1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common Performance counter support functions for PowerISA v2.07 processors.
4  *
5  * Copyright 2009 Paul Mackerras, IBM Corporation.
6  * Copyright 2013 Michael Ellerman, IBM Corporation.
7  * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8  */
9 #include "isa207-common.h"
10 
11 PMU_FORMAT_ATTR(event,		"config:0-49");
12 PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
13 PMU_FORMAT_ATTR(mark,		"config:8");
14 PMU_FORMAT_ATTR(combine,	"config:11");
15 PMU_FORMAT_ATTR(unit,		"config:12-15");
16 PMU_FORMAT_ATTR(pmc,		"config:16-19");
17 PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
18 PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
19 PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
20 PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
21 PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
22 PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
23 
24 static struct attribute *isa207_pmu_format_attr[] = {
25 	&format_attr_event.attr,
26 	&format_attr_pmcxsel.attr,
27 	&format_attr_mark.attr,
28 	&format_attr_combine.attr,
29 	&format_attr_unit.attr,
30 	&format_attr_pmc.attr,
31 	&format_attr_cache_sel.attr,
32 	&format_attr_sample_mode.attr,
33 	&format_attr_thresh_sel.attr,
34 	&format_attr_thresh_stop.attr,
35 	&format_attr_thresh_start.attr,
36 	&format_attr_thresh_cmp.attr,
37 	NULL,
38 };
39 
40 struct attribute_group isa207_pmu_format_group = {
41 	.name = "format",
42 	.attrs = isa207_pmu_format_attr,
43 };
44 
45 static inline bool event_is_fab_match(u64 event)
46 {
47 	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48 	event &= 0xff0fe;
49 
50 	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51 	return (event == 0x30056 || event == 0x4f052);
52 }
53 
54 static bool is_event_valid(u64 event)
55 {
56 	u64 valid_mask = EVENT_VALID_MASK;
57 
58 	if (cpu_has_feature(CPU_FTR_ARCH_31))
59 		valid_mask = p10_EVENT_VALID_MASK;
60 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
61 		valid_mask = p9_EVENT_VALID_MASK;
62 
63 	return !(event & ~valid_mask);
64 }
65 
66 static inline bool is_event_marked(u64 event)
67 {
68 	if (event & EVENT_IS_MARKED)
69 		return true;
70 
71 	return false;
72 }
73 
74 static unsigned long sdar_mod_val(u64 event)
75 {
76 	if (cpu_has_feature(CPU_FTR_ARCH_31))
77 		return p10_SDAR_MODE(event);
78 
79 	return p9_SDAR_MODE(event);
80 }
81 
82 static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83 {
84 	/*
85 	 * MMCRA[SDAR_MODE] specifices how the SDAR should be updated in
86 	 * continous sampling mode.
87 	 *
88 	 * Incase of Power8:
89 	 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling
90 	 * mode and will be un-changed when setting MMCRA[63] (Marked events).
91 	 *
92 	 * Incase of Power9/power10:
93 	 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94 	 *               or if group already have any marked events.
95 	 * For rest
96 	 *	MMCRA[SDAR_MODE] will be set from event code.
97 	 *      If sdar_mode from event is zero, default to 0b01. Hardware
98 	 *      requires that we set a non-zero value.
99 	 */
100 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101 		if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102 			*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103 		else if (sdar_mod_val(event))
104 			*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105 		else
106 			*mmcra |= MMCRA_SDAR_MODE_DCACHE;
107 	} else
108 		*mmcra |= MMCRA_SDAR_MODE_TLB;
109 }
110 
111 static u64 p10_thresh_cmp_val(u64 value)
112 {
113 	int exp = 0;
114 	u64 result = value;
115 
116 	if (!value)
117 		return value;
118 
119 	/*
120 	 * Incase of P10, thresh_cmp value is not part of raw event code
121 	 * and provided via attr.config1 parameter. To program threshold in MMCRA,
122 	 * take a 18 bit number N and shift right 2 places and increment
123 	 * the exponent E by 1 until the upper 10 bits of N are zero.
124 	 * Write E to the threshold exponent and write the lower 8 bits of N
125 	 * to the threshold mantissa.
