1 /* 2 * In-Memory Collection (IMC) Performance Monitor counter support. 3 * 4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 5 * (C) 2017 Anju T Sudhakar, IBM Corporation. 6 * (C) 2017 Hemant K Shaw, IBM Corporation. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or later version. 12 */ 13 #include <linux/perf_event.h> 14 #include <linux/slab.h> 15 #include <asm/opal.h> 16 #include <asm/imc-pmu.h> 17 #include <asm/cputhreads.h> 18 #include <asm/smp.h> 19 #include <linux/string.h> 20 21 /* Nest IMC data structures and variables */ 22 23 /* 24 * Used to avoid races in counting the nest-pmu units during hotplug 25 * register and unregister 26 */ 27 static DEFINE_MUTEX(nest_init_lock); 28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 29 static struct imc_pmu **per_nest_pmu_arr; 30 static cpumask_t nest_imc_cpumask; 31 struct imc_pmu_ref *nest_imc_refc; 32 static int nest_pmus; 33 34 /* Core IMC data structures and variables */ 35 36 static cpumask_t core_imc_cpumask; 37 struct imc_pmu_ref *core_imc_refc; 38 static struct imc_pmu *core_imc_pmu; 39 40 /* Thread IMC data structures and variables */ 41 42 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 43 static struct imc_pmu *thread_imc_pmu; 44 static int thread_imc_mem_size; 45 46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 47 { 48 return container_of(event->pmu, struct imc_pmu, pmu); 49 } 50 51 PMU_FORMAT_ATTR(event, "config:0-40"); 52 PMU_FORMAT_ATTR(offset, "config:0-31"); 53 PMU_FORMAT_ATTR(rvalue, "config:32"); 54 PMU_FORMAT_ATTR(mode, "config:33-40"); 55 static struct attribute *imc_format_attrs[] = { 56 &format_attr_event.attr, 57 &format_attr_offset.attr, 58 &format_attr_rvalue.attr, 59 &format_attr_mode.attr, 60 NULL, 61 }; 62 63 static struct attribute_group imc_format_group = { 64 .name = "format", 65 .attrs = imc_format_attrs, 66 }; 67 68 /* Get the cpumask printed to a buffer "buf" */ 69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 70 struct device_attribute *attr, 71 char *buf) 72 { 73 struct pmu *pmu = dev_get_drvdata(dev); 74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 75 cpumask_t *active_mask; 76 77 switch(imc_pmu->domain){ 78 case IMC_DOMAIN_NEST: 79 active_mask = &nest_imc_cpumask; 80 break; 81 case IMC_DOMAIN_CORE: 82 active_mask = &core_imc_cpumask; 83 break; 84 default: 85 return 0; 86 } 87 88 return cpumap_print_to_pagebuf(true, buf, active_mask); 89 } 90 91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 92 93 static struct attribute *imc_pmu_cpumask_attrs[] = { 94 &dev_attr_cpumask.attr, 95 NULL, 96 }; 97 98 static struct attribute_group imc_pmu_cpumask_attr_group = { 99 .attrs = imc_pmu_cpumask_attrs, 100 }; 101 102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 103 static struct attribute *device_str_attr_create(const char *name, const char *str) 104 { 105 struct perf_pmu_events_attr *attr; 106 107 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 108 if (!attr) 109 return NULL; 110 sysfs_attr_init(&attr->attr.attr); 111 112 attr->event_str = str; 113 attr->attr.attr.name = name; 114 attr->attr.attr.mode = 0444; 115 attr->attr.show = perf_event_sysfs_show; 116 117 return &attr->attr.attr; 118 } 119 120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale, 121 const char *unit, const char *prefix, u32 base) 122 { 123 struct imc_events *event; 124 const char *s; 125 u32 reg; 126 127 event = kzalloc(sizeof(struct imc_events), GFP_KERNEL); 128 if (!event) 129 return NULL; 130 131 if (of_property_read_u32(np, "reg", ®)) 132 goto error; 133 /* Add the base_reg value to the "reg" */ 134 event->value = base + reg; 135 136 if (of_property_read_string(np, "event-name", &s)) 137 goto error; 138 139 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 140 if (!event->name) 141 goto error; 142 143 if (of_property_read_string(np, "scale", &s)) 144 s = scale; 145 146 if (s) { 147 event->scale = kstrdup(s, GFP_KERNEL); 148 if (!event->scale) 149 goto error; 150 } 151 152 if (of_property_read_string(np, "unit", &s)) 153 s = unit; 154 155 if (s) { 156 event->unit = kstrdup(s, GFP_KERNEL); 157 if (!event->unit) 158 goto error; 159 } 160 161 return event; 162 error: 163 kfree(event->unit); 164 kfree(event->scale); 165 kfree(event->name); 166 kfree(event); 167 168 return NULL; 169 } 170 171 /* 172 * update_events_in_group: Update the "events" information in an attr_group 173 * and assign the attr_group to the pmu "pmu". 