1 /* 2 * In-Memory Collection (IMC) Performance Monitor counter support. 3 * 4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 5 * (C) 2017 Anju T Sudhakar, IBM Corporation. 6 * (C) 2017 Hemant K Shaw, IBM Corporation. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or later version. 12 */ 13 #include <linux/perf_event.h> 14 #include <linux/slab.h> 15 #include <asm/opal.h> 16 #include <asm/imc-pmu.h> 17 #include <asm/cputhreads.h> 18 #include <asm/smp.h> 19 #include <linux/string.h> 20 21 /* Nest IMC data structures and variables */ 22 23 /* 24 * Used to avoid races in counting the nest-pmu units during hotplug 25 * register and unregister 26 */ 27 static DEFINE_MUTEX(nest_init_lock); 28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 29 static struct imc_pmu **per_nest_pmu_arr; 30 static cpumask_t nest_imc_cpumask; 31 static struct imc_pmu_ref *nest_imc_refc; 32 static int nest_pmus; 33 34 /* Core IMC data structures and variables */ 35 36 static cpumask_t core_imc_cpumask; 37 static struct imc_pmu_ref *core_imc_refc; 38 static struct imc_pmu *core_imc_pmu; 39 40 /* Thread IMC data structures and variables */ 41 42 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 43 static struct imc_pmu *thread_imc_pmu; 44 static int thread_imc_mem_size; 45 46 /* Trace IMC data structures */ 47 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 48 static struct imc_pmu_ref *trace_imc_refc; 49 static int trace_imc_mem_size; 50 51 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 52 { 53 return container_of(event->pmu, struct imc_pmu, pmu); 54 } 55 56 PMU_FORMAT_ATTR(event, "config:0-61"); 57 PMU_FORMAT_ATTR(offset, "config:0-31"); 58 PMU_FORMAT_ATTR(rvalue, "config:32"); 59 PMU_FORMAT_ATTR(mode, "config:33-40"); 60 static struct attribute *imc_format_attrs[] = { 61 &format_attr_event.attr, 62 &format_attr_offset.attr, 63 &format_attr_rvalue.attr, 64 &format_attr_mode.attr, 65 NULL, 66 }; 67 68 static struct attribute_group imc_format_group = { 69 .name = "format", 70 .attrs = imc_format_attrs, 71 }; 72 73 /* Format attribute for imc trace-mode */ 74 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 75 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 76 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 77 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 78 static struct attribute *trace_imc_format_attrs[] = { 79 &format_attr_event.attr, 80 &format_attr_cpmc_reserved.attr, 81 &format_attr_cpmc_event.attr, 82 &format_attr_cpmc_samplesel.attr, 83 &format_attr_cpmc_load.attr, 84 NULL, 85 }; 86 87 static struct attribute_group trace_imc_format_group = { 88 .name = "format", 89 .attrs = trace_imc_format_attrs, 90 }; 91 92 /* Get the cpumask printed to a buffer "buf" */ 93 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 94 struct device_attribute *attr, 95 char *buf) 96 { 97 struct pmu *pmu = dev_get_drvdata(dev); 98 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 99 cpumask_t *active_mask; 100 101 switch(imc_pmu->domain){ 102 case IMC_DOMAIN_NEST: 103 active_mask = &nest_imc_cpumask; 104 break; 105 case IMC_DOMAIN_CORE: 106 active_mask = &core_imc_cpumask; 107 break; 108 default: 109 return 0; 110 } 111 112 return cpumap_print_to_pagebuf(true, buf, active_mask); 113 } 114 115 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 116 117 static struct attribute *imc_pmu_cpumask_attrs[] = { 118 &dev_attr_cpumask.attr, 119 NULL, 120 }; 121 122 static struct attribute_group imc_pmu_cpumask_attr_group = { 123 .attrs = imc_pmu_cpumask_attrs, 124 }; 125 126 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 127 static struct attribute *device_str_attr_create(const char *name, const char *str) 128 { 129 struct perf_pmu_events_attr *attr; 130 131 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 132 if (!attr) 133 return NULL; 134 sysfs_attr_init(&attr->attr.attr); 135 136 attr->event_str = str; 137 attr->attr.attr.name = name; 138 attr->attr.attr.mode = 0444; 139 attr->attr.show = perf_event_sysfs_show; 140 141 return &attr->attr.attr; 142 } 143 144 static int imc_parse_event(struct device_node *np, const char *scale, 145 const char *unit, const char *prefix, 146 u32 base, struct imc_events *event) 147 { 148 const char *s; 149 u32 reg; 150 151 if (of_property_read_u32(np, "reg", ®)) 152 goto error; 153 /* Add the base_reg value to the "reg" */ 154 event->value = base + reg; 155 156 if (of_property_read_string(np, "event-name", &s)) 157 goto error; 158 159 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 160 if (!event->name) 161 goto error; 162 163 if (of_property_read_string(np, "scale", &s)) 164 s = scale; 165 166 if (s) { 167 event->scale = kstrdup(s, GFP_KERNEL); 168 if (!event->scale) 169 goto error; 170 } 171 172 if (of_property_read_string(np, "unit", &s)) 173 s = unit; 174 175 if (s) { 176 event->unit = kstrdup(s, GFP_KERNEL); 177 if (!event->unit) 178 goto error; 179 } 180 181 return 0; 182 error: 183 kfree(event->unit); 184 kfree(event->scale); 185 kfree(event->name); 186 return -EINVAL; 187 } 188 189 /* 190 * imc_free_events: Function to cleanup the events list, having 191 * "nr_entries". 192 */ 193 static void imc_free_events(struct imc_events *events, int nr_entries) 194 { 195 int i; 196 197 /* Nothing to clean, return */ 198 if (!events) 199 return; 200 for (i = 0; i < nr_entries; i++) { 201 kfree(events[i].unit); 202 kfree(events[i].scale); 203 kfree(events[i].name); 204 } 205 206 kfree(events); 207 } 208 209 /* 210 * update_events_in_group: Update the "events" information in an attr_group 211 * and assign the attr_group to the pmu "pmu". 