xref: /openbmc/linux/arch/powerpc/perf/power6-pmu.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance counter support for POWER6 processors.
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/perf_event.h>
9 #include <linux/string.h>
10 #include <asm/reg.h>
11 #include <asm/cputable.h>
12 
13 #include "internal.h"
14 
15 /*
16  * Bits in event code for POWER6
17  */
18 #define PM_PMC_SH	20	/* PMC number (1-based) for direct events */
19 #define PM_PMC_MSK	0x7
20 #define PM_PMC_MSKS	(PM_PMC_MSK << PM_PMC_SH)
21 #define PM_UNIT_SH	16	/* Unit event comes (TTMxSEL encoding) */
22 #define PM_UNIT_MSK	0xf
23 #define PM_UNIT_MSKS	(PM_UNIT_MSK << PM_UNIT_SH)
24 #define PM_LLAV		0x8000	/* Load lookahead match value */
25 #define PM_LLA		0x4000	/* Load lookahead match enable */
26 #define PM_BYTE_SH	12	/* Byte of event bus to use */
27 #define PM_BYTE_MSK	3
28 #define PM_SUBUNIT_SH	8	/* Subunit event comes from (NEST_SEL enc.) */
29 #define PM_SUBUNIT_MSK	7
30 #define PM_SUBUNIT_MSKS	(PM_SUBUNIT_MSK << PM_SUBUNIT_SH)
31 #define PM_PMCSEL_MSK	0xff	/* PMCxSEL value */
32 #define PM_BUSEVENT_MSK	0xf3700
33 
34 /*
35  * Bits in MMCR1 for POWER6
36  */
37 #define MMCR1_TTM0SEL_SH	60
38 #define MMCR1_TTMSEL_SH(n)	(MMCR1_TTM0SEL_SH - (n) * 4)
39 #define MMCR1_TTMSEL_MSK	0xf
40 #define MMCR1_TTMSEL(m, n)	(((m) >> MMCR1_TTMSEL_SH(n)) & MMCR1_TTMSEL_MSK)
41 #define MMCR1_NESTSEL_SH	45
42 #define MMCR1_NESTSEL_MSK	0x7
43 #define MMCR1_NESTSEL(m)	(((m) >> MMCR1_NESTSEL_SH) & MMCR1_NESTSEL_MSK)
44 #define MMCR1_PMC1_LLA		(1ul << 44)
45 #define MMCR1_PMC1_LLA_VALUE	(1ul << 39)
46 #define MMCR1_PMC1_ADDR_SEL	(1ul << 35)
47 #define MMCR1_PMC1SEL_SH	24
48 #define MMCR1_PMCSEL_SH(n)	(MMCR1_PMC1SEL_SH - (n) * 8)
49 #define MMCR1_PMCSEL_MSK	0xff
50 
51 /*
52  * Map of which direct events on which PMCs are marked instruction events.
53  * Indexed by PMCSEL value >> 1.
54  * Bottom 4 bits are a map of which PMCs are interesting,
55  * top 4 bits say what sort of event:
56  *   0 = direct marked event,
57  *   1 = byte decode event,
58  *   4 = add/and event (PMC1 -> bits 0 & 4),
59  *   5 = add/and event (PMC1 -> bits 1 & 5),
60  *   6 = add/and event (PMC1 -> bits 2 & 6),
61  *   7 = add/and event (PMC1 -> bits 3 & 7).