174 */ 175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 176 { 177 struct attribute_group *attr_group; 178 struct attribute **attrs, *dev_str; 179 struct device_node *np, *pmu_events; 180 struct imc_events *ev; 181 u32 handle, base_reg; 182 int i=0, j=0, ct; 183 const char *prefix, *g_scale, *g_unit; 184 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 185 186 if (!of_property_read_u32(node, "events", &handle)) 187 pmu_events = of_find_node_by_phandle(handle); 188 else 189 return 0; 190 191 /* Did not find any node with a given phandle */ 192 if (!pmu_events) 193 return 0; 194 195 /* Get a count of number of child nodes */ 196 ct = of_get_child_count(pmu_events); 197 198 /* Get the event prefix */ 199 if (of_property_read_string(node, "events-prefix", &prefix)) 200 return 0; 201 202 /* Get a global unit and scale data if available */ 203 if (of_property_read_string(node, "scale", &g_scale)) 204 g_scale = NULL; 205 206 if (of_property_read_string(node, "unit", &g_unit)) 207 g_unit = NULL; 208 209 /* "reg" property gives out the base offset of the counters data */ 210 of_property_read_u32(node, "reg", &base_reg); 211 212 /* Allocate memory for the events */ 213 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 214 if (!pmu->events) 215 return -ENOMEM; 216 217 ct = 0; 218 /* Parse the events and update the struct */ 219 for_each_child_of_node(pmu_events, np) { 220 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg); 221 if (ev) 222 pmu->events[ct++] = ev; 223 } 224 225 /* Allocate memory for attribute group */ 226 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 227 if (!attr_group) 228 return -ENOMEM; 229 230 /* 231 * Allocate memory for attributes. 232 * Since we have count of events for this pmu, we also allocate 233 * memory for the scale and unit attribute for now. 234 * "ct" has the total event structs added from the events-parent node. 235 * So allocate three times the "ct" (this includes event, event_scale and 236 * event_unit). 237 */ 238 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 239 if (!attrs) { 240 kfree(attr_group); 241 kfree(pmu->events); 242 return -ENOMEM; 243 } 244 245 attr_group->name = "events"; 246 attr_group->attrs = attrs; 247 do { 248 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value); 249 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str); 250 if (!dev_str) 251 continue; 252 253 attrs[j++] = dev_str; 254 if (pmu->events[i]->scale) { 255 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name); 256 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale); 257 if (!dev_str) 258 continue; 259 260 attrs[j++] = dev_str; 261 } 262 263 if (pmu->events[i]->unit) { 264 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name); 265 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit); 266 if (!dev_str) 267 continue; 268 269 attrs[j++] = dev_str; 270 } 271 } while (++i < ct); 272 273 /* Save the event attribute */ 274 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 275 276 kfree(pmu->events); 277 return 0; 278 } 279 280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 282 { 283 return per_cpu(local_nest_imc_refc, cpu); 284 } 285 286 static void nest_change_cpu_context(int old_cpu, int new_cpu) 287 { 288 struct imc_pmu **pn = per_nest_pmu_arr; 289 290 if (old_cpu < 0 || new_cpu < 0) 291 return; 292 293 while (*pn) { 294 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 295 pn++; 296 } 297 } 298 299 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 300 { 301 int nid, target = -1; 302 const struct cpumask *l_cpumask; 303 struct imc_pmu_ref *ref; 304 305 /* 306 * Check in the designated list for this cpu. Dont bother 307 * if not one of them. 308 */ 309 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 310 return 0; 311 312 /* 313 * Now that this cpu is one of the designated, 314 * find a next cpu a) which is online and b) in same chip. 315 */ 316 nid = cpu_to_node(cpu); 317 l_cpumask = cpumask_of_node(nid); 318 target = cpumask_any_but(l_cpumask, cpu); 319 320 /* 321 * Update the cpumask with the target cpu and 322 * migrate the context if needed 323 */ 324 if (target >= 0 && target < nr_cpu_ids) { 325 cpumask_set_cpu(target, &nest_imc_cpumask); 326 nest_change_cpu_context(cpu, target); 327 } else { 328 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 329 get_hard_smp_processor_id(cpu)); 330 /* 331 * If this is the last cpu in this chip then, skip the reference 332 * count mutex lock and make the reference count on this chip zero. 333 */ 334 ref = get_nest_pmu_ref(cpu); 335 if (!ref) 336 return -EINVAL; 337 338 ref->refc = 0; 339 } 340 return 0; 341 } 342 343 static int ppc_nest_imc_cpu_online(unsigned int cpu) 344 { 345 const struct cpumask *l_cpumask; 346 static struct cpumask tmp_mask; 347 int res; 348 349 /* Get the cpumask of this node */ 350 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 351 352 /* 353 * If this is not the first online CPU on this node, then 354 * just return. 