1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common Performance counter support functions for PowerISA v2.07 processors. 4 * 5 * Copyright 2009 Paul Mackerras, IBM Corporation. 6 * Copyright 2013 Michael Ellerman, IBM Corporation. 7 * Copyright 2016 Madhavan Srinivasan, IBM Corporation. 8 */ 9 #include "isa207-common.h" 10 11 PMU_FORMAT_ATTR(event, "config:0-49"); 12 PMU_FORMAT_ATTR(pmcxsel, "config:0-7"); 13 PMU_FORMAT_ATTR(mark, "config:8"); 14 PMU_FORMAT_ATTR(combine, "config:11"); 15 PMU_FORMAT_ATTR(unit, "config:12-15"); 16 PMU_FORMAT_ATTR(pmc, "config:16-19"); 17 PMU_FORMAT_ATTR(cache_sel, "config:20-23"); 18 PMU_FORMAT_ATTR(sample_mode, "config:24-28"); 19 PMU_FORMAT_ATTR(thresh_sel, "config:29-31"); 20 PMU_FORMAT_ATTR(thresh_stop, "config:32-35"); 21 PMU_FORMAT_ATTR(thresh_start, "config:36-39"); 22 PMU_FORMAT_ATTR(thresh_cmp, "config:40-49"); 23 24 static struct attribute *isa207_pmu_format_attr[] = { 25 &format_attr_event.attr, 26 &format_attr_pmcxsel.attr, 27 &format_attr_mark.attr, 28 &format_attr_combine.attr, 29 &format_attr_unit.attr, 30 &format_attr_pmc.attr, 31 &format_attr_cache_sel.attr, 32 &format_attr_sample_mode.attr, 33 &format_attr_thresh_sel.attr, 34 &format_attr_thresh_stop.attr, 35 &format_attr_thresh_start.attr, 36 &format_attr_thresh_cmp.attr, 37 NULL, 38 }; 39 40 const struct attribute_group isa207_pmu_format_group = { 41 .name = "format", 42 .attrs = isa207_pmu_format_attr, 43 }; 44 45 static inline bool event_is_fab_match(u64 event) 46 { 47 /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */ 48 event &= 0xff0fe; 49 50 /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */ 51 return (event == 0x30056 || event == 0x4f052); 52 } 53 54 static bool is_event_valid(u64 event) 55 { 56 u64 valid_mask = EVENT_VALID_MASK; 57 58 if (cpu_has_feature(CPU_FTR_ARCH_31)) 59 valid_mask = p10_EVENT_VALID_MASK; 60 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 61 valid_mask = p9_EVENT_VALID_MASK; 62 63 return !(event & ~valid_mask); 64 } 65 66 static inline bool is_event_marked(u64 event) 67 { 68 if (event & EVENT_IS_MARKED) 69 return true; 70 71 return false; 72 } 73 74 static unsigned long sdar_mod_val(u64 event) 75 { 76 if (cpu_has_feature(CPU_FTR_ARCH_31)) 77 return p10_SDAR_MODE(event); 78 79 return p9_SDAR_MODE(event); 80 } 81 82 static void mmcra_sdar_mode(u64 event, unsigned long *mmcra) 83 { 84 /* 85 * MMCRA[SDAR_MODE] specifices how the SDAR should be updated in 86 * continous sampling mode. 87 * 88 * Incase of Power8: 89 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling 90 * mode and will be un-changed when setting MMCRA[63] (Marked events). 91 * 92 * Incase of Power9/power10: 93 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'), 94 * or if group already have any marked events. 95 * For rest 96 * MMCRA[SDAR_MODE] will be set from event code. 97 * If sdar_mode from event is zero, default to 0b01. Hardware 98 * requires that we set a non-zero value. 99 */ 100 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 101 if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE)) 102 *mmcra &= MMCRA_SDAR_MODE_NO_UPDATES; 103 else if (sdar_mod_val(event)) 104 *mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT; 105 else 106 *mmcra |= MMCRA_SDAR_MODE_DCACHE; 107 } else 108 *mmcra |= MMCRA_SDAR_MODE_TLB; 109 } 110 111 static u64 p10_thresh_cmp_val(u64 value) 112 { 113 int exp = 0; 114 u64 result = value; 115 116 if (!value) 117 return value; 118 119 /* 120 * Incase of P10, thresh_cmp value is not part of raw event code 121 * and provided via attr.config1 parameter. To program threshold in MMCRA, 122 * take a 18 bit number N and shift right 2 places and increment 123 * the exponent E by 1 until the upper 10 bits of N are zero. 124 * Write E to the threshold exponent and write the lower 8 bits of N 125 * to the threshold mantissa. 126 * The max threshold that can be written is 261120. 