62  */
63 static unsigned char direct_event_is_marked[0x60 >> 1] = {
64 	0,	/* 00 */
65 	0,	/* 02 */
66 	0,	/* 04 */
67 	0x07,	/* 06 PM_MRK_ST_CMPL, PM_MRK_ST_GPS, PM_MRK_ST_CMPL_INT */
68 	0x04,	/* 08 PM_MRK_DFU_FIN */
69 	0x06,	/* 0a PM_MRK_IFU_FIN, PM_MRK_INST_FIN */
70 	0,	/* 0c */
71 	0,	/* 0e */
72 	0x02,	/* 10 PM_MRK_INST_DISP */
73 	0x08,	/* 12 PM_MRK_LSU_DERAT_MISS */
74 	0,	/* 14 */
75 	0,	/* 16 */
76 	0x0c,	/* 18 PM_THRESH_TIMEO, PM_MRK_INST_FIN */
77 	0x0f,	/* 1a PM_MRK_INST_DISP, PM_MRK_{FXU,FPU,LSU}_FIN */
78 	0x01,	/* 1c PM_MRK_INST_ISSUED */
79 	0,	/* 1e */
80 	0,	/* 20 */
81 	0,	/* 22 */
82 	0,	/* 24 */
83 	0,	/* 26 */
84 	0x15,	/* 28 PM_MRK_DATA_FROM_L2MISS, PM_MRK_DATA_FROM_L3MISS */
85 	0,	/* 2a */
86 	0,	/* 2c */
87 	0,	/* 2e */
88 	0x4f,	/* 30 */
89 	0x7f,	/* 32 */
90 	0x4f,	/* 34 */
91 	0x5f,	/* 36 */
92 	0x6f,	/* 38 */
93 	0x4f,	/* 3a */
94 	0,	/* 3c */
95 	0x08,	/* 3e PM_MRK_INST_TIMEO */
96 	0x1f,	/* 40 */
97 	0x1f,	/* 42 */
98 	0x1f,	/* 44 */
99 	0x1f,	/* 46 */
100 	0x1f,	/* 48 */
101 	0x1f,	/* 4a */
102 	0x1f,	/* 4c */
103 	0x1f,	/* 4e */
104 	0,	/* 50 */
105 	0x05,	/* 52 PM_MRK_BR_TAKEN, PM_MRK_BR_MPRED */
106 	0x1c,	/* 54 PM_MRK_PTEG_FROM_L3MISS, PM_MRK_PTEG_FROM_L2MISS */
107 	0x02,	/* 56 PM_MRK_LD_MISS_L1 */
108 	0,	/* 58 */
109 	0,	/* 5a */
110 	0,	/* 5c */
111 	0,	/* 5e */
112 };
113 
114 /*
115  * Masks showing for each unit which bits are marked events.
116  * These masks are in LE order, i.e. 0x00000001 is byte 0, bit 0.
117  */
118 static u32 marked_bus_events[16] = {
119 	0x01000000,	/* direct events set 1: byte 3 bit 0 */
120 	0x00010000,	/* direct events set 2: byte 2 bit 0 */
121 	0, 0, 0, 0,	/* IDU, IFU, nest: nothing */
122 	0x00000088,	/* VMX set 1: byte 0 bits 3, 7 */
123 	0x000000c0,	/* VMX set 2: byte 0 bits 4-7 */
124 	0x04010000,	/* LSU set 1: byte 2 bit 0, byte 3 bit 2 */
125 	0xff010000u,	/* LSU set 2: byte 2 bit 0, all of byte 3 */
126 	0,		/* LSU set 3 */
127 	0x00000010,	/* VMX set 3: byte 0 bit 4 */
128 	0,		/* BFP set 1 */
129 	0x00000022,	/* BFP set 2: byte 0 bits 1, 5 */
130 	0, 0
131 };
132 
133 /*
134  * Returns 1 if event counts things relating to marked instructions
135  * and thus needs the MMCRA_SAMPLE_ENABLE bit set, or 0 if not.
136  */
137 static int power6_marked_instr_event(u64 event)
138 {
139 	int pmc, psel, ptype;
140 	int bit, byte, unit;
141 	u32 mask;
142 
143 	pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
144 	psel = (event & PM_PMCSEL_MSK) >> 1;	/* drop edge/level bit */
145 	if (pmc >= 5)
146 		return 0;
147 
148 	bit = -1;
149 	if (psel < sizeof(direct_event_is_marked)) {
150 		ptype = direct_event_is_marked[psel];
151 		if (pmc == 0 || !(ptype & (1 << (pmc - 1))))
152 			return 0;
153 		ptype >>= 4;
154 		if (ptype == 0)
155 			return 1;
156 		if (ptype == 1)
157 			bit = 0;
158 		else
159 			bit = ptype ^ (pmc - 1);
160 	} else if ((psel & 0x48) == 0x40)
161 		bit = psel & 7;
162 
163 	if (!(event & PM_BUSEVENT_MSK) || bit == -1)
164 		return 0;
165 
166 	byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK;
167 	unit = (event >> PM_UNIT_SH) & PM_UNIT_MSK;
168 	mask = marked_bus_events[unit];
169 	return (mask >> (byte * 8 + bit)) & 1;
170 }
171 
172 /*
173  * Assign PMC numbers and compute MMCR1 value for a set of events
174  */
175 static int p6_compute_mmcr(u64 event[], int n_ev,