355 */ 356 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 357 return 0; 358 359 /* 360 * If this is the first online cpu on this node 361 * disable the nest counters by making an OPAL call. 362 */ 363 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 364 get_hard_smp_processor_id(cpu)); 365 if (res) 366 return res; 367 368 /* Make this CPU the designated target for counter collection */ 369 cpumask_set_cpu(cpu, &nest_imc_cpumask); 370 return 0; 371 } 372 373 static int nest_pmu_cpumask_init(void) 374 { 375 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 376 "perf/powerpc/imc:online", 377 ppc_nest_imc_cpu_online, 378 ppc_nest_imc_cpu_offline); 379 } 380 381 static void nest_imc_counters_release(struct perf_event *event) 382 { 383 int rc, node_id; 384 struct imc_pmu_ref *ref; 385 386 if (event->cpu < 0) 387 return; 388 389 node_id = cpu_to_node(event->cpu); 390 391 /* 392 * See if we need to disable the nest PMU. 393 * If no events are currently in use, then we have to take a 394 * mutex to ensure that we don't race with another task doing 395 * enable or disable the nest counters. 396 */ 397 ref = get_nest_pmu_ref(event->cpu); 398 if (!ref) 399 return; 400 401 /* Take the mutex lock for this node and then decrement the reference count */ 402 mutex_lock(&ref->lock); 403 if (ref->refc == 0) { 404 /* 405 * The scenario where this is true is, when perf session is 406 * started, followed by offlining of all cpus in a given node. 407 * 408 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 409 * function set the ref->count to zero, if the cpu which is 410 * about to offline is the last cpu in a given node and make 411 * an OPAL call to disable the engine in that node. 412 * 413 */ 414 mutex_unlock(&ref->lock); 415 return; 416 } 417 ref->refc--; 418 if (ref->refc == 0) { 419 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 420 get_hard_smp_processor_id(event->cpu)); 421 if (rc) { 422 mutex_unlock(&ref->lock); 423 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 424 return; 425 } 426 } else if (ref->refc < 0) { 427 WARN(1, "nest-imc: Invalid event reference count\n"); 428 ref->refc = 0; 429 } 430 mutex_unlock(&ref->lock); 431 } 432 433 static int nest_imc_event_init(struct perf_event *event) 434 { 435 int chip_id, rc, node_id; 436 u32 l_config, config = event->attr.config; 437 struct imc_mem_info *pcni; 438 struct imc_pmu *pmu; 439 struct imc_pmu_ref *ref; 440 bool flag = false; 441 442 if (event->attr.type != event->pmu->type) 443 return -ENOENT; 444 445 /* Sampling not supported */ 446 if (event->hw.sample_period) 447 return -EINVAL; 448 449 /* unsupported modes and filters */ 450 if (event->attr.exclude_user || 451 event->attr.exclude_kernel || 452 event->attr.exclude_hv || 453 event->attr.exclude_idle || 454 event->attr.exclude_host || 455 event->attr.exclude_guest) 456 return -EINVAL; 457 458 if (event->cpu < 0) 459 return -EINVAL; 460 461 pmu = imc_event_to_pmu(event); 462 463 /* Sanity check for config (event offset) */ 464 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 465 return -EINVAL; 466 467 /* 468 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 469 * Get the base memory addresss for this cpu. 470 */ 471 chip_id = cpu_to_chip_id(event->cpu); 472 pcni = pmu->mem_info; 473 do { 474 if (pcni->id == chip_id) { 475 flag = true; 476 break; 477 } 478 pcni++; 479 } while (pcni); 480 481 if (!flag) 482 return -ENODEV; 483 484 /* 485 * Add the event offset to the base address. 486 */ 487 l_config = config & IMC_EVENT_OFFSET_MASK; 488 event->hw.event_base = (u64)pcni->vbase + l_config; 489 node_id = cpu_to_node(event->cpu); 490 491 /* 492 * Get the imc_pmu_ref struct for this node. 493 * Take the mutex lock and then increment the count of nest pmu events 494 * inited. 495 */ 496 ref = get_nest_pmu_ref(event->cpu); 497 if (!ref) 498 return -EINVAL; 499 500 mutex_lock(&ref->lock); 501 if (ref->refc == 0) { 502 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 503 get_hard_smp_processor_id(event->cpu)); 504 if (rc) { 505 mutex_unlock(&ref->lock); 506 pr_err("nest-imc: Unable to start the counters for node %d\n", 507 node_id); 508 return rc; 509 } 510 } 511 ++ref->refc; 512 mutex_unlock(&ref->lock); 513 514 event->destroy = nest_imc_counters_release; 515 return 0; 516 } 517 518 /* 519 * core_imc_mem_init : Initializes memory for the current core. 520 * 521 * Uses alloc_pages_node() and uses the returned address as an argument to 522 * an opal call to configure the pdbar. The address sent as an argument is 523 * converted to physical address before the opal call is made. This is the 524 * base address at which the core imc counters are populated. 