index into the alternatives table if found, else -1.
539  */
540 static int find_alternative(u64 event)
541 {
542 	int i, j;
543 
544 	for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
545 		if (event < event_alternatives[i][0])
546 			break;
547 
548 		for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j)
549 			if (event == event_alternatives[i][j])
550 				return i;
551 	}
552 
553 	return -1;
554 }
555 
556 static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[])
557 {
558 	int i, j, num_alt = 0;
559 	u64 alt_event;
560 
561 	alt[num_alt++] = event;
562 
563 	i = find_alternative(event);
564 	if (i >= 0) {
565 		/* Filter out the original event, it's already in alt[0] */
566 		for (j = 0; j < MAX_ALT; ++j) {
567 			alt_event = event_alternatives[i][j];
568 			if (alt_event && alt_event != event)
569 				alt[num_alt++] = alt_event;
570 		}
571 	}
572 
573 	if (flags & PPMU_ONLY_COUNT_RUN) {
574 		/*
575 		 * We're only counting in RUN state, so PM_CYC is equivalent to
576 		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
577 		 */
578 		j = num_alt;
579 		for (i = 0; i < num_alt; ++i) {
580 			switch (alt[i]) {
581 			case 0x1e:	/* PM_CYC */
582 				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
583 				break;
584 			case 0x600f4:	/* PM_RUN_CYC */
585 				alt[j++] = 0x1e;
586 				break;
587 			case 0x2:	/* PM_PPC_CMPL */
588 				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
589 				break;
590 			case 0x500fa:	/* PM_RUN_INST_CMPL */
591 				alt[j++] = 0x2;	/* PM_PPC_CMPL */
592 				break;
593 			}
594 		}
595 		num_alt = j;
596 	}
597 
598 	return num_alt;
599 }
600 
601 static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[])
602 {
603 	if (pmc <= 3)
604 		mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
605 }
606 
607 PMU_FORMAT_ATTR(event,		"config:0-49");
608 PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
609 PMU_FORMAT_ATTR(mark,		"config:8");
610 PMU_FORMAT_ATTR(combine,	"config:11");
611 PMU_FORMAT_ATTR(unit,		"config:12-15");
612 PMU_FORMAT_ATTR(pmc,		"config:16-19");
613 PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
614 PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
615 PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
616 PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
617 PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
618 PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
619 
620 static struct attribute *power8_pmu_format_attr[] = {
621 	&format_attr_event.attr,
622 	&format_attr_pmcxsel.attr,
623 	&format_attr_mark.attr,
624 	&format_attr_combine.attr,
625 	&format_attr_unit.attr,
626 	&format_attr_pmc.attr,
627 	&format_attr_cache_sel.attr,
628 	&format_attr_sample_mode.attr,
629 	&format_attr_thresh_sel.attr,
630 	&format_attr_thresh_stop.attr,
631 	&format_attr_thresh_start.attr,
632 	&format_attr_thresh_cmp.attr,
633 	NULL,
634 };
635 
636 struct attribute_group power8_pmu_format_group = {
637 	.name = "format",
638 	.attrs = power8_pmu_format_attr,
639 };
640 
641 static const struct attribute_group *power8_pmu_attr_groups[] = {
642 	&power8_pmu_format_group,
643 	NULL,
644 };
645 
646 static int power8_generic_events[] = {
647 	[PERF_COUNT_HW_CPU_CYCLES] =			PM_CYC,
648 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =	PM_GCT_NOSLOT_CYC,
649 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =	PM_CMPLU_STALL,
650 	[PERF_COUNT_HW_INSTRUCTIONS] =			PM_INST_CMPL,
651 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =		PM_BRU_FIN,
652 	[PERF_COUNT_HW_BRANCH_MISSES] =			PM_BR_MPRED_CMPL,
653 	[PERF_COUNT_HW_CACHE_REFERENCES] =		PM_LD_REF_L1,
654 	[PERF_COUNT_HW_CACHE_MISSES] =			PM_LD_MISS_L1,
655 };
656 
657 static u64 power8_bhrb_filter_map(u64 branch_sample_type)
658 {
659 	u64 pmu_bhrb_filter = 0;
660 
661 	/* BHRB and regular PMU events share the same privilege state
662 	 * filter configuration. BHRB is always recorded along with a
663 	 * regular PMU event. As the privilege state filter is handled
664 	 * in the basic PMC configuration of the accompanying regular
665 	 * PMU event, we ignore any separate BHRB specific request.