126 	 * The max threshold that can be written is 261120.
127 	 */
128 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129 		if (value > 261120)
130 			value = 261120;
131 		while ((64 - __builtin_clzl(value)) > 8) {
132 			exp++;
133 			value >>= 2;
134 		}
135 
136 		/*
137 		 * Note that it is invalid to write a mantissa with the
138 		 * upper 2 bits of mantissa being zero, unless the
139 		 * exponent is also zero.
140 		 */
141 		if (!(value & 0xC0) && exp)
142 			result = 0;
143 		else
144 			result = (exp << 8) | value;
145 	}
146 	return result;
147 }
148 
149 static u64 thresh_cmp_val(u64 value)
150 {
151 	if (cpu_has_feature(CPU_FTR_ARCH_31))
152 		value = p10_thresh_cmp_val(value);
153 
154 	/*
155 	 * Since location of threshold compare bits in MMCRA
156 	 * is different for p8, using different shift value.
157 	 */
158 	if (cpu_has_feature(CPU_FTR_ARCH_300))
159 		return value << p9_MMCRA_THR_CMP_SHIFT;
160 	else
161 		return value << MMCRA_THR_CMP_SHIFT;
162 }
163 
164 static unsigned long combine_from_event(u64 event)
165 {
166 	if (cpu_has_feature(CPU_FTR_ARCH_300))
167 		return p9_EVENT_COMBINE(event);
168 
169 	return EVENT_COMBINE(event);
170 }
171 
172 static unsigned long combine_shift(unsigned long pmc)
173 {
174 	if (cpu_has_feature(CPU_FTR_ARCH_300))
175 		return p9_MMCR1_COMBINE_SHIFT(pmc);
176 
177 	return MMCR1_COMBINE_SHIFT(pmc);
178 }
179 
180 static inline bool event_is_threshold(u64 event)
181 {
182 	return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183 }
184 
185 static bool is_thresh_cmp_valid(u64 event)
186 {
187 	unsigned int cmp, exp;
188 
189 	if (cpu_has_feature(CPU_FTR_ARCH_31))
190 		return p10_thresh_cmp_val(event) != 0;
191 
192 	/*
193 	 * Check the mantissa upper two bits are not zero, unless the
194 	 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195 	 */
196 
197 	cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198 	exp = cmp >> 7;
199 
200 	if (exp && (cmp & 0x60) == 0)
201 		return false;
202 
203 	return true;
204 }
205 
206 static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207 {
208 	unsigned int cache;
209 
210 	cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211 	return cache;
212 }
213 
214 static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215 {
216 	u64 ret = PERF_MEM_NA;
217 
218 	switch(idx) {
219 	case 0:
220 		/* Nothing to do */
221 		break;
222 	case 1:
223 		ret = PH(LVL, L1);
224 		break;
225 	case 2:
226 		ret = PH(LVL, L2);
227 		break;
228 	case 3:
229 		ret = PH(LVL, L3);
230 		break;
231 	case 4:
232 		if (sub_idx <= 1)
233 			ret = PH(LVL, LOC_RAM);
234 		else if (sub_idx > 1 && sub_idx <= 2)
235 			ret = PH(LVL, REM_RAM1);
236 		else
237 			ret = PH(LVL, REM_RAM2);
238 		ret |= P(SNOOP, HIT);
239 		break;
240 	case 5:
241 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
242 			ret = REM | P(HOPS, 0);
243 
244 			if (sub_idx == 0 || sub_idx == 4)
245 				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
246 			else if (sub_idx == 1 || sub_idx == 5)
247 				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
248 			else if (sub_idx == 2 || sub_idx == 6)
249 				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
250 			else if (sub_idx == 3 || sub_idx == 7)
251 				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
252 		} else {
253 			if (sub_idx == 0)
254 				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
255 			else if (sub_idx == 1)
256 				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
257 			else if (sub_idx == 2 || sub_idx == 4)
258 				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
259 			else if (sub_idx == 3 || sub_idx == 5)
260 				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
261 		}
262 		break;
263 	case 6:
264 		ret = PH(LVL, REM_CCE2);
265 		if ((sub_idx == 0) || (sub_idx == 2))
266 			ret |= P(SNOOP, HIT);
267 		else if ((sub_idx == 1) || (sub_idx == 3))
268 			ret |= P(SNOOP, HITM);
269 		break;
270 	case 7:
271 		ret = PM(LVL, L1);
272 		break;
273 	}
274 
275 	return ret;