176 			   unsigned int hwc[], struct mmcr_regs *mmcr, struct perf_event *pevents[])
177 {
178 	unsigned long mmcr1 = 0;
179 	unsigned long mmcra = MMCRA_SDAR_DCACHE_MISS | MMCRA_SDAR_ERAT_MISS;
180 	int i;
181 	unsigned int pmc, ev, b, u, s, psel;
182 	unsigned int ttmset = 0;
183 	unsigned int pmc_inuse = 0;
184 
185 	if (n_ev > 6)
186 		return -1;
187 	for (i = 0; i < n_ev; ++i) {
188 		pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK;
189 		if (pmc) {
190 			if (pmc_inuse & (1 << (pmc - 1)))
191 				return -1;	/* collision! */
192 			pmc_inuse |= 1 << (pmc - 1);
193 		}
194 	}
195 	for (i = 0; i < n_ev; ++i) {
196 		ev = event[i];
197 		pmc = (ev >> PM_PMC_SH) & PM_PMC_MSK;
198 		if (pmc) {
199 			--pmc;
200 		} else {
201 			/* can go on any PMC; find a free one */
202 			for (pmc = 0; pmc < 4; ++pmc)
203 				if (!(pmc_inuse & (1 << pmc)))
204 					break;
205 			if (pmc >= 4)
206 				return -1;
207 			pmc_inuse |= 1 << pmc;
208 		}
209 		hwc[i] = pmc;
210 		psel = ev & PM_PMCSEL_MSK;
211 		if (ev & PM_BUSEVENT_MSK) {
212 			/* this event uses the event bus */
213 			b = (ev >> PM_BYTE_SH) & PM_BYTE_MSK;
214 			u = (ev >> PM_UNIT_SH) & PM_UNIT_MSK;
215 			/* check for conflict on this byte of event bus */
216 			if ((ttmset & (1 << b)) && MMCR1_TTMSEL(mmcr1, b) != u)
217 				return -1;
218 			mmcr1 |= (unsigned long)u << MMCR1_TTMSEL_SH(b);
219 			ttmset |= 1 << b;
220 			if (u == 5) {
221 				/* Nest events have a further mux */
222 				s = (ev >> PM_SUBUNIT_SH) & PM_SUBUNIT_MSK;
223 				if ((ttmset & 0x10) &&
224 				    MMCR1_NESTSEL(mmcr1) != s)
225 					return -1;
226 				ttmset |= 0x10;
227 				mmcr1 |= (unsigned long)s << MMCR1_NESTSEL_SH;
228 			}
229 			if (0x30 <= psel && psel <= 0x3d) {
230 				/* these need the PMCx_ADDR_SEL bits */
231 				if (b >= 2)
232 					mmcr1 |= MMCR1_PMC1_ADDR_SEL >> pmc;
233 			}
234 			/* bus select values are different for PMC3/4 */
235 			if (pmc >= 2 && (psel & 0x90) == 0x80)
236 				psel ^= 0x20;
237 		}
238 		if (ev & PM_LLA) {
239 			mmcr1 |= MMCR1_PMC1_LLA >> pmc;
240 			if (ev & PM_LLAV)
241 				mmcr1 |= MMCR1_PMC1_LLA_VALUE >> pmc;
242 		}
243 		if (power6_marked_instr_event(event[i]))
244 			mmcra |= MMCRA_SAMPLE_ENABLE;
245 		if (pmc < 4)
246 			mmcr1 |= (unsigned long)psel << MMCR1_PMCSEL_SH(pmc);
247 	}
248 	mmcr->mmcr0 = 0;
249 	if (pmc_inuse & 1)
250 		mmcr->mmcr0 = MMCR0_PMC1CE;
251 	if (pmc_inuse & 0xe)
252 		mmcr->mmcr0 |= MMCR0_PMCjCE;
253 	mmcr->mmcr1 = mmcr1;
254 	mmcr->mmcra = mmcra;
255 	return 0;
256 }
257 
258 /*
259  * Layout of constraint bits:
260  *
261  *	0-1	add field: number of uses of PMC1 (max 1)
262  *	2-3, 4-5, 6-7, 8-9, 10-11: ditto for PMC2, 3, 4, 5, 6
263  *	12-15	add field: number of uses of PMC1-4 (max 4)
264  *	16-19	select field: unit on byte 0 of event bus
265  *	20-23, 24-27, 28-31 ditto for bytes 1, 2, 3
266  *	32-34	select field: nest (subunit) event selector
267  */
268 static int p6_get_constraint(u64 event, unsigned long *maskp,
269 			     unsigned long *valp)
270 {
271 	int pmc, byte, sh, subunit;
272 	unsigned long mask = 0, value = 0;
273 
274 	pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
275 	if (pmc) {
276 		if (pmc > 4 && !(event == 0x500009 || event == 0x600005))
277 			return -1;
278 		sh = (pmc - 1) * 2;
279 		mask |= 2 << sh;
280 		value |= 1 << sh;