525 */ 526 static int core_imc_mem_init(int cpu, int size) 527 { 528 int nid, rc = 0, core_id = (cpu / threads_per_core); 529 struct imc_mem_info *mem_info; 530 531 /* 532 * alloc_pages_node() will allocate memory for core in the 533 * local node only. 534 */ 535 nid = cpu_to_node(cpu); 536 mem_info = &core_imc_pmu->mem_info[core_id]; 537 mem_info->id = core_id; 538 539 /* We need only vbase for core counters */ 540 mem_info->vbase = page_address(alloc_pages_node(nid, 541 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 542 __GFP_NOWARN, get_order(size))); 543 if (!mem_info->vbase) 544 return -ENOMEM; 545 546 /* Init the mutex */ 547 core_imc_refc[core_id].id = core_id; 548 mutex_init(&core_imc_refc[core_id].lock); 549 550 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 551 __pa((void *)mem_info->vbase), 552 get_hard_smp_processor_id(cpu)); 553 if (rc) { 554 free_pages((u64)mem_info->vbase, get_order(size)); 555 mem_info->vbase = NULL; 556 } 557 558 return rc; 559 } 560 561 static bool is_core_imc_mem_inited(int cpu) 562 { 563 struct imc_mem_info *mem_info; 564 int core_id = (cpu / threads_per_core); 565 566 mem_info = &core_imc_pmu->mem_info[core_id]; 567 if (!mem_info->vbase) 568 return false; 569 570 return true; 571 } 572 573 static int ppc_core_imc_cpu_online(unsigned int cpu) 574 { 575 const struct cpumask *l_cpumask; 576 static struct cpumask tmp_mask; 577 int ret = 0; 578 579 /* Get the cpumask for this core */ 580 l_cpumask = cpu_sibling_mask(cpu); 581 582 /* If a cpu for this core is already set, then, don't do anything */ 583 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 584 return 0; 585 586 if (!is_core_imc_mem_inited(cpu)) { 587 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 588 if (ret) { 589 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 590 return ret; 591 } 592 } 593 594 /* set the cpu in the mask */ 595 cpumask_set_cpu(cpu, &core_imc_cpumask); 596 return 0; 597 } 598 599 static int ppc_core_imc_cpu_offline(unsigned int cpu) 600 { 601 unsigned int ncpu, core_id; 602 struct imc_pmu_ref *ref; 603 604 /* 605 * clear this cpu out of the mask, if not present in the mask, 606 * don't bother doing anything. 607 */ 608 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 609 return 0; 610 611 /* 612 * Check whether core_imc is registered. We could end up here 613 * if the cpuhotplug callback registration fails. i.e, callback 614 * invokes the offline path for all sucessfully registered cpus. 615 * At this stage, core_imc pmu will not be registered and we 616 * should return here. 617 * 618 * We return with a zero since this is not an offline failure. 619 * And cpuhp_setup_state() returns the actual failure reason 620 * to the caller, which inturn will call the cleanup routine. 621 */ 622 if (!core_imc_pmu->pmu.event_init) 623 return 0; 624 625 /* Find any online cpu in that core except the current "cpu" */ 626 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 627 628 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 629 cpumask_set_cpu(ncpu, &core_imc_cpumask); 630 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 631 } else { 632 /* 633 * If this is the last cpu in this core then, skip taking refernce 634 * count mutex lock for this core and directly zero "refc" for 635 * this core. 636 */ 637 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 638 get_hard_smp_processor_id(cpu)); 639 core_id = cpu / threads_per_core; 640 ref = &core_imc_refc[core_id]; 641 if (!ref) 642 return -EINVAL; 643 644 ref->refc = 0; 645 } 646 return 0; 647 } 648 649 static int core_imc_pmu_cpumask_init(void) 650 { 651 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 652 "perf/powerpc/imc_core:online", 653 ppc_core_imc_cpu_online, 654 ppc_core_imc_cpu_offline); 655 } 656 657 static void core_imc_counters_release(struct perf_event *event) 658 { 659 int rc, core_id; 660 struct imc_pmu_ref *ref; 661 662 if (event->cpu < 0) 663 return; 664 /* 665 * See if we need to disable the IMC PMU. 666 * If no events are currently in use, then we have to take a 667 * mutex to ensure that we don't race with another task doing 668 * enable or disable the core counters. 