127 */ 128 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 129 if (value > 261120) 130 value = 261120; 131 while ((64 - __builtin_clzl(value)) > 8) { 132 exp++; 133 value >>= 2; 134 } 135 136 /* 137 * Note that it is invalid to write a mantissa with the 138 * upper 2 bits of mantissa being zero, unless the 139 * exponent is also zero. 140 */ 141 if (!(value & 0xC0) && exp) 142 result = 0; 143 else 144 result = (exp << 8) | value; 145 } 146 return result; 147 } 148 149 static u64 thresh_cmp_val(u64 value) 150 { 151 if (cpu_has_feature(CPU_FTR_ARCH_31)) 152 value = p10_thresh_cmp_val(value); 153 154 /* 155 * Since location of threshold compare bits in MMCRA 156 * is different for p8, using different shift value. 157 */ 158 if (cpu_has_feature(CPU_FTR_ARCH_300)) 159 return value << p9_MMCRA_THR_CMP_SHIFT; 160 else 161 return value << MMCRA_THR_CMP_SHIFT; 162 } 163 164 static unsigned long combine_from_event(u64 event) 165 { 166 if (cpu_has_feature(CPU_FTR_ARCH_300)) 167 return p9_EVENT_COMBINE(event); 168 169 return EVENT_COMBINE(event); 170 } 171 172 static unsigned long combine_shift(unsigned long pmc) 173 { 174 if (cpu_has_feature(CPU_FTR_ARCH_300)) 175 return p9_MMCR1_COMBINE_SHIFT(pmc); 176 177 return MMCR1_COMBINE_SHIFT(pmc); 178 } 179 180 static inline bool event_is_threshold(u64 event) 181 { 182 return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; 183 } 184 185 static bool is_thresh_cmp_valid(u64 event) 186 { 187 unsigned int cmp, exp; 188 189 if (cpu_has_feature(CPU_FTR_ARCH_31)) 190 return p10_thresh_cmp_val(event) != 0; 191 192 /* 193 * Check the mantissa upper two bits are not zero, unless the 194 * exponent is also zero. See the THRESH_CMP_MANTISSA doc. 195 */ 196 197 cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK; 198 exp = cmp >> 7; 199 200 if (exp && (cmp & 0x60) == 0) 201 return false; 202 203 return true; 204 } 205 206 static unsigned int dc_ic_rld_quad_l1_sel(u64 event) 207 { 208 unsigned int cache; 209 210 cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK; 211 return cache; 212 } 213 214 static inline u64 isa207_find_source(u64 idx, u32 sub_idx) 215 { 216 u64 ret = PERF_MEM_NA; 217 218 switch(idx) { 219 case 0: 220 /* Nothing to do */ 221 break; 222 case 1: 223 ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT); 224 break; 225 case 2: 226 ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); 227 break; 228 case 3: 229 ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 230 break; 231 case 4: 232 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 233 ret = P(SNOOP, HIT); 234 235 if (sub_idx == 1) 236 ret |= PH(LVL, LOC_RAM) | LEVEL(RAM); 237 else if (sub_idx == 2 || sub_idx == 3) 238 ret |= P(LVL, HIT) | LEVEL(PMEM); 239 else if (sub_idx == 4) 240 ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2); 241 else if (sub_idx == 5 || sub_idx == 7) 242 ret |= P(LVL, HIT) | LEVEL(PMEM) | REM; 243 else if (sub_idx == 6) 244 ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3); 245 } else { 246 if (sub_idx <= 1) 247 ret = PH(LVL, LOC_RAM); 248 else if (sub_idx > 1 && sub_idx <= 2) 249 ret = PH(LVL, REM_RAM1); 250 else 251 ret = PH(LVL, REM_RAM2); 252 ret |= P(SNOOP, HIT); 253 } 254 break; 255 case 5: 256 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 257 ret = REM | P(HOPS, 0); 258 259 if (sub_idx == 0 || sub_idx == 4) 260 ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); 261 else if (sub_idx == 1 || sub_idx == 5) 262 ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM); 263 else if (sub_idx == 2 || sub_idx == 6) 264 ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 265 else if (sub_idx == 3 || sub_idx == 7) 266 ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 267 } else { 268 if (sub_idx == 0) 269 ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0); 270 else if (sub_idx == 1) 271 ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0); 272 else if (sub_idx == 2 || sub_idx == 4) 273 ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0); 274 else if (sub_idx == 3 || sub_idx == 5) 275 ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0); 276 } 277 break; 278 case 6: 279 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 280 if (sub_idx == 0) 281 ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM | 282 P(SNOOP, HIT) | P(HOPS, 2); 283 else if (sub_idx == 1) 284 ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM | 285 P(SNOOP, HITM) | P(HOPS, 2); 286 else if (sub_idx == 2) 287 ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM | 288 P(SNOOP, HIT) | P(HOPS, 3); 289 else if (sub_idx == 3) 290 ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM | 291 P(SNOOP, HITM) | P(HOPS, 3); 292 } else { 293 ret = PH(LVL, REM_CCE2); 294 if (sub_idx == 0 || sub_idx == 2) 295 ret |= P(SNOOP, HIT); 296 else if (sub_idx == 1 || sub_idx == 3) 297 ret |= P(SNOOP, HITM); 298 } 299 break; 300 case 7: 301 ret = PM(LVL, L1); 302 break; 303 } 304 305 return ret; 306 } 307 308 void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags, 309 struct pt_regs *regs) 310 { 311 u64 idx; 312 u32 sub_idx; 313 u64 sier; 314 u64 val; 315 316 /* Skip if no SIER support */ 317 if (!(flags & PPMU_HAS_SIER)) { 318 dsrc->val = 0; 319 return; 320 } 321 322 sier = mfspr(SPRN_SIER); 323 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT; 324 if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31))) 325 return; 326 327 idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT; 328 sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT; 329 330 dsrc->val = isa207_find_source(idx, sub_idx); 331 if (val == 7) { 332 u64 mmcra; 333 u32 op_type; 334 335 /* 336 * Type 0b111 denotes either larx or stcx instruction. Use the 337 * MMCRA sampling bits [57:59] along with the type value 338 * to determine the exact instruction type. If the sampling 339 * criteria is neither load or store, set the type as default 340 * to NA. 341 */ 342 mmcra = mfspr(SPRN_MMCRA); 343 344 op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK; 345 switch (op_type) { 346 case 5: 347 dsrc->val |= P(OP, LOAD); 348 break; 349 case 7: 350 dsrc->val |= P(OP, STORE); 351 break; 352 default: 353 dsrc->val |= P(OP, NA); 354 break; 355 } 356 } else { 357 dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE); 358 } 359 } 360 361 void isa207_get_mem_weight(u64 *weight, u64 type) 362 { 363 union perf_sample_weight *weight_fields; 364 u64 weight_lat; 365 u64 mmcra = mfspr(SPRN_MMCRA); 366 u64 exp = MMCRA_THR_CTR_EXP(mmcra); 367 u64 mantissa = MMCRA_THR_CTR_MANT(mmcra); 368 u64 sier = mfspr(SPRN_SIER); 369 u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT; 370 371 if (cpu_has_feature(CPU_FTR_ARCH_31)) 372 mantissa = P10_MMCRA_THR_CTR_MANT(mmcra); 373 374 if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31))) 375 weight_lat = 0; 376 else 377 weight_lat = mantissa << (2 * exp); 378 379 /* 380 * Use 64 bit weight field (full) if sample type is 381 * WEIGHT. 382 * 383 * if sample type is WEIGHT_STRUCT: 384 * - store memory latency in the lower 32 bits. 385 * - For ISA v3.1, use remaining two 16 bit fields of 386 * perf_sample_weight to store cycle counter values 387 * from sier2. 388 */ 389 weight_fields = (union perf_sample_weight *)weight; 390 if (type & PERF_SAMPLE_WEIGHT) 391 weight_fields->full = weight_lat; 392 else { 393 weight_fields->var1_dw = (u32)weight_lat; 394 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 395 weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2)); 396 weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2)); 397 } 398 } 399 } 400 401 int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1) 402 { 403 unsigned int unit, pmc, cache, ebb; 404 unsigned long mask, value; 405 406 mask = value = 0; 407 408 if (!is_event_valid(event)) 409 return -1; 410 411 pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; 412 unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; 413 