212 */ 213 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 214 { 215 struct attribute_group *attr_group; 216 struct attribute **attrs, *dev_str; 217 struct device_node *np, *pmu_events; 218 u32 handle, base_reg; 219 int i = 0, j = 0, ct, ret; 220 const char *prefix, *g_scale, *g_unit; 221 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 222 223 if (!of_property_read_u32(node, "events", &handle)) 224 pmu_events = of_find_node_by_phandle(handle); 225 else 226 return 0; 227 228 /* Did not find any node with a given phandle */ 229 if (!pmu_events) 230 return 0; 231 232 /* Get a count of number of child nodes */ 233 ct = of_get_child_count(pmu_events); 234 235 /* Get the event prefix */ 236 if (of_property_read_string(node, "events-prefix", &prefix)) 237 return 0; 238 239 /* Get a global unit and scale data if available */ 240 if (of_property_read_string(node, "scale", &g_scale)) 241 g_scale = NULL; 242 243 if (of_property_read_string(node, "unit", &g_unit)) 244 g_unit = NULL; 245 246 /* "reg" property gives out the base offset of the counters data */ 247 of_property_read_u32(node, "reg", &base_reg); 248 249 /* Allocate memory for the events */ 250 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 251 if (!pmu->events) 252 return -ENOMEM; 253 254 ct = 0; 255 /* Parse the events and update the struct */ 256 for_each_child_of_node(pmu_events, np) { 257 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 258 if (!ret) 259 ct++; 260 } 261 262 /* Allocate memory for attribute group */ 263 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 264 if (!attr_group) { 265 imc_free_events(pmu->events, ct); 266 return -ENOMEM; 267 } 268 269 /* 270 * Allocate memory for attributes. 271 * Since we have count of events for this pmu, we also allocate 272 * memory for the scale and unit attribute for now. 273 * "ct" has the total event structs added from the events-parent node. 274 * So allocate three times the "ct" (this includes event, event_scale and 275 * event_unit). 276 */ 277 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 278 if (!attrs) { 279 kfree(attr_group); 280 imc_free_events(pmu->events, ct); 281 return -ENOMEM; 282 } 283 284 attr_group->name = "events"; 285 attr_group->attrs = attrs; 286 do { 287 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 288 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 289 if (!dev_str) 290 continue; 291 292 attrs[j++] = dev_str; 293 if (pmu->events[i].scale) { 294 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 295 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 296 if (!dev_str) 297 continue; 298 299 attrs[j++] = dev_str; 300 } 301 302 if (pmu->events[i].unit) { 303 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 304 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 305 if (!dev_str) 306 continue; 307 308 attrs[j++] = dev_str; 309 } 310 } while (++i < ct); 311 312 /* Save the event attribute */ 313 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 314 315 return 0; 316 } 317 318 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 319 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 320 { 321 return per_cpu(local_nest_imc_refc, cpu); 322 } 323 324 static void nest_change_cpu_context(int old_cpu, int new_cpu) 325 { 326 struct imc_pmu **pn = per_nest_pmu_arr; 327 328 if (old_cpu < 0 || new_cpu < 0) 329 return; 330 331 while (*pn) { 332 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 333 pn++; 334 } 335 } 336 337 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 338 { 339 int nid, target = -1; 340 const struct cpumask *l_cpumask; 341 struct imc_pmu_ref *ref; 342 343 /* 344 * Check in the designated list for this cpu. Dont bother 345 * if not one of them. 346 */ 347 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 348 return 0; 349 350 /* 351 * Check whether nest_imc is registered. We could end up here if the 352 * cpuhotplug callback registration fails. i.e, callback invokes the 353 * offline path for all successfully registered nodes. At this stage, 354 * nest_imc pmu will not be registered and we should return here. 355 * 356 * We return with a zero since this is not an offline failure. And 357 * cpuhp_setup_state() returns the actual failure reason to the caller, 358 * which in turn will call the cleanup routine. 359 */ 360 if (!nest_pmus) 361 return 0; 362 363 /* 364 * Now that this cpu is one of the designated, 365 * find a next cpu a) which is online and b) in same chip. 366 */ 367 nid = cpu_to_node(cpu); 368 l_cpumask = cpumask_of_node(nid); 369 target = cpumask_any_but(l_cpumask, cpu); 370 371 /* 372 * Update the cpumask with the target cpu and 373 * migrate the context if needed 374 */ 375 if (target >= 0 && target < nr_cpu_ids) { 376 cpumask_set_cpu(target, &nest_imc_cpumask); 377 nest_change_cpu_context(cpu, target); 378 } else { 379 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 380 get_hard_smp_processor_id(cpu)); 381 /* 382 * If this is the last cpu in this chip then, skip the reference 383 * count mutex lock and make the reference count on this chip zero. 384 */ 385 ref = get_nest_pmu_ref(cpu); 386 if (!ref) 387 return -EINVAL; 388 389 ref->refc = 0; 390 } 391 return 0; 392 } 393 394 static int ppc_nest_imc_cpu_online(unsigned int cpu) 395 { 396 const struct cpumask *l_cpumask; 397 static struct cpumask tmp_mask; 398 int res; 399 400 /* Get the cpumask of this node */ 401 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 402 403 /* 404 * If this is not the first online CPU on this node, then 405 * just return. 406 */ 407 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 408 return 0; 409 410 /* 411 * If this is the first online cpu on this node 412 * disable the nest counters by making an OPAL call. 413 */ 414 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 415 get_hard_smp_processor_id(cpu)); 416 if (res) 417 return res; 418 419 /* Make this CPU the designated target for counter collection */ 420 cpumask_set_cpu(cpu, &nest_imc_cpumask); 421 return 0; 422 } 423 424 static int nest_pmu_cpumask_init(void) 425 { 426 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 427 "perf/powerpc/imc:online", 428 ppc_nest_imc_cpu_online, 429 ppc_nest_imc_cpu_offline); 430 } 431 432 static void nest_imc_counters_release(struct perf_event *event) 433 { 434 int rc, node_id; 435 struct imc_pmu_ref *ref; 436 437 if (event->cpu < 0) 438 return; 439 440 node_id = cpu_to_node(event->cpu); 441 442 /* 443 * See if we need to disable the nest PMU. 444 * If no events are currently in use, then we have to take a 445 * mutex to ensure that we don't race with another task doing 446 * enable or disable the nest counters. 