669 */ 670 core_id = event->cpu / threads_per_core; 671 672 /* Take the mutex lock and decrement the refernce count for this core */ 673 ref = &core_imc_refc[core_id]; 674 if (!ref) 675 return; 676 677 mutex_lock(&ref->lock); 678 if (ref->refc == 0) { 679 /* 680 * The scenario where this is true is, when perf session is 681 * started, followed by offlining of all cpus in a given core. 682 * 683 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 684 * function set the ref->count to zero, if the cpu which is 685 * about to offline is the last cpu in a given core and make 686 * an OPAL call to disable the engine in that core. 687 * 688 */ 689 mutex_unlock(&ref->lock); 690 return; 691 } 692 ref->refc--; 693 if (ref->refc == 0) { 694 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 695 get_hard_smp_processor_id(event->cpu)); 696 if (rc) { 697 mutex_unlock(&ref->lock); 698 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 699 return; 700 } 701 } else if (ref->refc < 0) { 702 WARN(1, "core-imc: Invalid event reference count\n"); 703 ref->refc = 0; 704 } 705 mutex_unlock(&ref->lock); 706 } 707 708 static int core_imc_event_init(struct perf_event *event) 709 { 710 int core_id, rc; 711 u64 config = event->attr.config; 712 struct imc_mem_info *pcmi; 713 struct imc_pmu *pmu; 714 struct imc_pmu_ref *ref; 715 716 if (event->attr.type != event->pmu->type) 717 return -ENOENT; 718 719 /* Sampling not supported */ 720 if (event->hw.sample_period) 721 return -EINVAL; 722 723 /* unsupported modes and filters */ 724 if (event->attr.exclude_user || 725 event->attr.exclude_kernel || 726 event->attr.exclude_hv || 727 event->attr.exclude_idle || 728 event->attr.exclude_host || 729 event->attr.exclude_guest) 730 return -EINVAL; 731 732 if (event->cpu < 0) 733 return -EINVAL; 734 735 event->hw.idx = -1; 736 pmu = imc_event_to_pmu(event); 737 738 /* Sanity check for config (event offset) */ 739 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 740 return -EINVAL; 741 742 if (!is_core_imc_mem_inited(event->cpu)) 743 return -ENODEV; 744 745 core_id = event->cpu / threads_per_core; 746 pcmi = &core_imc_pmu->mem_info[core_id]; 747 if ((!pcmi->vbase)) 748 return -ENODEV; 749 750 /* Get the core_imc mutex for this core */ 751 ref = &core_imc_refc[core_id]; 752 if (!ref) 753 return -EINVAL; 754 755 /* 756 * Core pmu units are enabled only when it is used. 757 * See if this is triggered for the first time. 758 * If yes, take the mutex lock and enable the core counters. 759 * If not, just increment the count in core_imc_refc struct. 760 */ 761 mutex_lock(&ref->lock); 762 if (ref->refc == 0) { 763 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 764 get_hard_smp_processor_id(event->cpu)); 765 if (rc) { 766 mutex_unlock(&ref->lock); 767 pr_err("core-imc: Unable to start the counters for core %d\n", 768 core_id); 769 return rc; 770 } 771 } 772 ++ref->refc; 773 mutex_unlock(&ref->lock); 774 775 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 776 event->destroy = core_imc_counters_release; 777 return 0; 778 } 779 780 /* 781 * Allocates a page of memory for each of the online cpus, and write the 782 * physical base address of that page to the LDBAR for that cpu. 783 * 784 * LDBAR Register Layout: 785 * 786 * 0 4 8 12 16 20 24 28 787 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 788 * | | [ ] [ Counter Address [8:50] 789 * | * Mode | 790 * | * PB Scope 791 * * Enable/Disable 792 * 793 * 32 36 40 44 48 52 56 60 794 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 795 * Counter Address [8:50] ] 796 * 797 */ 798 static int thread_imc_mem_alloc(int cpu_id, int size) 799 { 800 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id); 801 int nid = cpu_to_node(cpu_id); 802 803 if (!local_mem) { 804 /* 805 * This case could happen only once at start, since we dont 806 * free the memory in cpu offline path. 807 */ 808 local_mem = page_address(alloc_pages_node(nid, 809 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 810 __GFP_NOWARN, get_order(size))); 811 if (!local_mem) 812 return -ENOMEM; 813 814 per_cpu(thread_imc_mem, cpu_id) = local_mem; 815 } 816 817 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 818 819 mtspr(SPRN_LDBAR, ldbar_value); 820 return 0; 821 } 822 823 static int ppc_thread_imc_cpu_online(unsigned int cpu) 824 { 825 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 826 } 827 828 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 829 { 830 mtspr(SPRN_LDBAR, 0); 831 return 0; 832 } 833 834 static int thread_imc_cpu_init(void) 835 { 836 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 837 "perf/powerpc/imc_thread:online", 838 ppc_thread_imc_cpu_online, 839 ppc_thread_imc_cpu_offline); 840 } 841 842 void thread_imc_pmu_sched_task(struct perf_event_context *ctx, 843 bool sched_in) 844 { 845 int core_id; 846 struct imc_pmu_ref *ref; 847 848 if (!is_core_imc_mem_inited(smp_processor_id())) 849 return; 850 851 core_id = smp_processor_id() / threads_per_core; 852 /* 853 * imc pmus are enabled only when it is used. 854 * See if this is triggered for the first time. 855 * If yes, take the mutex lock and enable the counters. 