666 	 */
667 
668 	/* No branch filter requested */
669 	if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY)
670 		return pmu_bhrb_filter;
671 
672 	/* Invalid branch filter options - HW does not support */
673 	if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
674 		return -1;
675 
676 	if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL)
677 		return -1;
678 
679 	if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) {
680 		pmu_bhrb_filter |= POWER8_MMCRA_IFM1;
681 		return pmu_bhrb_filter;
682 	}
683 
684 	/* Every thing else is unsupported */
685 	return -1;
686 }
687 
688 static void power8_config_bhrb(u64 pmu_bhrb_filter)
689 {
690 	/* Enable BHRB filter in PMU */
691 	mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter));
692 }
693 
694 #define C(x)	PERF_COUNT_HW_CACHE_##x
695 
696 /*
697  * Table of generalized cache-related events.
698  * 0 means not supported, -1 means nonsensical, other values
699  * are event codes.
700  */
701 static int power8_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
702 	[ C(L1D) ] = {
703 		[ C(OP_READ) ] = {
704 			[ C(RESULT_ACCESS) ] = PM_LD_REF_L1,
705 			[ C(RESULT_MISS)   ] = PM_LD_MISS_L1,
706 		},
707 		[ C(OP_WRITE) ] = {
708 			[ C(RESULT_ACCESS) ] = 0,
709 			[ C(RESULT_MISS)   ] = PM_ST_MISS_L1,
710 		},
711 		[ C(OP_PREFETCH) ] = {
712 			[ C(RESULT_ACCESS) ] = PM_L1_PREF,
713 			[ C(RESULT_MISS)   ] = 0,
714 		},
715 	},
716 	[ C(L1I) ] = {
717 		[ C(OP_READ) ] = {
718 			[ C(RESULT_ACCESS) ] = PM_INST_FROM_L1,
719 			[ C(RESULT_MISS)   ] = PM_L1_ICACHE_MISS,
720 		},
721 		[ C(OP_WRITE) ] = {
722 			[ C(RESULT_ACCESS) ] = PM_L1_DEMAND_WRITE,
723 			[ C(RESULT_MISS)   ] = -1,
724 		},
725 		[ C(OP_PREFETCH) ] = {
726 			[ C(RESULT_ACCESS) ] = PM_IC_PREF_WRITE,
727 			[ C(RESULT_MISS)   ] = 0,
728 		},
729 	},
730 	[ C(LL) ] = {
731 		[ C(OP_READ) ] = {
732 			[ C(RESULT_ACCESS) ] = PM_DATA_FROM_L3,
733 			[ C(RESULT_MISS)   ] = PM_DATA_FROM_L3MISS,
734 		},
735 		[ C(OP_WRITE) ] = {
736 			[ C(RESULT_ACCESS) ] = PM_L2_ST,
737 			[ C(RESULT_MISS)   ] = PM_L2_ST_MISS,
738 		},
739 		[ C(OP_PREFETCH) ] = {
740 			[ C(RESULT_ACCESS) ] = PM_L3_PREF_ALL,
741 			[ C(RESULT_MISS)   ] = 0,
742 		},
743 	},
744 	[ C(DTLB) ] = {
745 		[ C(OP_READ) ] = {
746 			[ C(RESULT_ACCESS) ] = 0,
747 			[ C(RESULT_MISS)   ] = PM_DTLB_MISS,
748 		},
749 		[ C(OP_WRITE) ] = {
750 			[ C(RESULT_ACCESS) ] = -1,
751 			[ C(RESULT_MISS)   ] = -1,
752 		},
753 		[ C(OP_PREFETCH) ] = {