276 }
277 
278 void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
279 							struct pt_regs *regs)
280 {
281 	u64 idx;
282 	u32 sub_idx;
283 	u64 sier;
284 	u64 val;
285 
286 	/* Skip if no SIER support */
287 	if (!(flags & PPMU_HAS_SIER)) {
288 		dsrc->val = 0;
289 		return;
290 	}
291 
292 	sier = mfspr(SPRN_SIER);
293 	val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
294 	if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
295 		return;
296 
297 	idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
298 	sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
299 
300 	dsrc->val = isa207_find_source(idx, sub_idx);
301 	if (val == 7) {
302 		u64 mmcra;
303 		u32 op_type;
304 
305 		/*
306 		 * Type 0b111 denotes either larx or stcx instruction. Use the
307 		 * MMCRA sampling bits [57:59] along with the type value
308 		 * to determine the exact instruction type. If the sampling
309 		 * criteria is neither load or store, set the type as default
310 		 * to NA.
311 		 */
312 		mmcra = mfspr(SPRN_MMCRA);
313 
314 		op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
315 		switch (op_type) {
316 		case 5:
317 			dsrc->val |= P(OP, LOAD);
318 			break;
319 		case 7:
320 			dsrc->val |= P(OP, STORE);
321 			break;
322 		default:
323 			dsrc->val |= P(OP, NA);
324 			break;
325 		}
326 	} else {
327 		dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
328 	}
329 }
330 
331 void isa207_get_mem_weight(u64 *weight, u64 type)
332 {
333 	union perf_sample_weight *weight_fields;
334 	u64 weight_lat;
335 	u64 mmcra = mfspr(SPRN_MMCRA);
336 	u64 exp = MMCRA_THR_CTR_EXP(mmcra);
337 	u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
338 	u64 sier = mfspr(SPRN_SIER);
339 	u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
340 
341 	if (cpu_has_feature(CPU_FTR_ARCH_31))
342 		mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
343 
344 	if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
345 		weight_lat = 0;
346 	else
347 		weight_lat = mantissa << (2 * exp);
348 
349 	/*
350 	 * Use 64 bit weight field (full) if sample type is
351 	 * WEIGHT.
352 	 *
353 	 * if sample type is WEIGHT_STRUCT:
354 	 * - store memory latency in the lower 32 bits.
355 	 * - For ISA v3.1, use remaining two 16 bit fields of
356 	 *   perf_sample_weight to store cycle counter values
357 	 *   from sier2.
358 	 */
359 	weight_fields = (union perf_sample_weight *)weight;
360 	if (type & PERF_SAMPLE_WEIGHT)
361 		weight_fields->full = weight_lat;
362 	else {
363 		weight_fields->var1_dw = (u32)weight_lat;
364 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
365 			weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
366 			weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
367 		}
368 	}
369 }
370 
371 int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
372 {
373 	unsigned int unit, pmc, cache, ebb;
374 	unsigned long mask, value;
375 
376 	mask = value = 0;
377 
378 	if (!is_event_valid(event))
379 		return -1;
380 
381 	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
382 	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
383 	if (cpu_has_feature(CPU_FTR_ARCH_31))
384 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
385 			p10_EVENT_CACHE_SEL_MASK;
386 	else
387 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
388 			EVENT_CACHE_SEL_MASK;
389 	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
390 
391 	if (pmc) {
392 		u64 base_event;
393 
394 		if (pmc > 6)
395 			return -1;
396 
397 		/* Ignore Linux defined bits when checking event below */
398 		base_event = event & ~EVENT_LINUX_MASK;
399 
400 		if (pmc >= 5 && base_event != 0x500fa &&
401 				base_event != 0x600f4)
402 			return -1;
403 
404 		mask  |= CNST_PMC_MASK(pmc);
405 		value |= CNST_PMC_VAL(pmc);
406 
407 		/*
408 		 * PMC5 and PMC6 are used to count cycles and instructions and
409 		 * they do not support most of the constraint bits. Add a check
410 		 * to exclude PMC5/6 from most of the constraints except for
411 		 * EBB/BHRB.