if (cpu_has_feature(CPU_FTR_ARCH_31)) 414 cache = (event >> EVENT_CACHE_SEL_SHIFT) & 415 p10_EVENT_CACHE_SEL_MASK; 416 else 417 cache = (event >> EVENT_CACHE_SEL_SHIFT) & 418 EVENT_CACHE_SEL_MASK; 419 ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK; 420 421 if (pmc) { 422 u64 base_event; 423 424 if (pmc > 6) 425 return -1; 426 427 /* Ignore Linux defined bits when checking event below */ 428 base_event = event & ~EVENT_LINUX_MASK; 429 430 if (pmc >= 5 && base_event != 0x500fa && 431 base_event != 0x600f4) 432 return -1; 433 434 mask |= CNST_PMC_MASK(pmc); 435 value |= CNST_PMC_VAL(pmc); 436 437 /* 438 * PMC5 and PMC6 are used to count cycles and instructions and 439 * they do not support most of the constraint bits. Add a check 440 * to exclude PMC5/6 from most of the constraints except for 441 * EBB/BHRB. 442 */ 443 if (pmc >= 5) 444 goto ebb_bhrb; 445 } 446 447 if (pmc <= 4) { 448 /* 449 * Add to number of counters in use. Note this includes events with 450 * a PMC of 0 - they still need a PMC, it's just assigned later. 451 * Don't count events on PMC 5 & 6, there is only one valid event 452 * on each of those counters, and they are handled above. 453 */ 454 mask |= CNST_NC_MASK; 455 value |= CNST_NC_VAL; 456 } 457 458 if (unit >= 6 && unit <= 9) { 459 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 460 if (unit == 6) { 461 mask |= CNST_L2L3_GROUP_MASK; 462 value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT); 463 } 464 } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { 465 mask |= CNST_CACHE_GROUP_MASK; 466 value |= CNST_CACHE_GROUP_VAL(event & 0xff); 467 468 mask |= CNST_CACHE_PMC4_MASK; 469 if (pmc == 4) 470 value |= CNST_CACHE_PMC4_VAL; 471 } else if (cache & 0x7) { 472 /* 473 * L2/L3 events contain a cache selector field, which is 474 * supposed to be programmed into MMCRC. However MMCRC is only 475 * HV writable, and there is no API for guest kernels to modify 476 * it. The solution is for the hypervisor to initialise the 477 * field to zeroes, and for us to only ever allow events that 478 * have a cache selector of zero. The bank selector (bit 3) is 479 * irrelevant, as long as the rest of the value is 0. 480 */ 481 return -1; 482 } 483 484 } else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) { 485 mask |= CNST_L1_QUAL_MASK; 486 value |= CNST_L1_QUAL_VAL(cache); 487 } 488 489 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 490 mask |= CNST_RADIX_SCOPE_GROUP_MASK; 491 value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT); 492 } 493 494 if (is_event_marked(event)) { 495 mask |= CNST_SAMPLE_MASK; 496 value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT); 497 } 498 499 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 500 if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) { 501 mask |= CNST_THRESH_CTL_SEL_MASK; 502 value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT); 503 mask |= p10_CNST_THRESH_CMP_MASK; 504 value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1)); 505 } 506 } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { 507 if (event_is_threshold(event) && is_thresh_cmp_valid(event)) { 508 mask |= CNST_THRESH_MASK; 509 value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); 510 } 511 } else { 512 /* 513 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, 514 * the threshold control bits are used for the match value. 