281 	}
282 	if (event & PM_BUSEVENT_MSK) {
283 		byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK;
284 		sh = byte * 4 + (16 - PM_UNIT_SH);
285 		mask |= PM_UNIT_MSKS << sh;
286 		value |= (unsigned long)(event & PM_UNIT_MSKS) << sh;
287 		if ((event & PM_UNIT_MSKS) == (5 << PM_UNIT_SH)) {
288 			subunit = (event >> PM_SUBUNIT_SH) & PM_SUBUNIT_MSK;
289 			mask  |= (unsigned long)PM_SUBUNIT_MSK << 32;
290 			value |= (unsigned long)subunit << 32;
291 		}
292 	}
293 	if (pmc <= 4) {
294 		mask  |= 0x8000;	/* add field for count of PMC1-4 uses */
295 		value |= 0x1000;
296 	}
297 	*maskp = mask;
298 	*valp = value;
299 	return 0;
300 }
301 
302 static int p6_limited_pmc_event(u64 event)
303 {
304 	int pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
305 
306 	return pmc == 5 || pmc == 6;
307 }
308 
309 #define MAX_ALT	4	/* at most 4 alternatives for any event */
310 
311 static const unsigned int event_alternatives[][MAX_ALT] = {
312 	{ 0x0130e8, 0x2000f6, 0x3000fc },	/* PM_PTEG_RELOAD_VALID */
313 	{ 0x080080, 0x10000d, 0x30000c, 0x4000f0 }, /* PM_LD_MISS_L1 */
314 	{ 0x080088, 0x200054, 0x3000f0 },	/* PM_ST_MISS_L1 */
315 	{ 0x10000a, 0x2000f4, 0x600005 },	/* PM_RUN_CYC */
316 	{ 0x10000b, 0x2000f5 },			/* PM_RUN_COUNT */
317 	{ 0x10000e, 0x400010 },			/* PM_PURR */
318 	{ 0x100010, 0x4000f8 },			/* PM_FLUSH */
319 	{ 0x10001a, 0x200010 },			/* PM_MRK_INST_DISP */
320 	{ 0x100026, 0x3000f8 },			/* PM_TB_BIT_TRANS */
321 	{ 0x100054, 0x2000f0 },			/* PM_ST_FIN */
322 	{ 0x100056, 0x2000fc },			/* PM_L1_ICACHE_MISS */
323 	{ 0x1000f0, 0x40000a },			/* PM_INST_IMC_MATCH_CMPL */
324 	{ 0x1000f8, 0x200008 },			/* PM_GCT_EMPTY_CYC */
325 	{ 0x1000fc, 0x400006 },			/* PM_LSU_DERAT_MISS_CYC */
326 	{ 0x20000e, 0x400007 },			/* PM_LSU_DERAT_MISS */
327 	{ 0x200012, 0x300012 },			/* PM_INST_DISP */
328 	{ 0x2000f2, 0x3000f2 },			/* PM_INST_DISP */
329 	{ 0x2000f8, 0x300010 },			/* PM_EXT_INT */
330 	{ 0x2000fe, 0x300056 },			/* PM_DATA_FROM_L2MISS */
331 	{ 0x2d0030, 0x30001a },			/* PM_MRK_FPU_FIN */
332 	{ 0x30000a, 0x400018 },			/* PM_MRK_INST_FIN */
333 	{ 0x3000f6, 0x40000e },			/* PM_L1_DCACHE_RELOAD_VALID */
334 	{ 0x3000fe, 0x400056 },			/* PM_DATA_FROM_L3MISS */
335 };
336 
337 /*
338  * This could be made more efficient with a binary search on
339  * a presorted list, if necessary
340  */
341 static int find_alternatives_list(u64 event)
342 {
343 	int i, j;
344 	unsigned int alt;
345 
346 	for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
347 		if (event < event_alternatives[i][0])
348 			return -1;
349 		for (j = 0; j < MAX_ALT; ++j) {
350 			alt = event_alternatives[i][j];
351 			if (!alt || event < alt)
352 				break;
353 			if (event == alt)
354 				return i;
355 		}
356 	}
357 	return -1;
358 }
359 
360 static int p6_get_alternatives(u64 event, unsigned int flags, u64 alt[])
361 {
362 	int i, j, nlim;
363 	unsigned int psel, pmc;
364 	unsigned int nalt = 1;
365 	u64 aevent;
366 
367 	alt[0] = event;
368 	nlim = p6_limited_pmc_event(event);
369 
370 	/* check the alternatives table */
371 	i = find_alternatives_list(event);
372 	if (i >= 0) {
373 		/* copy out alternatives from list */
374 		for (j = 0; j < MAX_ALT; ++j) {
375 			aevent = event_alternatives[i][j];
376 			if (!aevent)
377 				break;
378 			if (aevent != event)
379 				alt[nalt++] = aevent;