447 */ 448 ref = get_nest_pmu_ref(event->cpu); 449 if (!ref) 450 return; 451 452 /* Take the mutex lock for this node and then decrement the reference count */ 453 mutex_lock(&ref->lock); 454 if (ref->refc == 0) { 455 /* 456 * The scenario where this is true is, when perf session is 457 * started, followed by offlining of all cpus in a given node. 458 * 459 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 460 * function set the ref->count to zero, if the cpu which is 461 * about to offline is the last cpu in a given node and make 462 * an OPAL call to disable the engine in that node. 463 * 464 */ 465 mutex_unlock(&ref->lock); 466 return; 467 } 468 ref->refc--; 469 if (ref->refc == 0) { 470 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 471 get_hard_smp_processor_id(event->cpu)); 472 if (rc) { 473 mutex_unlock(&ref->lock); 474 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 475 return; 476 } 477 } else if (ref->refc < 0) { 478 WARN(1, "nest-imc: Invalid event reference count\n"); 479 ref->refc = 0; 480 } 481 mutex_unlock(&ref->lock); 482 } 483 484 static int nest_imc_event_init(struct perf_event *event) 485 { 486 int chip_id, rc, node_id; 487 u32 l_config, config = event->attr.config; 488 struct imc_mem_info *pcni; 489 struct imc_pmu *pmu; 490 struct imc_pmu_ref *ref; 491 bool flag = false; 492 493 if (event->attr.type != event->pmu->type) 494 return -ENOENT; 495 496 /* Sampling not supported */ 497 if (event->hw.sample_period) 498 return -EINVAL; 499 500 if (event->cpu < 0) 501 return -EINVAL; 502 503 pmu = imc_event_to_pmu(event); 504 505 /* Sanity check for config (event offset) */ 506 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 507 return -EINVAL; 508 509 /* 510 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 511 * Get the base memory addresss for this cpu. 512 */ 513 chip_id = cpu_to_chip_id(event->cpu); 514 515 /* Return, if chip_id is not valid */ 516 if (chip_id < 0) 517 return -ENODEV; 518 519 pcni = pmu->mem_info; 520 do { 521 if (pcni->id == chip_id) { 522 flag = true; 523 break; 524 } 525 pcni++; 526 } while (pcni->vbase != 0); 527 528 if (!flag) 529 return -ENODEV; 530 531 /* 532 * Add the event offset to the base address. 533 */ 534 l_config = config & IMC_EVENT_OFFSET_MASK; 535 event->hw.event_base = (u64)pcni->vbase + l_config; 536 node_id = cpu_to_node(event->cpu); 537 538 /* 539 * Get the imc_pmu_ref struct for this node. 540 * Take the mutex lock and then increment the count of nest pmu events 541 * inited. 542 */ 543 ref = get_nest_pmu_ref(event->cpu); 544 if (!ref) 545 return -EINVAL; 546 547 mutex_lock(&ref->lock); 548 if (ref->refc == 0) { 549 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 550 get_hard_smp_processor_id(event->cpu)); 551 if (rc) { 552 mutex_unlock(&ref->lock); 553 pr_err("nest-imc: Unable to start the counters for node %d\n", 554 node_id); 555 return rc; 556 } 557 } 558 ++ref->refc; 559 mutex_unlock(&ref->lock); 560 561 event->destroy = nest_imc_counters_release; 562 return 0; 563 } 564 565 /* 566 * core_imc_mem_init : Initializes memory for the current core. 567 * 568 * Uses alloc_pages_node() and uses the returned address as an argument to 569 * an opal call to configure the pdbar. The address sent as an argument is 570 * converted to physical address before the opal call is made. This is the 571 * base address at which the core imc counters are populated. 572 */ 573 static int core_imc_mem_init(int cpu, int size) 574 { 575 int nid, rc = 0, core_id = (cpu / threads_per_core); 576 struct imc_mem_info *mem_info; 577 578 /* 579 * alloc_pages_node() will allocate memory for core in the 580 * local node only. 581 */ 582 nid = cpu_to_node(cpu); 583 mem_info = &core_imc_pmu->mem_info[core_id]; 584 mem_info->id = core_id; 585 586 /* We need only vbase for core counters */ 587 mem_info->vbase = page_address(alloc_pages_node(nid, 588 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 589 __GFP_NOWARN, get_order(size))); 590 if (!mem_info->vbase) 591 return -ENOMEM; 592 593 /* Init the mutex */ 594 core_imc_refc[core_id].id = core_id; 595 mutex_init(&core_imc_refc[core_id].lock); 596 597 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 598 __pa((void *)mem_info->vbase), 599 get_hard_smp_processor_id(cpu)); 600 if (rc) { 601 free_pages((u64)mem_info->vbase, get_order(size)); 602 mem_info->vbase = NULL; 603 } 604 605 return rc; 606 } 607 608 static bool is_core_imc_mem_inited(int cpu) 609 { 610 struct imc_mem_info *mem_info; 611 int core_id = (cpu / threads_per_core); 612 613 mem_info = &core_imc_pmu->mem_info[core_id]; 614 if (!mem_info->vbase) 615 return false; 616 617 return true; 618 } 619 620 static int ppc_core_imc_cpu_online(unsigned int cpu) 621 { 622 const struct cpumask *l_cpumask; 623 static struct cpumask tmp_mask; 624 int ret = 0; 625 626 /* Get the cpumask for this core */ 627 l_cpumask = cpu_sibling_mask(cpu); 628 629 /* If a cpu for this core is already set, then, don't do anything */ 630 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 631 return 0; 632 633 if (!is_core_imc_mem_inited(cpu)) { 634 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 635 if (ret) { 636 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 637 return ret; 638 } 639 } 640 641 /* set the cpu in the mask */ 642 cpumask_set_cpu(cpu, &core_imc_cpumask); 643 return 0; 644 } 645 646 static int ppc_core_imc_cpu_offline(unsigned int cpu) 647 { 648 unsigned int core_id; 649 int ncpu; 650 struct imc_pmu_ref *ref; 651 652 /* 653 * clear this cpu out of the mask, if not present in the mask, 654 * don't bother doing anything. 