412 		 */
413 		if (pmc >= 5)
414 			goto ebb_bhrb;
415 	}
416 
417 	if (pmc <= 4) {
418 		/*
419 		 * Add to number of counters in use. Note this includes events with
420 		 * a PMC of 0 - they still need a PMC, it's just assigned later.
421 		 * Don't count events on PMC 5 & 6, there is only one valid event
422 		 * on each of those counters, and they are handled above.
423 		 */
424 		mask  |= CNST_NC_MASK;
425 		value |= CNST_NC_VAL;
426 	}
427 
428 	if (unit >= 6 && unit <= 9) {
429 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
430 			if (unit == 6) {
431 				mask |= CNST_L2L3_GROUP_MASK;
432 				value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
433 			}
434 		} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
435 			mask  |= CNST_CACHE_GROUP_MASK;
436 			value |= CNST_CACHE_GROUP_VAL(event & 0xff);
437 
438 			mask |= CNST_CACHE_PMC4_MASK;
439 			if (pmc == 4)
440 				value |= CNST_CACHE_PMC4_VAL;
441 		} else if (cache & 0x7) {
442 			/*
443 			 * L2/L3 events contain a cache selector field, which is
444 			 * supposed to be programmed into MMCRC. However MMCRC is only
445 			 * HV writable, and there is no API for guest kernels to modify
446 			 * it. The solution is for the hypervisor to initialise the
447 			 * field to zeroes, and for us to only ever allow events that
448 			 * have a cache selector of zero. The bank selector (bit 3) is
449 			 * irrelevant, as long as the rest of the value is 0.
450 			 */
451 			return -1;
452 		}
453 
454 	} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
455 		mask  |= CNST_L1_QUAL_MASK;
456 		value |= CNST_L1_QUAL_VAL(cache);
457 	}
458 
459 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
460 		mask |= CNST_RADIX_SCOPE_GROUP_MASK;
461 		value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
462 	}
463 
464 	if (is_event_marked(event)) {
465 		mask  |= CNST_SAMPLE_MASK;
466 		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
467 	}
468 
469 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
470 		if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
471 			mask  |= CNST_THRESH_CTL_SEL_MASK;
472 			value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
473 			mask  |= p10_CNST_THRESH_CMP_MASK;
474 			value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
475 		}
476 	} else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
477 		if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
478 			mask  |= CNST_THRESH_MASK;
479 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
480 		}
481 	} else {
482 		/*
483 		 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
484 		 * the threshold control bits are used for the match value.
485 		 */
486 		if (event_is_fab_match(event)) {
487 			mask  |= CNST_FAB_MATCH_MASK;
488 			value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
489 		} else {
490 			if (!is_thresh_cmp_valid(event))
491 				return -1;
492 
493 			mask  |= CNST_THRESH_MASK;
494 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
495 		}
496 	}
497 
498 ebb_bhrb:
499 	if (!pmc && ebb)
500 		/* EBB events must specify the PMC */
501 		return -1;
502 
503 	if (event & EVENT_WANTS_BHRB) {
504 		if (!ebb)
505 			/* Only EBB events can request BHRB */
506 			return -1;
507 
508 		mask  |= CNST_IFM_MASK;
509 		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
510 	}
511 
512 	/*
513 	 * All events must agree on EBB, either all request it or none.
514 	 * EBB events are pinned & exclusive, so this should never actually
515 	 * hit, but we leave it as a fallback in case.
516 	 */
517 	mask  |= CNST_EBB_MASK;
518 	value |= CNST_EBB_VAL(ebb);
519 
520 	*maskp = mask;
521 	*valp = value;
522 
523 	return 0;
524 }
525 
526 int isa207_compute_mmcr(u64 event[], int n_ev,
527 			       unsigned int hwc[], struct mmcr_regs *mmcr,
528 			       struct perf_event *pevents[], u32 flags)
529 {
530 	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
531 	unsigned long mmcr3;
532 	unsigned int pmc, pmc_inuse;
533 	int i;
534 
535 	pmc_inuse = 0;
536 
537 	/* First pass to count resource use */
538 	for (i = 0; i < n_ev; ++i) {
539 		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
540 		if (pmc)
541 			pmc_inuse |= 1 << pmc;
542 	}
543 
544 	mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
545 
546 	/*
547 	 * Disable bhrb unless explicitly requested
548 	 * by setting MMCRA (BHRBRD) bit.