754 			[ C(RESULT_ACCESS) ] = -1,
755 			[ C(RESULT_MISS)   ] = -1,
756 		},
757 	},
758 	[ C(ITLB) ] = {
759 		[ C(OP_READ) ] = {
760 			[ C(RESULT_ACCESS) ] = 0,
761 			[ C(RESULT_MISS)   ] = PM_ITLB_MISS,
762 		},
763 		[ C(OP_WRITE) ] = {
764 			[ C(RESULT_ACCESS) ] = -1,
765 			[ C(RESULT_MISS)   ] = -1,
766 		},
767 		[ C(OP_PREFETCH) ] = {
768 			[ C(RESULT_ACCESS) ] = -1,
769 			[ C(RESULT_MISS)   ] = -1,
770 		},
771 	},
772 	[ C(BPU) ] = {
773 		[ C(OP_READ) ] = {
774 			[ C(RESULT_ACCESS) ] = PM_BRU_FIN,
775 			[ C(RESULT_MISS)   ] = PM_BR_MPRED_CMPL,
776 		},
777 		[ C(OP_WRITE) ] = {
778 			[ C(RESULT_ACCESS) ] = -1,
779 			[ C(RESULT_MISS)   ] = -1,
780 		},
781 		[ C(OP_PREFETCH) ] = {
782 			[ C(RESULT_ACCESS) ] = -1,
783 			[ C(RESULT_MISS)   ] = -1,
784 		},
785 	},
786 	[ C(NODE) ] = {
787 		[ C(OP_READ) ] = {
788 			[ C(RESULT_ACCESS) ] = -1,
789 			[ C(RESULT_MISS)   ] = -1,
790 		},
791 		[ C(OP_WRITE) ] = {
792 			[ C(RESULT_ACCESS) ] = -1,
793 			[ C(RESULT_MISS)   ] = -1,
794 		},
795 		[ C(OP_PREFETCH) ] = {
796 			[ C(RESULT_ACCESS) ] = -1,
797 			[ C(RESULT_MISS)   ] = -1,
798 		},
799 	},
800 };
801 
802 #undef C
803 
804 static struct power_pmu power8_pmu = {
805 	.name			= "POWER8",
806 	.n_counter		= 6,
807 	.max_alternatives	= MAX_ALT + 1,
808 	.add_fields		= POWER8_ADD_FIELDS,
809 	.test_adder		= POWER8_TEST_ADDER,
810 	.compute_mmcr		= power8_compute_mmcr,
811 	.config_bhrb		= power8_config_bhrb,
812 	.bhrb_filter_map	= power8_bhrb_filter_map,
813 	.get_constraint		= power8_get_constraint,
814 	.get_alternatives	= power8_get_alternatives,
815 	.disable_pmc		= power8_disable_pmc,
816 	.flags			= PPMU_HAS_SSLOT | PPMU_HAS_SIER | PPMU_ARCH_207S,
817 	.n_generic		= ARRAY_SIZE(power8_generic_events),
818 	.generic_events		= power8_generic_events,
819 	.cache_events		= &power8_cache_events,
820 	.attr_groups		= power8_pmu_attr_groups,
821 	.bhrb_nr		= 32,
822 };
823 
824 static int __init init_power8_pmu(void)
825 {
826 	int rc;
827 
828 	if (!cur_cpu_spec->oprofile_cpu_type ||
829 	    strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
830 		return -ENODEV;
831 
832 	rc = register_power_pmu(&power8_pmu);
833 	if (rc)
834 		return rc;
835 
836 	/* Tell userspace that EBB is supported */
837 	cur_cpu_spec->cpu_user_features2 |= PPC_FEATURE2_EBB;
838 
839 	if (cpu_has_feature(CPU_FTR_PMAO_BUG))
840 		pr_info("PMAO restore workaround active.\n");
841 
842 	return 0;
843 }
844 early_initcall(init_power8_pmu);
845