655 */ 656 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 657 return 0; 658 659 /* 660 * Check whether core_imc is registered. We could end up here 661 * if the cpuhotplug callback registration fails. i.e, callback 662 * invokes the offline path for all sucessfully registered cpus. 663 * At this stage, core_imc pmu will not be registered and we 664 * should return here. 665 * 666 * We return with a zero since this is not an offline failure. 667 * And cpuhp_setup_state() returns the actual failure reason 668 * to the caller, which inturn will call the cleanup routine. 669 */ 670 if (!core_imc_pmu->pmu.event_init) 671 return 0; 672 673 /* Find any online cpu in that core except the current "cpu" */ 674 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 675 676 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 677 cpumask_set_cpu(ncpu, &core_imc_cpumask); 678 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 679 } else { 680 /* 681 * If this is the last cpu in this core then, skip taking refernce 682 * count mutex lock for this core and directly zero "refc" for 683 * this core. 684 */ 685 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 686 get_hard_smp_processor_id(cpu)); 687 core_id = cpu / threads_per_core; 688 ref = &core_imc_refc[core_id]; 689 if (!ref) 690 return -EINVAL; 691 692 ref->refc = 0; 693 } 694 return 0; 695 } 696 697 static int core_imc_pmu_cpumask_init(void) 698 { 699 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 700 "perf/powerpc/imc_core:online", 701 ppc_core_imc_cpu_online, 702 ppc_core_imc_cpu_offline); 703 } 704 705 static void core_imc_counters_release(struct perf_event *event) 706 { 707 int rc, core_id; 708 struct imc_pmu_ref *ref; 709 710 if (event->cpu < 0) 711 return; 712 /* 713 * See if we need to disable the IMC PMU. 714 * If no events are currently in use, then we have to take a 715 * mutex to ensure that we don't race with another task doing 716 * enable or disable the core counters. 717 */ 718 core_id = event->cpu / threads_per_core; 719 720 /* Take the mutex lock and decrement the refernce count for this core */ 721 ref = &core_imc_refc[core_id]; 722 if (!ref) 723 return; 724 725 mutex_lock(&ref->lock); 726 if (ref->refc == 0) { 727 /* 728 * The scenario where this is true is, when perf session is 729 * started, followed by offlining of all cpus in a given core. 730 * 731 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 732 * function set the ref->count to zero, if the cpu which is 733 * about to offline is the last cpu in a given core and make 734 * an OPAL call to disable the engine in that core. 735 * 736 */ 737 mutex_unlock(&ref->lock); 738 return; 739 } 740 ref->refc--; 741 if (ref->refc == 0) { 742 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 743 get_hard_smp_processor_id(event->cpu)); 744 if (rc) { 745 mutex_unlock(&ref->lock); 746 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 747 return; 748 } 749 } else if (ref->refc < 0) { 750 WARN(1, "core-imc: Invalid event reference count\n"); 751 ref->refc = 0; 752 } 753 mutex_unlock(&ref->lock); 754 } 755 756 static int core_imc_event_init(struct perf_event *event) 757 { 758 int core_id, rc; 759 u64 config = event->attr.config; 760 struct imc_mem_info *pcmi; 761 struct imc_pmu *pmu; 762 struct imc_pmu_ref *ref; 763 764 if (event->attr.type != event->pmu->type) 765 return -ENOENT; 766 767 /* Sampling not supported */ 768 if (event->hw.sample_period) 769 return -EINVAL; 770 771 if (event->cpu < 0) 772 return -EINVAL; 773 774 event->hw.idx = -1; 775 pmu = imc_event_to_pmu(event); 776 777 /* Sanity check for config (event offset) */ 778 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 779 return -EINVAL; 780 781 if (!is_core_imc_mem_inited(event->cpu)) 782 return -ENODEV; 783 784 core_id = event->cpu / threads_per_core; 785 pcmi = &core_imc_pmu->mem_info[core_id]; 786 if ((!pcmi->vbase)) 787 return -ENODEV; 788 789 /* Get the core_imc mutex for this core */ 790 ref = &core_imc_refc[core_id]; 791 if (!ref) 792 return -EINVAL; 793 794 /* 795 * Core pmu units are enabled only when it is used. 796 * See if this is triggered for the first time. 797 * If yes, take the mutex lock and enable the core counters. 798 * If not, just increment the count in core_imc_refc struct. 799 */ 800 mutex_lock(&ref->lock); 801 if (ref->refc == 0) { 802 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 803 get_hard_smp_processor_id(event->cpu)); 804 if (rc) { 805 mutex_unlock(&ref->lock); 806 pr_err("core-imc: Unable to start the counters for core %d\n", 807 core_id); 808 return rc; 809 } 810 } 811 ++ref->refc; 812 mutex_unlock(&ref->lock); 813 814 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 815 event->destroy = core_imc_counters_release; 816 return 0; 817 } 818 819 /* 820 * Allocates a page of memory for each of the online cpus, and load 821 * LDBAR with 0. 822 * The physical base address of the page allocated for a cpu will be 823 * written to the LDBAR for that cpu, when the thread-imc event 824 * is added. 