856 * If not, just increment the count in ref count struct. 857 */ 858 ref = &core_imc_refc[core_id]; 859 if (!ref) 860 return; 861 862 if (sched_in) { 863 mutex_lock(&ref->lock); 864 if (ref->refc == 0) { 865 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 866 get_hard_smp_processor_id(smp_processor_id()))) { 867 mutex_unlock(&ref->lock); 868 pr_err("thread-imc: Unable to start the counter\ 869 for core %d\n", core_id); 870 return; 871 } 872 } 873 ++ref->refc; 874 mutex_unlock(&ref->lock); 875 } else { 876 mutex_lock(&ref->lock); 877 ref->refc--; 878 if (ref->refc == 0) { 879 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 880 get_hard_smp_processor_id(smp_processor_id()))) { 881 mutex_unlock(&ref->lock); 882 pr_err("thread-imc: Unable to stop the counters\ 883 for core %d\n", core_id); 884 return; 885 } 886 } else if (ref->refc < 0) { 887 ref->refc = 0; 888 } 889 mutex_unlock(&ref->lock); 890 } 891 892 return; 893 } 894 895 static int thread_imc_event_init(struct perf_event *event) 896 { 897 u32 config = event->attr.config; 898 struct task_struct *target; 899 struct imc_pmu *pmu; 900 901 if (event->attr.type != event->pmu->type) 902 return -ENOENT; 903 904 /* Sampling not supported */ 905 if (event->hw.sample_period) 906 return -EINVAL; 907 908 event->hw.idx = -1; 909 pmu = imc_event_to_pmu(event); 910 911 /* Sanity check for config offset */ 912 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 913 return -EINVAL; 914 915 target = event->hw.target; 916 if (!target) 917 return -EINVAL; 918 919 event->pmu->task_ctx_nr = perf_sw_context; 920 return 0; 921 } 922 923 static bool is_thread_imc_pmu(struct perf_event *event) 924 { 925 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 926 return true; 927 928 return false; 929 } 930 931 static u64 * get_event_base_addr(struct perf_event *event) 932 { 933 u64 addr; 934 935 if (is_thread_imc_pmu(event)) { 936 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 937 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 938 } 939 940 return (u64 *)event->hw.event_base; 941 } 942 943 static void thread_imc_pmu_start_txn(struct pmu *pmu, 944 unsigned int txn_flags) 945 { 946 if (txn_flags & ~PERF_PMU_TXN_ADD) 947 return; 948 perf_pmu_disable(pmu); 949 } 950 951 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 952 { 953 perf_pmu_enable(pmu); 954 } 955 956 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 957 { 958 perf_pmu_enable(pmu); 959 return 0; 960 } 961 962 static u64 imc_read_counter(struct perf_event *event) 963 { 964 u64 *addr, data; 965 966 /* 967 * In-Memory Collection (IMC) counters are free flowing counters. 968 * So we take a snapshot of the counter value on enable and save it 969 * to calculate the delta at later stage to present the event counter 970 * value. 971 */ 972 addr = get_event_base_addr(event); 973 data = be64_to_cpu(READ_ONCE(*addr)); 974 local64_set(&event->hw.prev_count, data); 975 976 return data; 977 } 978 979 static void imc_event_update(struct perf_event *event) 980 { 981 u64 counter_prev, counter_new, final_count; 982 983 counter_prev = local64_read(&event->hw.prev_count); 984 counter_new = imc_read_counter(event); 985 final_count = counter_new - counter_prev; 986 987 /* Update the delta to the event count */ 988 local64_add(final_count, &event->count); 989 } 990 991 static void imc_event_start(struct perf_event *event, int flags) 992 { 993 /* 994 * In Memory Counters are free flowing counters. HW or the microcode 995 * keeps adding to the counter offset in memory. To get event 996 * counter value, we snapshot the value here and we calculate 997 * delta at later point. 998 */ 999 imc_read_counter(event); 1000 } 1001 1002 static void imc_event_stop(struct perf_event *event, int flags) 1003 { 1004 /* 1005 * Take a snapshot and calculate the delta and update 1006 * the event counter values. 