549 	 */
550 	if (cpu_has_feature(CPU_FTR_ARCH_31))
551 		mmcra |= MMCRA_BHRB_DISABLE;
552 
553 	/* Second pass: assign PMCs, set all MMCR1 fields */
554 	for (i = 0; i < n_ev; ++i) {
555 		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
556 		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
557 		combine = combine_from_event(event[i]);
558 		psel    =  event[i] & EVENT_PSEL_MASK;
559 
560 		if (!pmc) {
561 			for (pmc = 1; pmc <= 4; ++pmc) {
562 				if (!(pmc_inuse & (1 << pmc)))
563 					break;
564 			}
565 
566 			pmc_inuse |= 1 << pmc;
567 		}
568 
569 		if (pmc <= 4) {
570 			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
571 			mmcr1 |= combine << combine_shift(pmc);
572 			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
573 		}
574 
575 		/* In continuous sampling mode, update SDAR on TLB miss */
576 		mmcra_sdar_mode(event[i], &mmcra);
577 
578 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
579 			cache = dc_ic_rld_quad_l1_sel(event[i]);
580 			mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
581 		} else {
582 			if (event[i] & EVENT_IS_L1) {
583 				cache = dc_ic_rld_quad_l1_sel(event[i]);
584 				mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
585 			}
586 		}
587 
588 		/* Set RADIX_SCOPE_QUAL bit */
589 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
590 			val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
591 				p10_EVENT_RADIX_SCOPE_QUAL_MASK;
592 			mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
593 		}
594 
595 		if (is_event_marked(event[i])) {
596 			mmcra |= MMCRA_SAMPLE_ENABLE;
597 
598 			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
599 			if (val) {
600 				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
601 				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
602 			}
603 		}
604 
605 		/*
606 		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
607 		 * the threshold bits are used for the match value.
608 		 */
609 		if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
610 			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
611 				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
612 		} else {
613 			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
614 			mmcra |= val << MMCRA_THR_CTL_SHIFT;
615 			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
616 			mmcra |= val << MMCRA_THR_SEL_SHIFT;
617 			if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
618 				val = (event[i] >> EVENT_THR_CMP_SHIFT) &
619 					EVENT_THR_CMP_MASK;
620 				mmcra |= thresh_cmp_val(val);
621 			} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
622 				val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
623 					p10_EVENT_THR_CMP_MASK;
624 				mmcra |= thresh_cmp_val(val);
625 			}
626 		}
627 
628 		if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
629 			val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
630 				p10_EVENT_L2L3_SEL_MASK;
631 			mmcr2 |= val << p10_L2L3_SEL_SHIFT;
632 		}
633 
634 		if (event[i] & EVENT_WANTS_BHRB) {
635 			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
636 			mmcra |= val << MMCRA_IFM_SHIFT;
637 		}
638 
639 		/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
640 		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
641 				(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
642 			mmcra &= ~MMCRA_BHRB_DISABLE;
643 
644 		if (pevents[i]->attr.exclude_user)
645 			mmcr2 |= MMCR2_FCP(pmc);
646 
647 		if (pevents[i]->attr.exclude_hv)
648 			mmcr2 |= MMCR2_FCH(pmc);
649 
650 		if (pevents[i]->attr.exclude_kernel) {
651 			if (cpu_has_feature(CPU_FTR_HVMODE))
652 				mmcr2 |= MMCR2_FCH(pmc);
653 			else
654 				mmcr2 |= MMCR2_FCS(pmc);
655 		}
656 
657 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
658 			if (pmc <= 4) {
659 				val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
660 					p10_EVENT_MMCR3_MASK;
661 				mmcr3 |= val << MMCR3_SHIFT(pmc);
662 			}
663 		}
664 
665 		hwc[i] = pmc - 1;
666 	}
667 
668 	/* Return MMCRx values */
669 	mmcr->mmcr0 = 0;
670 
671 	/* pmc_inuse is 1-based */
672 	if (pmc_inuse & 2)
673 		mmcr->mmcr0 = MMCR0_PMC1CE;
674 
675 	if (pmc_inuse & 0x7c)
676 		mmcr->mmcr0 |= MMCR0_PMCjCE;
677 
678 	/* If we're not using PMC 5 or 6, freeze them */
679 	if (!(pmc_inuse & 0x60))
680 		mmcr->mmcr0 |= MMCR0_FC56;
681 
682 	/*
683 	 * Set mmcr0 (PMCCEXT) for p10 which
684 	 * will restrict access to group B registers
685 	 * when MMCR0 PMCC=0b00.