515 */ 516 if (event_is_fab_match(event)) { 517 mask |= CNST_FAB_MATCH_MASK; 518 value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT); 519 } else { 520 if (!is_thresh_cmp_valid(event)) 521 return -1; 522 523 mask |= CNST_THRESH_MASK; 524 value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); 525 } 526 } 527 528 ebb_bhrb: 529 if (!pmc && ebb) 530 /* EBB events must specify the PMC */ 531 return -1; 532 533 if (event & EVENT_WANTS_BHRB) { 534 if (!ebb) 535 /* Only EBB events can request BHRB */ 536 return -1; 537 538 mask |= CNST_IFM_MASK; 539 value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT); 540 } 541 542 /* 543 * All events must agree on EBB, either all request it or none. 544 * EBB events are pinned & exclusive, so this should never actually 545 * hit, but we leave it as a fallback in case. 546 */ 547 mask |= CNST_EBB_MASK; 548 value |= CNST_EBB_VAL(ebb); 549 550 *maskp = mask; 551 *valp = value; 552 553 return 0; 554 } 555 556 int isa207_compute_mmcr(u64 event[], int n_ev, 557 unsigned int hwc[], struct mmcr_regs *mmcr, 558 struct perf_event *pevents[], u32 flags) 559 { 560 unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val; 561 unsigned long mmcr3; 562 unsigned int pmc, pmc_inuse; 563 int i; 564 565 pmc_inuse = 0; 566 567 /* First pass to count resource use */ 568 for (i = 0; i < n_ev; ++i) { 569 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; 570 if (pmc) 571 pmc_inuse |= 1 << pmc; 572 } 573 574 mmcra = mmcr1 = mmcr2 = mmcr3 = 0; 575 576 /* 577 * Disable bhrb unless explicitly requested 578 * by setting MMCRA (BHRBRD) bit. 579 */ 580 if (cpu_has_feature(CPU_FTR_ARCH_31)) 581 mmcra |= MMCRA_BHRB_DISABLE; 582 583 /* Second pass: assign PMCs, set all MMCR1 fields */ 584 for (i = 0; i < n_ev; ++i) { 585 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; 586 unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; 587 combine = combine_from_event(event[i]); 588 psel = event[i] & EVENT_PSEL_MASK; 589 590 if (!pmc) { 591 for (pmc = 1; pmc <= 4; ++pmc) { 592 if (!(pmc_inuse & (1 << pmc))) 593 break; 594 } 595 596 pmc_inuse |= 1 << pmc; 597 } 598 599 if (pmc <= 4) { 600 mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc); 601 mmcr1 |= combine << combine_shift(pmc); 602 mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc); 603 } 604 605 /* In continuous sampling mode, update SDAR on TLB miss */ 606 mmcra_sdar_mode(event[i], &mmcra); 607 608 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 609 cache = dc_ic_rld_quad_l1_sel(event[i]); 610 mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT; 611 } else { 612 if (event[i] & EVENT_IS_L1) { 613 cache = dc_ic_rld_quad_l1_sel(event[i]); 614 mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT; 615 } 616 } 617 618 /* Set RADIX_SCOPE_QUAL bit */ 619 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 620 val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) & 621 p10_EVENT_RADIX_SCOPE_QUAL_MASK; 622 mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT; 623 } 624 625 if (is_event_marked(event[i])) { 626 mmcra |= MMCRA_SAMPLE_ENABLE; 627 628 val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; 629 if (val) { 630 mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT; 631 mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT; 632 } 633 } 634 635 /* 636 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, 637 * the threshold bits are used for the match value. 638 */ 639 if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) { 640 mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) & 641 EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT; 642 } else { 643 val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; 644 mmcra |= val << MMCRA_THR_CTL_SHIFT; 645 val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; 646 mmcra |= val << MMCRA_THR_SEL_SHIFT; 647 if (!cpu_has_feature(CPU_FTR_ARCH_31)) { 648 val = (event[i] >> EVENT_THR_CMP_SHIFT) & 649 EVENT_THR_CMP_MASK; 650 mmcra |= thresh_cmp_val(val); 651 } else if (flags & PPMU_HAS_ATTR_CONFIG1) { 652 val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) & 653 p10_EVENT_THR_CMP_MASK; 654 mmcra |= thresh_cmp_val(val); 655 } 656 } 657 658 if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) { 659 val = (event[i] >> p10_L2L3_EVENT_SHIFT) & 660 p10_EVENT_L2L3_SEL_MASK; 661 mmcr2 |= val << p10_L2L3_SEL_SHIFT; 662 } 663 664 if (event[i] & EVENT_WANTS_BHRB) { 665 val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK; 666 mmcra |= val << MMCRA_IFM_SHIFT; 667 } 668 669 /* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */ 670 if (cpu_has_feature(CPU_FTR_ARCH_31) && 671 (has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB))) 672 mmcra &= ~MMCRA_BHRB_DISABLE; 673 674 if (pevents[i]->attr.exclude_user) 675 mmcr2 |= MMCR2_FCP(pmc); 676 677 if (pevents[i]->attr.exclude_hv) 678 mmcr2 |= MMCR2_FCH(pmc); 679 680 if (pevents[i]->attr.exclude_kernel) { 681 if (cpu_has_feature(CPU_FTR_HVMODE)) 682 mmcr2 |= MMCR2_FCH(pmc); 683 else 684 mmcr2 |= MMCR2_FCS(pmc); 685 } 686 687 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 688 if (pmc <= 4) { 689 val = (event[i] >> p10_EVENT_MMCR3_SHIFT) & 690 p10_EVENT_MMCR3_MASK; 691 mmcr3 |= val << MMCR3_SHIFT(pmc); 692 } 693 } 694 695 hwc[i] = pmc - 1; 696 } 697 698 /* Return MMCRx values */ 699 mmcr->mmcr0 = 0; 700 701 /* pmc_inuse is 1-based */ 702 if (pmc_inuse & 2) 703 mmcr->mmcr0 = MMCR0_PMC1CE; 704 705 if (pmc_inuse & 0x7c) 706 mmcr->mmcr0 |= MMCR0_PMCjCE; 707 708 /* If we're not using PMC 5 or 6, freeze them */ 709 if (!(pmc_inuse & 0x60)) 710 mmcr->mmcr0 |= MMCR0_FC56; 711 712 /* 713 * Set mmcr0 (PMCCEXT) for p10 which 714 * will restrict access to group B registers 715 * when MMCR0 PMCC=0b00. 716 */ 717 if (cpu_has_feature(CPU_FTR_ARCH_31)) 718 mmcr->mmcr0 |= MMCR0_PMCCEXT; 719 720 mmcr->mmcr1 = mmcr1; 721 mmcr->mmcra = mmcra; 722 mmcr->mmcr2 = mmcr2; 723 mmcr->mmcr3 = mmcr3; 724 725 return 0; 726 } 727 728 void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr) 729 { 730 if (pmc <= 3) 731 mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1)); 732 } 733 734 static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size) 735 { 736 int i, j; 737 738 for (i = 0; i < size; ++i) { 739 if (event < ev_alt[i][0]) 740 break; 741 742 for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j) 743 if (event == ev_alt[i][j]) 744 return i; 745 } 746 747 return -1; 748 } 749 750 int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags, 751 const unsigned int ev_alt[][MAX_ALT]) 752 { 753 int i, j, num_alt = 0; 754 u64 alt_event; 755 756 alt[num_alt++] = event; 757 i = find_alternative(event, ev_alt, size); 758 if (i >= 0) { 759 /* Filter out the original event, it's already in alt[0] */ 760 for (j = 0; j < MAX_ALT; ++j) { 761 alt_event = ev_alt[i][j]; 762 if (alt_event && alt_event != event) 763 alt[num_alt++] = alt_event; 764 } 765 } 766 767 if (flags & PPMU_ONLY_COUNT_RUN) { 768 /* 769 * We're only counting in RUN state, so PM_CYC is equivalent to 770 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL. 771 */ 772 j = num_alt; 773 for (i = 0; i < num_alt; ++i) { 774 switch (alt[i]) { 775 case 0x1e: /* PMC_CYC */ 776 alt[j++] = 0x600f4; /* PM_RUN_CYC */ 777 break; 778 case 0x600f4: 779 alt[j++] = 0x1e; 780 break; 781 case 0x2: /* PM_INST_CMPL */ 782 alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */ 783 break; 784 case 0x500fa: 785 alt[j++] = 0x2; 786 break; 787 } 788 } 789 num_alt = j; 790 } 791 792 return num_alt; 793 } 794 795 int isa3XX_check_attr_config(struct perf_event *ev) 796 { 797 u64 val, sample_mode; 798 u64 event = ev->attr.config; 799 800 val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; 801 sample_mode = val & 0x3; 802 803 /* 804 * MMCRA[61:62] is Random Sampling Mode (SM). 805 * value of 0b11 is reserved. 806 */ 807 if (sample_mode == 0x3) 808 return -EINVAL; 809 810 /* 811 * Check for all reserved value 812 * Source: Performance Monitoring Unit User Guide 813 */ 814 switch (val) { 815 case 0x5: 816 case 0x9: 817 case 0xD: 818 case 0x19: 819 case 0x1D: 820 case 0x1A: 821 case 0x1E: 822 return -EINVAL; 823 } 824 825 /* 826 * MMCRA[48:51]/[52:55]) Threshold Start/Stop 827 * Events Selection. 828 * 0b11110000/0b00001111 is reserved. 829 */ 830 val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; 831 if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF)) 832 return -EINVAL; 833 834 return 0; 835 } 836