825 * 826 * LDBAR Register Layout: 827 * 828 * 0 4 8 12 16 20 24 28 829 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 830 * | | [ ] [ Counter Address [8:50] 831 * | * Mode | 832 * | * PB Scope 833 * * Enable/Disable 834 * 835 * 32 36 40 44 48 52 56 60 836 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 837 * Counter Address [8:50] ] 838 * 839 */ 840 static int thread_imc_mem_alloc(int cpu_id, int size) 841 { 842 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 843 int nid = cpu_to_node(cpu_id); 844 845 if (!local_mem) { 846 /* 847 * This case could happen only once at start, since we dont 848 * free the memory in cpu offline path. 849 */ 850 local_mem = page_address(alloc_pages_node(nid, 851 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 852 __GFP_NOWARN, get_order(size))); 853 if (!local_mem) 854 return -ENOMEM; 855 856 per_cpu(thread_imc_mem, cpu_id) = local_mem; 857 } 858 859 mtspr(SPRN_LDBAR, 0); 860 return 0; 861 } 862 863 static int ppc_thread_imc_cpu_online(unsigned int cpu) 864 { 865 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 866 } 867 868 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 869 { 870 mtspr(SPRN_LDBAR, 0); 871 return 0; 872 } 873 874 static int thread_imc_cpu_init(void) 875 { 876 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 877 "perf/powerpc/imc_thread:online", 878 ppc_thread_imc_cpu_online, 879 ppc_thread_imc_cpu_offline); 880 } 881 882 static int thread_imc_event_init(struct perf_event *event) 883 { 884 u32 config = event->attr.config; 885 struct task_struct *target; 886 struct imc_pmu *pmu; 887 888 if (event->attr.type != event->pmu->type) 889 return -ENOENT; 890 891 if (!capable(CAP_SYS_ADMIN)) 892 return -EACCES; 893 894 /* Sampling not supported */ 895 if (event->hw.sample_period) 896 return -EINVAL; 897 898 event->hw.idx = -1; 899 pmu = imc_event_to_pmu(event); 900 901 /* Sanity check for config offset */ 902 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 903 return -EINVAL; 904 905 target = event->hw.target; 906 if (!target) 907 return -EINVAL; 908 909 event->pmu->task_ctx_nr = perf_sw_context; 910 return 0; 911 } 912 913 static bool is_thread_imc_pmu(struct perf_event *event) 914 { 915 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 916 return true; 917 918 return false; 919 } 920 921 static u64 * get_event_base_addr(struct perf_event *event) 922 { 923 u64 addr; 924 925 if (is_thread_imc_pmu(event)) { 926 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 927 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 928 } 929 930 return (u64 *)event->hw.event_base; 931 } 932 933 static void thread_imc_pmu_start_txn(struct pmu *pmu, 934 unsigned int txn_flags) 935 { 936 if (txn_flags & ~PERF_PMU_TXN_ADD) 937 return; 938 perf_pmu_disable(pmu); 939 } 940 941 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 942 { 943 perf_pmu_enable(pmu); 944 } 945 946 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 947 { 948 perf_pmu_enable(pmu); 949 return 0; 950 } 951 952 static u64 imc_read_counter(struct perf_event *event) 953 { 954 u64 *addr, data; 955 956 /* 957 * In-Memory Collection (IMC) counters are free flowing counters. 958 * So we take a snapshot of the counter value on enable and save it 959 * to calculate the delta at later stage to present the event counter 960 * value. 961 */ 962 addr = get_event_base_addr(event); 963 data = be64_to_cpu(READ_ONCE(*addr)); 964 local64_set(&event->hw.prev_count, data); 965 966 return data; 967 } 968 969 static void imc_event_update(struct perf_event *event) 970 { 971 u64 counter_prev, counter_new, final_count; 972 973 counter_prev = local64_read(&event->hw.prev_count); 974 counter_new = imc_read_counter(event); 975 final_count = counter_new - counter_prev; 976 977 /* Update the delta to the event count */ 978 local64_add(final_count, &event->count); 979 } 980 981 static void imc_event_start(struct perf_event *event, int flags) 982 { 983 /* 984 * In Memory Counters are free flowing counters. HW or the microcode 985 * keeps adding to the counter offset in memory. To get event 986 * counter value, we snapshot the value here and we calculate 987 * delta at later point. 988 */ 989 imc_read_counter(event); 990 } 991 992 static void imc_event_stop(struct perf_event *event, int flags) 993 { 994 /* 995 * Take a snapshot and calculate the delta and update 996 * the event counter values. 997 */ 998 imc_event_update(event); 999 } 1000 1001 static int imc_event_add(struct perf_event *event, int flags) 1002 { 1003 if (flags & PERF_EF_START) 1004 imc_event_start(event, flags); 1005 1006 return 0; 1007 } 1008 1009 static int thread_imc_event_add(struct perf_event *event, int flags) 1010 { 1011 int core_id; 1012 struct imc_pmu_ref *ref; 1013 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1014 1015 if (flags & PERF_EF_START) 1016 imc_event_start(event, flags); 1017 1018 if (!is_core_imc_mem_inited(smp_processor_id())) 1019 return -EINVAL; 1020 1021 core_id = smp_processor_id() / threads_per_core; 1022 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1023 mtspr(SPRN_LDBAR, ldbar_value); 1024 1025 /* 1026 * imc pmus are enabled only when it is used. 1027 * See if this is triggered for the first time. 1028 * If yes, take the mutex lock and enable the counters. 1029 * If not, just increment the count in ref count struct. 1030 */ 1031 ref = &core_imc_refc[core_id]; 1032 if (!ref) 1033 return -EINVAL; 1034 1035 mutex_lock(&ref->lock); 1036 if (ref->refc == 0) { 1037 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1038 get_hard_smp_processor_id(smp_processor_id()))) { 1039 mutex_unlock(&ref->lock); 1040 pr_err("thread-imc: Unable to start the counter\ 1041 for core %d\n", core_id); 1042 return -EINVAL; 1043 } 1044 } 1045 ++ref->refc; 1046 mutex_unlock(&ref->lock); 1047 return 0; 1048 } 1049 1050 static void thread_imc_event_del(struct perf_event *event, int flags) 1051 { 1052 1053 int core_id; 1054 struct imc_pmu_ref *ref; 1055 1056 mtspr(SPRN_LDBAR, 0); 1057 1058 core_id = smp_processor_id() / threads_per_core; 1059 ref = &core_imc_refc[core_id]; 1060 1061 mutex_lock(&ref->lock); 1062 ref->refc--; 1063 if (ref->refc == 0) { 1064 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1065 get_hard_smp_processor_id(smp_processor_id()))) { 1066 mutex_unlock(&ref->lock); 1067 pr_err("thread-imc: Unable to stop the counters\ 1068 for core %d\n", core_id); 1069 return; 1070 } 1071 } else if (ref->refc < 0) { 1072 ref->refc = 0; 1073 } 1074 mutex_unlock(&ref->lock); 1075 /* 1076 * Take a snapshot and calculate the delta and update 1077 * the event counter values. 