686 	 */
687 	if (cpu_has_feature(CPU_FTR_ARCH_31))
688 		mmcr->mmcr0 |= MMCR0_PMCCEXT;
689 
690 	mmcr->mmcr1 = mmcr1;
691 	mmcr->mmcra = mmcra;
692 	mmcr->mmcr2 = mmcr2;
693 	mmcr->mmcr3 = mmcr3;
694 
695 	return 0;
696 }
697 
698 void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
699 {
700 	if (pmc <= 3)
701 		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
702 }
703 
704 static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
705 {
706 	int i, j;
707 
708 	for (i = 0; i < size; ++i) {
709 		if (event < ev_alt[i][0])
710 			break;
711 
712 		for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
713 			if (event == ev_alt[i][j])
714 				return i;
715 	}
716 
717 	return -1;
718 }
719 
720 int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
721 					const unsigned int ev_alt[][MAX_ALT])
722 {
723 	int i, j, num_alt = 0;
724 	u64 alt_event;
725 
726 	alt[num_alt++] = event;
727 	i = find_alternative(event, ev_alt, size);
728 	if (i >= 0) {
729 		/* Filter out the original event, it's already in alt[0] */
730 		for (j = 0; j < MAX_ALT; ++j) {
731 			alt_event = ev_alt[i][j];
732 			if (alt_event && alt_event != event)
733 				alt[num_alt++] = alt_event;
734 		}
735 	}
736 
737 	if (flags & PPMU_ONLY_COUNT_RUN) {
738 		/*
739 		 * We're only counting in RUN state, so PM_CYC is equivalent to
740 		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
741 		 */
742 		j = num_alt;
743 		for (i = 0; i < num_alt; ++i) {
744 			switch (alt[i]) {
745 			case 0x1e:			/* PMC_CYC */
746 				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
747 				break;
748 			case 0x600f4:
749 				alt[j++] = 0x1e;
750 				break;
751 			case 0x2:			/* PM_INST_CMPL */
752 				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
753 				break;
754 			case 0x500fa:
755 				alt[j++] = 0x2;
756 				break;
757 			}
758 		}
759 		num_alt = j;
760 	}
761 
762 	return num_alt;
763 }
764 
765 int isa3XX_check_attr_config(struct perf_event *ev)
766 {
767 	u64 val, sample_mode;
768 	u64 event = ev->attr.config;
769 
770 	val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
771 	sample_mode = val & 0x3;
772 
773 	/*
774 	 * MMCRA[61:62] is Random Sampling Mode (SM).
775 	 * value of 0b11 is reserved.
776 	 */
777 	if (sample_mode == 0x3)
778 		return -EINVAL;
779 
780 	/*
781 	 * Check for all reserved value
782 	 * Source: Performance Monitoring Unit User Guide
783 	 */
784 	switch (val) {
785 	case 0x5:
786 	case 0x9:
787 	case 0xD:
788 	case 0x19:
789 	case 0x1D:
790 	case 0x1A:
791 	case 0x1E:
792 		return -EINVAL;
793 	}
794 
795 	/*
796 	 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
797 	 * Events Selection.
798 	 * 0b11110000/0b00001111 is reserved.
799 	 */
800 	val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
801 	if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
802 		return -EINVAL;
803 
804 	return 0;
805 }
806