1007 */ 1008 imc_event_update(event); 1009 } 1010 1011 static int imc_event_add(struct perf_event *event, int flags) 1012 { 1013 if (flags & PERF_EF_START) 1014 imc_event_start(event, flags); 1015 1016 return 0; 1017 } 1018 1019 static int thread_imc_event_add(struct perf_event *event, int flags) 1020 { 1021 if (flags & PERF_EF_START) 1022 imc_event_start(event, flags); 1023 1024 /* Enable the sched_task to start the engine */ 1025 perf_sched_cb_inc(event->ctx->pmu); 1026 return 0; 1027 } 1028 1029 static void thread_imc_event_del(struct perf_event *event, int flags) 1030 { 1031 /* 1032 * Take a snapshot and calculate the delta and update 1033 * the event counter values. 1034 */ 1035 imc_event_update(event); 1036 perf_sched_cb_dec(event->ctx->pmu); 1037 } 1038 1039 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1040 static int update_pmu_ops(struct imc_pmu *pmu) 1041 { 1042 pmu->pmu.task_ctx_nr = perf_invalid_context; 1043 pmu->pmu.add = imc_event_add; 1044 pmu->pmu.del = imc_event_stop; 1045 pmu->pmu.start = imc_event_start; 1046 pmu->pmu.stop = imc_event_stop; 1047 pmu->pmu.read = imc_event_update; 1048 pmu->pmu.attr_groups = pmu->attr_groups; 1049 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1050 1051 switch (pmu->domain) { 1052 case IMC_DOMAIN_NEST: 1053 pmu->pmu.event_init = nest_imc_event_init; 1054 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1055 break; 1056 case IMC_DOMAIN_CORE: 1057 pmu->pmu.event_init = core_imc_event_init; 1058 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1059 break; 1060 case IMC_DOMAIN_THREAD: 1061 pmu->pmu.event_init = thread_imc_event_init; 1062 pmu->pmu.sched_task = thread_imc_pmu_sched_task; 1063 pmu->pmu.add = thread_imc_event_add; 1064 pmu->pmu.del = thread_imc_event_del; 1065 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1066 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1067 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1068 break; 1069 default: 1070 break; 1071 } 1072 1073 return 0; 1074 } 1075 1076 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1077 static int init_nest_pmu_ref(void) 1078 { 1079 int nid, i, cpu; 1080 1081 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1082 GFP_KERNEL); 1083 1084 if (!nest_imc_refc) 1085 return -ENOMEM; 1086 1087 i = 0; 1088 for_each_node(nid) { 1089 /* 1090 * Mutex lock to avoid races while tracking the number of 1091 * sessions using the chip's nest pmu units. 1092 */ 1093 mutex_init(&nest_imc_refc[i].lock); 1094 1095 /* 1096 * Loop to init the "id" with the node_id. Variable "i" initialized to 1097 * 0 and will be used as index to the array. "i" will not go off the 1098 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1099 * nodes only. 1100 */ 1101 nest_imc_refc[i++].id = nid; 1102 } 1103 1104 /* 1105 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1106 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1107 */ 1108 for_each_possible_cpu(cpu) { 1109 nid = cpu_to_node(cpu); 1110 for (i = 0; i < num_possible_nodes(); i++) { 1111 if (nest_imc_refc[i].id == nid) { 1112 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1113 break; 1114 } 1115 } 1116 } 1117 return 0; 1118 } 1119 1120 static void cleanup_all_core_imc_memory(void) 1121 { 1122 int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1123 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1124 int size = core_imc_pmu->counter_mem_size; 1125 1126 /* mem_info will never be NULL */ 1127 for (i = 0; i < nr_cores; i++) { 1128 if (ptr[i].vbase) 1129 free_pages((u64)ptr->vbase, get_order(size)); 1130 } 1131 1132 kfree(ptr); 1133 kfree(core_imc_refc); 1134 } 1135 1136 static void thread_imc_ldbar_disable(void *dummy) 1137 { 1138 /* 1139 * By Zeroing LDBAR, we disable thread-imc 1140 * updates. 1141 */ 1142 mtspr(SPRN_LDBAR, 0); 1143 } 1144 1145 void thread_imc_disable(void) 1146 { 1147 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1148 } 1149 1150 static void cleanup_all_thread_imc_memory(void) 1151 { 1152 int i, order = get_order(thread_imc_mem_size); 1153 1154 for_each_online_cpu(i) { 1155 if (per_cpu(thread_imc_mem, i)) 1156 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1157 1158 } 1159 } 1160 1161 /* 1162 * Common function to unregister cpu hotplug callback and 1163 * free the memory. 1164 * TODO: Need to handle pmu unregistering, which will be 1165 * done in followup series. 