1078 */ 1079 imc_event_update(event); 1080 } 1081 1082 /* 1083 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1084 */ 1085 static int trace_imc_mem_alloc(int cpu_id, int size) 1086 { 1087 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1088 int phys_id = cpu_to_node(cpu_id), rc = 0; 1089 int core_id = (cpu_id / threads_per_core); 1090 1091 if (!local_mem) { 1092 local_mem = page_address(alloc_pages_node(phys_id, 1093 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1094 __GFP_NOWARN, get_order(size))); 1095 if (!local_mem) 1096 return -ENOMEM; 1097 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1098 1099 /* Initialise the counters for trace mode */ 1100 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1101 get_hard_smp_processor_id(cpu_id)); 1102 if (rc) { 1103 pr_info("IMC:opal init failed for trace imc\n"); 1104 return rc; 1105 } 1106 } 1107 1108 /* Init the mutex, if not already */ 1109 trace_imc_refc[core_id].id = core_id; 1110 mutex_init(&trace_imc_refc[core_id].lock); 1111 1112 mtspr(SPRN_LDBAR, 0); 1113 return 0; 1114 } 1115 1116 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1117 { 1118 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1119 } 1120 1121 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1122 { 1123 mtspr(SPRN_LDBAR, 0); 1124 return 0; 1125 } 1126 1127 static int trace_imc_cpu_init(void) 1128 { 1129 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1130 "perf/powerpc/imc_trace:online", 1131 ppc_trace_imc_cpu_online, 1132 ppc_trace_imc_cpu_offline); 1133 } 1134 1135 static u64 get_trace_imc_event_base_addr(void) 1136 { 1137 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1138 } 1139 1140 /* 1141 * Function to parse trace-imc data obtained 1142 * and to prepare the perf sample. 1143 */ 1144 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1145 struct perf_sample_data *data, 1146 u64 *prev_tb, 1147 struct perf_event_header *header, 1148 struct perf_event *event) 1149 { 1150 /* Sanity checks for a valid record */ 1151 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1152 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1153 else 1154 return -EINVAL; 1155 1156 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1157 be64_to_cpu(READ_ONCE(mem->tb2))) 1158 return -EINVAL; 1159 1160 /* Prepare perf sample */ 1161 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1162 data->period = event->hw.last_period; 1163 1164 header->type = PERF_RECORD_SAMPLE; 1165 header->size = sizeof(*header) + event->header_size; 1166 header->misc = 0; 1167 1168 if (is_kernel_addr(data->ip)) 1169 header->misc |= PERF_RECORD_MISC_KERNEL; 1170 else 1171 header->misc |= PERF_RECORD_MISC_USER; 1172 1173 perf_event_header__init_id(header, data, event); 1174 1175 return 0; 1176 } 1177 1178 static void dump_trace_imc_data(struct perf_event *event) 1179 { 1180 struct trace_imc_data *mem; 1181 int i, ret; 1182 u64 prev_tb = 0; 1183 1184 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1185 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1186 i++, mem++) { 1187 struct perf_sample_data data; 1188 struct perf_event_header header; 1189 1190 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1191 if (ret) /* Exit, if not a valid record */ 1192 break; 1193 else { 1194 /* If this is a valid record, create the sample */ 1195 struct perf_output_handle handle; 1196 1197 if (perf_output_begin(&handle, event, header.size)) 1198 return; 1199 1200 perf_output_sample(&handle, &header, &data, event); 1201 perf_output_end(&handle); 1202 } 1203 } 1204 } 1205 1206 static int trace_imc_event_add(struct perf_event *event, int flags) 1207 { 1208 int core_id = smp_processor_id() / threads_per_core; 1209 struct imc_pmu_ref *ref = NULL; 1210 u64 local_mem, ldbar_value; 1211 1212 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1213 local_mem = get_trace_imc_event_base_addr(); 1214 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1215 1216 if (core_imc_refc) 1217 ref = &core_imc_refc[core_id]; 1218 if (!ref) { 1219 /* If core-imc is not enabled, use trace-imc reference count */ 1220 if (trace_imc_refc) 1221 ref = &trace_imc_refc[core_id]; 1222 if (!ref) 1223 return -EINVAL; 1224 } 1225 mtspr(SPRN_LDBAR, ldbar_value); 1226 mutex_lock(&ref->lock); 1227 if (ref->refc == 0) { 1228 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1229 get_hard_smp_processor_id(smp_processor_id()))) { 1230 mutex_unlock(&ref->lock); 1231 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1232 mtspr(SPRN_LDBAR, 0); 1233 return -EINVAL; 1234 } 1235 } 1236 ++ref->refc; 1237 mutex_unlock(&ref->lock); 1238 1239 return 0; 1240 } 1241 1242 static void trace_imc_event_read(struct perf_event *event) 1243 { 1244 return; 1245 } 1246 1247 static void trace_imc_event_stop(struct perf_event *event, int flags) 1248 { 1249 u64 local_mem = get_trace_imc_event_base_addr(); 1250 dump_trace_imc_data(event); 1251 memset((void *)local_mem, 0, sizeof(u64)); 1252 } 1253 1254 static void trace_imc_event_start(struct perf_event *event, int flags) 1255 { 1256 return; 1257 } 1258 1259 static void trace_imc_event_del(struct perf_event *event, int flags) 1260 { 1261 int core_id = smp_processor_id() / threads_per_core; 1262 struct imc_pmu_ref *ref = NULL; 1263 1264 if (core_imc_refc) 1265 ref = &core_imc_refc[core_id]; 1266 if (!ref) { 1267 /* If core-imc is not enabled, use trace-imc reference count */ 1268 if (trace_imc_refc) 1269 ref = &trace_imc_refc[core_id]; 1270 if (!ref) 1271 return; 1272 } 1273 mtspr(SPRN_LDBAR, 0); 1274 mutex_lock(&ref->lock); 1275 ref->refc--; 1276 if (ref->refc == 0) { 1277 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1278 