380 			nlim += p6_limited_pmc_event(aevent);
381 		}
382 
383 	} else {
384 		/* Check for alternative ways of computing sum events */
385 		/* PMCSEL 0x32 counter N == PMCSEL 0x34 counter 5-N */
386 		psel = event & (PM_PMCSEL_MSK & ~1);	/* ignore edge bit */
387 		pmc = (event >> PM_PMC_SH) & PM_PMC_MSK;
388 		if (pmc && (psel == 0x32 || psel == 0x34))
389 			alt[nalt++] = ((event ^ 0x6) & ~PM_PMC_MSKS) |
390 				((5 - pmc) << PM_PMC_SH);
391 
392 		/* PMCSEL 0x38 counter N == PMCSEL 0x3a counter N+/-2 */
393 		if (pmc && (psel == 0x38 || psel == 0x3a))
394 			alt[nalt++] = ((event ^ 0x2) & ~PM_PMC_MSKS) |
395 				((pmc > 2? pmc - 2: pmc + 2) << PM_PMC_SH);
396 	}
397 
398 	if (flags & PPMU_ONLY_COUNT_RUN) {
399 		/*
400 		 * We're only counting in RUN state,
401 		 * so PM_CYC is equivalent to PM_RUN_CYC,
402 		 * PM_INST_CMPL === PM_RUN_INST_CMPL, PM_PURR === PM_RUN_PURR.
403 		 * This doesn't include alternatives that don't provide
404 		 * any extra flexibility in assigning PMCs (e.g.
405 		 * 0x10000a for PM_RUN_CYC vs. 0x1e for PM_CYC).
406 		 * Note that even with these additional alternatives
407 		 * we never end up with more than 4 alternatives for any event.
408 		 */
409 		j = nalt;
410 		for (i = 0; i < nalt; ++i) {
411 			switch (alt[i]) {
412 			case 0x1e:	/* PM_CYC */
413 				alt[j++] = 0x600005;	/* PM_RUN_CYC */
414 				++nlim;
415 				break;
416 			case 0x10000a:	/* PM_RUN_CYC */
417 				alt[j++] = 0x1e;	/* PM_CYC */
418 				break;
419 			case 2:		/* PM_INST_CMPL */
420 				alt[j++] = 0x500009;	/* PM_RUN_INST_CMPL */
421 				++nlim;
422 				break;
423 			case 0x500009:	/* PM_RUN_INST_CMPL */
424 				alt[j++] = 2;		/* PM_INST_CMPL */
425 				break;
426 			case 0x10000e:	/* PM_PURR */
427 				alt[j++] = 0x4000f4;	/* PM_RUN_PURR */
428 				break;
429 			case 0x4000f4:	/* PM_RUN_PURR */
430 				alt[j++] = 0x10000e;	/* PM_PURR */
431 				break;
432 			}
433 		}
434 		nalt = j;
435 	}
436 
437 	if (!(flags & PPMU_LIMITED_PMC_OK) && nlim) {
438 		/* remove the limited PMC events */
439 		j = 0;
440 		for (i = 0; i < nalt; ++i) {
441 			if (!p6_limited_pmc_event(alt[i])) {
442 				alt[j] = alt[i];
443 				++j;
444 			}
445 		}
446 		nalt = j;
447 	} else if ((flags & PPMU_LIMITED_PMC_REQD) && nlim < nalt) {
448 		/* remove all but the limited PMC events */
449 		j = 0;
450 		for (i = 0; i < nalt; ++i) {
451 			if (p6_limited_pmc_event(alt[i])) {
452 				alt[j] = alt[i];
453 				++j;
454 			}
455 		}
456 		nalt = j;
457 	}
458 
459 	return nalt;
460 }
461 
462 static void p6_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
463 {
464 	/* Set PMCxSEL to 0 to disable PMCx */
465 	if (pmc <= 3)
466 		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SH(pmc));
467 }
468 
469 static int power6_generic_events[] = {
470 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x1e,
471 	[PERF_COUNT_HW_INSTRUCTIONS]		= 2,
472 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x280030, /* LD_REF_L1 */
473 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x30000c, /* LD_MISS_L1 */
474 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x410a0,  /* BR_PRED */
475 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x400052, /* BR_MPRED */
476 };
477 
478 #define C(x)	PERF_COUNT_HW_CACHE_##x
479 
480 /*
481  * Table of generalized cache-related events.