1166 */ 1167 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1168 { 1169 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1170 mutex_lock(&nest_init_lock); 1171 if (nest_pmus == 1) { 1172 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1173 kfree(nest_imc_refc); 1174 } 1175 1176 if (nest_pmus > 0) 1177 nest_pmus--; 1178 mutex_unlock(&nest_init_lock); 1179 } 1180 1181 /* Free core_imc memory */ 1182 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1183 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1184 cleanup_all_core_imc_memory(); 1185 } 1186 1187 /* Free thread_imc memory */ 1188 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1189 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1190 cleanup_all_thread_imc_memory(); 1191 } 1192 1193 /* Only free the attr_groups which are dynamically allocated */ 1194 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1195 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1196 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1197 kfree(pmu_ptr); 1198 kfree(per_nest_pmu_arr); 1199 return; 1200 } 1201 1202 1203 /* 1204 * imc_mem_init : Function to support memory allocation for core imc. 1205 */ 1206 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1207 int pmu_index) 1208 { 1209 const char *s; 1210 int nr_cores, cpu, res; 1211 1212 if (of_property_read_string(parent, "name", &s)) 1213 return -ENODEV; 1214 1215 switch (pmu_ptr->domain) { 1216 case IMC_DOMAIN_NEST: 1217 /* Update the pmu name */ 1218 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1219 if (!pmu_ptr->pmu.name) 1220 return -ENOMEM; 1221 1222 /* Needed for hotplug/migration */ 1223 if (!per_nest_pmu_arr) { 1224 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1225 sizeof(struct imc_pmu *), 1226 GFP_KERNEL); 1227 if (!per_nest_pmu_arr) 1228 return -ENOMEM; 1229 } 1230 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1231 break; 1232 case IMC_DOMAIN_CORE: 1233 /* Update the pmu name */ 1234 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1235 if (!pmu_ptr->pmu.name) 1236 return -ENOMEM; 1237 1238 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1239 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1240 GFP_KERNEL); 1241 1242 if (!pmu_ptr->mem_info) 1243 return -ENOMEM; 1244 1245 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1246 GFP_KERNEL); 1247 1248 if (!core_imc_refc) 1249 return -ENOMEM; 1250 1251 core_imc_pmu = pmu_ptr; 1252 break; 1253 case IMC_DOMAIN_THREAD: 1254 /* Update the pmu name */ 1255 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1256 if (!pmu_ptr->pmu.name) 1257 return -ENOMEM; 1258 1259 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1260 for_each_online_cpu(cpu) { 1261 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1262 if (res) 1263 return res; 1264 } 1265 1266 thread_imc_pmu = pmu_ptr; 1267 break; 1268 default: 1269 return -EINVAL; 1270 } 1271 1272 return 0; 1273 } 1274 1275 /* 1276 * init_imc_pmu : Setup and register the IMC pmu device. 1277 * 1278 * @parent: Device tree unit node 1279 * @pmu_ptr: memory allocated for this pmu 1280 * @pmu_idx: Count of nest pmc registered 1281 * 1282 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1283 * Handles failure cases and accordingly frees memory. 1284 */ 1285 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1286 { 1287 int ret; 1288 1289 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1290 if (ret) 1291 goto err_free; 1292 1293 switch (pmu_ptr->domain) { 1294 case IMC_DOMAIN_NEST: 1295 /* 1296 * Nest imc pmu need only one cpu per chip, we initialize the 1297 * cpumask for the first nest imc pmu and use the same for the 1298 * rest. To handle the cpuhotplug callback unregister, we track 1299 * the number of nest pmus in "nest_pmus". 1300 */ 1301 mutex_lock(&nest_init_lock); 1302 if (nest_pmus == 0) { 1303 ret = init_nest_pmu_ref(); 1304 if (ret) { 1305 mutex_unlock(&nest_init_lock); 1306 goto err_free; 1307 } 1308 /* Register for cpu hotplug notification. */ 1309 ret = nest_pmu_cpumask_init(); 1310 if (ret) { 1311 mutex_unlock(&nest_init_lock); 1312 goto err_free; 1313 } 1314 } 1315 nest_pmus++; 1316 mutex_unlock(&nest_init_lock); 1317 break; 1318 case IMC_DOMAIN_CORE: 1319 ret = core_imc_pmu_cpumask_init(); 1320 if (ret) { 1321 cleanup_all_core_imc_memory(); 1322 return ret; 1323 } 1324 1325 break; 1326 case IMC_DOMAIN_THREAD: 1327 ret = thread_imc_cpu_init(); 1328 if (ret) { 1329 cleanup_all_thread_imc_memory(); 1330 return ret; 1331 } 1332 1333 break; 1334 default: 1335 return -1; /* Unknown domain */ 1336 } 1337 1338 ret = update_events_in_group(parent, pmu_ptr); 1339 if (ret) 1340 goto err_free; 1341 1342 ret = update_pmu_ops(pmu_ptr); 1343 if (ret) 1344 goto err_free; 1345 1346 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1347 if (ret) 1348 goto err_free; 1349 1350 pr_info("%s performance monitor hardware support registered\n", 1351 pmu_ptr->pmu.name); 1352 1353 return 0; 1354 1355 err_free: 1356 imc_common_cpuhp_mem_free(pmu_ptr); 1357 return ret; 1358 } 1359