get_hard_smp_processor_id(smp_processor_id()))) { 1279 mutex_unlock(&ref->lock); 1280 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1281 return; 1282 } 1283 } else if (ref->refc < 0) { 1284 ref->refc = 0; 1285 } 1286 mutex_unlock(&ref->lock); 1287 trace_imc_event_stop(event, flags); 1288 } 1289 1290 static int trace_imc_event_init(struct perf_event *event) 1291 { 1292 struct task_struct *target; 1293 1294 if (event->attr.type != event->pmu->type) 1295 return -ENOENT; 1296 1297 if (!capable(CAP_SYS_ADMIN)) 1298 return -EACCES; 1299 1300 /* Return if this is a couting event */ 1301 if (event->attr.sample_period == 0) 1302 return -ENOENT; 1303 1304 event->hw.idx = -1; 1305 target = event->hw.target; 1306 1307 event->pmu->task_ctx_nr = perf_hw_context; 1308 return 0; 1309 } 1310 1311 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1312 static int update_pmu_ops(struct imc_pmu *pmu) 1313 { 1314 pmu->pmu.task_ctx_nr = perf_invalid_context; 1315 pmu->pmu.add = imc_event_add; 1316 pmu->pmu.del = imc_event_stop; 1317 pmu->pmu.start = imc_event_start; 1318 pmu->pmu.stop = imc_event_stop; 1319 pmu->pmu.read = imc_event_update; 1320 pmu->pmu.attr_groups = pmu->attr_groups; 1321 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1322 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1323 1324 switch (pmu->domain) { 1325 case IMC_DOMAIN_NEST: 1326 pmu->pmu.event_init = nest_imc_event_init; 1327 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1328 break; 1329 case IMC_DOMAIN_CORE: 1330 pmu->pmu.event_init = core_imc_event_init; 1331 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1332 break; 1333 case IMC_DOMAIN_THREAD: 1334 pmu->pmu.event_init = thread_imc_event_init; 1335 pmu->pmu.add = thread_imc_event_add; 1336 pmu->pmu.del = thread_imc_event_del; 1337 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1338 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1339 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1340 break; 1341 case IMC_DOMAIN_TRACE: 1342 pmu->pmu.event_init = trace_imc_event_init; 1343 pmu->pmu.add = trace_imc_event_add; 1344 pmu->pmu.del = trace_imc_event_del; 1345 pmu->pmu.start = trace_imc_event_start; 1346 pmu->pmu.stop = trace_imc_event_stop; 1347 pmu->pmu.read = trace_imc_event_read; 1348 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1349 default: 1350 break; 1351 } 1352 1353 return 0; 1354 } 1355 1356 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1357 static int init_nest_pmu_ref(void) 1358 { 1359 int nid, i, cpu; 1360 1361 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1362 GFP_KERNEL); 1363 1364 if (!nest_imc_refc) 1365 return -ENOMEM; 1366 1367 i = 0; 1368 for_each_node(nid) { 1369 /* 1370 * Mutex lock to avoid races while tracking the number of 1371 * sessions using the chip's nest pmu units. 1372 */ 1373 mutex_init(&nest_imc_refc[i].lock); 1374 1375 /* 1376 * Loop to init the "id" with the node_id. Variable "i" initialized to 1377 * 0 and will be used as index to the array. "i" will not go off the 1378 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1379 * nodes only. 1380 */ 1381 nest_imc_refc[i++].id = nid; 1382 } 1383 1384 /* 1385 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1386 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1387 */ 1388 for_each_possible_cpu(cpu) { 1389 nid = cpu_to_node(cpu); 1390 for (i = 0; i < num_possible_nodes(); i++) { 1391 if (nest_imc_refc[i].id == nid) { 1392 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1393 break; 1394 } 1395 } 1396 } 1397 return 0; 1398 } 1399 1400 static void cleanup_all_core_imc_memory(void) 1401 { 1402 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1403 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1404 int size = core_imc_pmu->counter_mem_size; 1405 1406 /* mem_info will never be NULL */ 1407 for (i = 0; i < nr_cores; i++) { 1408 if (ptr[i].vbase) 1409 free_pages((u64)ptr[i].vbase, get_order(size)); 1410 } 1411 1412 kfree(ptr); 1413 kfree(core_imc_refc); 1414 } 1415 1416 static void thread_imc_ldbar_disable(void *dummy) 1417 { 1418 /* 1419 * By Zeroing LDBAR, we disable thread-imc 1420 * updates. 1421 */ 1422 mtspr(SPRN_LDBAR, 0); 1423 } 1424 1425 void thread_imc_disable(void) 1426 { 1427 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1428 } 1429 1430 static void cleanup_all_thread_imc_memory(void) 1431 { 1432 int i, order = get_order(thread_imc_mem_size); 1433 1434 for_each_online_cpu(i) { 1435 if (per_cpu(thread_imc_mem, i)) 1436 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1437 1438 } 1439 } 1440 1441 static void cleanup_all_trace_imc_memory(void) 1442 { 1443 int i, order = get_order(trace_imc_mem_size); 1444 1445 for_each_online_cpu(i) { 1446 if (per_cpu(trace_imc_mem, i)) 1447 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1448 1449 } 1450 kfree(trace_imc_refc); 1451 } 1452 1453 /* Function to free the attr_groups which are dynamically allocated */ 1454 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1455 { 1456 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1457 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1458 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1459 } 1460 1461 /* 1462 * Common function to unregister cpu hotplug callback and 1463 * free the memory. 1464 * TODO: Need to handle pmu unregistering, which will be 1465 * done in followup series. 