482  * 0 means not supported, -1 means nonsensical, other values
483  * are event codes.
484  * The "DTLB" and "ITLB" events relate to the DERAT and IERAT.
485  */
486 static u64 power6_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
487 	[C(L1D)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
488 		[C(OP_READ)] = {	0x280030,	0x80080		},
489 		[C(OP_WRITE)] = {	0x180032,	0x80088		},
490 		[C(OP_PREFETCH)] = {	0x810a4,	0		},
491 	},
492 	[C(L1I)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
493 		[C(OP_READ)] = {	0,		0x100056 	},
494 		[C(OP_WRITE)] = {	-1,		-1		},
495 		[C(OP_PREFETCH)] = {	0x4008c,	0		},
496 	},
497 	[C(LL)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
498 		[C(OP_READ)] = {	0x150730,	0x250532	},
499 		[C(OP_WRITE)] = {	0x250432,	0x150432	},
500 		[C(OP_PREFETCH)] = {	0x810a6,	0		},
501 	},
502 	[C(DTLB)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
503 		[C(OP_READ)] = {	0,		0x20000e	},
504 		[C(OP_WRITE)] = {	-1,		-1		},
505 		[C(OP_PREFETCH)] = {	-1,		-1		},
506 	},
507 	[C(ITLB)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
508 		[C(OP_READ)] = {	0,		0x420ce		},
509 		[C(OP_WRITE)] = {	-1,		-1		},
510 		[C(OP_PREFETCH)] = {	-1,		-1		},
511 	},
512 	[C(BPU)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
513 		[C(OP_READ)] = {	0x430e6,	0x400052	},
514 		[C(OP_WRITE)] = {	-1,		-1		},
515 		[C(OP_PREFETCH)] = {	-1,		-1		},
516 	},
517 	[C(NODE)] = {		/* 	RESULT_ACCESS	RESULT_MISS */
518 		[C(OP_READ)] = {	-1,		-1		},
519 		[C(OP_WRITE)] = {	-1,		-1		},
520 		[C(OP_PREFETCH)] = {	-1,		-1		},
521 	},
522 };
523 
524 static struct power_pmu power6_pmu = {
525 	.name			= "POWER6",
526 	.n_counter		= 6,
527 	.max_alternatives	= MAX_ALT,
528 	.add_fields		= 0x1555,
529 	.test_adder		= 0x3000,
530 	.compute_mmcr		= p6_compute_mmcr,
531 	.get_constraint		= p6_get_constraint,
532 	.get_alternatives	= p6_get_alternatives,
533 	.disable_pmc		= p6_disable_pmc,
534 	.limited_pmc_event	= p6_limited_pmc_event,
535 	.flags			= PPMU_LIMITED_PMC5_6 | PPMU_ALT_SIPR,
536 	.n_generic		= ARRAY_SIZE(power6_generic_events),
537 	.generic_events		= power6_generic_events,
538 	.cache_events		= &power6_cache_events,
539 };
540 
541 int init_power6_pmu(void)
542 {
543 	if (!cur_cpu_spec->oprofile_cpu_type ||
544 	    strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power6"))
545 		return -ENODEV;
546 
547 	return register_power_pmu(&power6_pmu);
548 }
549