1466 */ 1467 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1468 { 1469 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1470 mutex_lock(&nest_init_lock); 1471 if (nest_pmus == 1) { 1472 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1473 kfree(nest_imc_refc); 1474 kfree(per_nest_pmu_arr); 1475 per_nest_pmu_arr = NULL; 1476 } 1477 1478 if (nest_pmus > 0) 1479 nest_pmus--; 1480 mutex_unlock(&nest_init_lock); 1481 } 1482 1483 /* Free core_imc memory */ 1484 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1485 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1486 cleanup_all_core_imc_memory(); 1487 } 1488 1489 /* Free thread_imc memory */ 1490 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1491 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1492 cleanup_all_thread_imc_memory(); 1493 } 1494 1495 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1496 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1497 cleanup_all_trace_imc_memory(); 1498 } 1499 } 1500 1501 /* 1502 * Function to unregister thread-imc if core-imc 1503 * is not registered. 1504 */ 1505 void unregister_thread_imc(void) 1506 { 1507 imc_common_cpuhp_mem_free(thread_imc_pmu); 1508 imc_common_mem_free(thread_imc_pmu); 1509 perf_pmu_unregister(&thread_imc_pmu->pmu); 1510 } 1511 1512 /* 1513 * imc_mem_init : Function to support memory allocation for core imc. 1514 */ 1515 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1516 int pmu_index) 1517 { 1518 const char *s; 1519 int nr_cores, cpu, res = -ENOMEM; 1520 1521 if (of_property_read_string(parent, "name", &s)) 1522 return -ENODEV; 1523 1524 switch (pmu_ptr->domain) { 1525 case IMC_DOMAIN_NEST: 1526 /* Update the pmu name */ 1527 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1528 if (!pmu_ptr->pmu.name) 1529 goto err; 1530 1531 /* Needed for hotplug/migration */ 1532 if (!per_nest_pmu_arr) { 1533 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1534 sizeof(struct imc_pmu *), 1535 GFP_KERNEL); 1536 if (!per_nest_pmu_arr) 1537 goto err; 1538 } 1539 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1540 break; 1541 case IMC_DOMAIN_CORE: 1542 /* Update the pmu name */ 1543 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1544 if (!pmu_ptr->pmu.name) 1545 goto err; 1546 1547 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1548 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1549 GFP_KERNEL); 1550 1551 if (!pmu_ptr->mem_info) 1552 goto err; 1553 1554 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1555 GFP_KERNEL); 1556 1557 if (!core_imc_refc) { 1558 kfree(pmu_ptr->mem_info); 1559 goto err; 1560 } 1561 1562 core_imc_pmu = pmu_ptr; 1563 break; 1564 case IMC_DOMAIN_THREAD: 1565 /* Update the pmu name */ 1566 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1567 if (!pmu_ptr->pmu.name) 1568 goto err; 1569 1570 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1571 for_each_online_cpu(cpu) { 1572 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1573 if (res) { 1574 cleanup_all_thread_imc_memory(); 1575 goto err; 1576 } 1577 } 1578 1579 thread_imc_pmu = pmu_ptr; 1580 break; 1581 case IMC_DOMAIN_TRACE: 1582 /* Update the pmu name */ 1583 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1584 if (!pmu_ptr->pmu.name) 1585 return -ENOMEM; 1586 1587 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1588 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1589 GFP_KERNEL); 1590 if (!trace_imc_refc) 1591 return -ENOMEM; 1592 1593 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1594 for_each_online_cpu(cpu) { 1595 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1596 if (res) { 1597 cleanup_all_trace_imc_memory(); 1598 goto err; 1599 } 1600 } 1601 break; 1602 default: 1603 return -EINVAL; 1604 } 1605 1606 return 0; 1607 err: 1608 return res; 1609 } 1610 1611 /* 1612 * init_imc_pmu : Setup and register the IMC pmu device. 1613 * 1614 * @parent: Device tree unit node 1615 * @pmu_ptr: memory allocated for this pmu 1616 * @pmu_idx: Count of nest pmc registered 1617 * 1618 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1619 * Handles failure cases and accordingly frees memory. 1620 */ 1621 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1622 { 1623 int ret; 1624 1625 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1626 if (ret) 1627 goto err_free_mem; 1628 1629 switch (pmu_ptr->domain) { 1630 case IMC_DOMAIN_NEST: 1631 /* 1632 * Nest imc pmu need only one cpu per chip, we initialize the 1633 * cpumask for the first nest imc pmu and use the same for the 1634 * rest. To handle the cpuhotplug callback unregister, we track 1635 * the number of nest pmus in "nest_pmus". 1636 */ 1637 mutex_lock(&nest_init_lock); 1638 if (nest_pmus == 0) { 1639 ret = init_nest_pmu_ref(); 1640 if (ret) { 1641 mutex_unlock(&nest_init_lock); 1642 kfree(per_nest_pmu_arr); 1643 per_nest_pmu_arr = NULL; 1644 goto err_free_mem; 1645 } 1646 /* Register for cpu hotplug notification. */ 1647 ret = nest_pmu_cpumask_init(); 1648 if (ret) { 1649 mutex_unlock(&nest_init_lock); 1650 kfree(nest_imc_refc); 1651 kfree(per_nest_pmu_arr); 1652 per_nest_pmu_arr = NULL; 1653 goto err_free_mem; 1654 } 1655 } 1656 nest_pmus++; 1657 mutex_unlock(&nest_init_lock); 1658 break; 1659 case IMC_DOMAIN_CORE: 1660 ret = core_imc_pmu_cpumask_init(); 1661 if (ret) { 1662 cleanup_all_core_imc_memory(); 1663 goto err_free_mem; 1664 } 1665 1666 break; 1667 case IMC_DOMAIN_THREAD: 1668 ret = thread_imc_cpu_init(); 1669 if (ret) { 1670 cleanup_all_thread_imc_memory(); 1671 goto err_free_mem; 1672 } 1673 1674 break; 1675 case IMC_DOMAIN_TRACE: 1676 ret = trace_imc_cpu_init(); 1677 if (ret) { 1678 cleanup_all_trace_imc_memory(); 1679 goto err_free_mem; 1680 } 1681 1682 break; 1683 default: 1684 return -EINVAL; /* Unknown domain */ 1685 } 1686 1687 ret = update_events_in_group(parent, pmu_ptr); 1688 if (ret) 1689 goto err_free_cpuhp_mem; 1690 1691 ret = update_pmu_ops(pmu_ptr); 1692 if (ret) 1693 goto err_free_cpuhp_mem; 1694 1695 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1696 if (ret) 1697 goto err_free_cpuhp_mem; 1698 1699 pr_debug("%s performance monitor hardware support registered\n", 1700 pmu_ptr->pmu.name); 1701 1702 return 0; 1703 1704 err_free_cpuhp_mem: 1705 imc_common_cpuhp_mem_free(pmu_ptr); 1706 err_free_mem: 1707 imc_common_mem_free(pmu_ptr); 1708 return ret; 1709 } 1710