1 /* 2 * In-Memory Collection (IMC) Performance Monitor counter support. 3 * 4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 5 * (C) 2017 Anju T Sudhakar, IBM Corporation. 6 * (C) 2017 Hemant K Shaw, IBM Corporation. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or later version. 12 */ 13 #include <linux/perf_event.h> 14 #include <linux/slab.h> 15 #include <asm/opal.h> 16 #include <asm/imc-pmu.h> 17 #include <asm/cputhreads.h> 18 #include <asm/smp.h> 19 #include <linux/string.h> 20 21 /* Nest IMC data structures and variables */ 22 23 /* 24 * Used to avoid races in counting the nest-pmu units during hotplug 25 * register and unregister 26 */ 27 static DEFINE_MUTEX(nest_init_lock); 28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 29 static struct imc_pmu *per_nest_pmu_arr[IMC_MAX_PMUS]; 30 static cpumask_t nest_imc_cpumask; 31 struct imc_pmu_ref *nest_imc_refc; 32 static int nest_pmus; 33 34 /* Core IMC data structures and variables */ 35 36 static cpumask_t core_imc_cpumask; 37 struct imc_pmu_ref *core_imc_refc; 38 static struct imc_pmu *core_imc_pmu; 39 40 /* Thread IMC data structures and variables */ 41 42 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 43 static struct imc_pmu *thread_imc_pmu; 44 static int thread_imc_mem_size; 45 46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 47 { 48 return container_of(event->pmu, struct imc_pmu, pmu); 49 } 50 51 PMU_FORMAT_ATTR(event, "config:0-40"); 52 PMU_FORMAT_ATTR(offset, "config:0-31"); 53 PMU_FORMAT_ATTR(rvalue, "config:32"); 54 PMU_FORMAT_ATTR(mode, "config:33-40"); 55 static struct attribute *imc_format_attrs[] = { 56 &format_attr_event.attr, 57 &format_attr_offset.attr, 58 &format_attr_rvalue.attr, 59 &format_attr_mode.attr, 60 NULL, 61 }; 62 63 static struct attribute_group imc_format_group = { 64 .name = "format", 65 .attrs = imc_format_attrs, 66 }; 67 68 /* Get the cpumask printed to a buffer "buf" */ 69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 70 struct device_attribute *attr, 71 char *buf) 72 { 73 struct pmu *pmu = dev_get_drvdata(dev); 74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 75 cpumask_t *active_mask; 76 77 switch(imc_pmu->domain){ 78 case IMC_DOMAIN_NEST: 79 active_mask = &nest_imc_cpumask; 80 break; 81 case IMC_DOMAIN_CORE: 82 active_mask = &core_imc_cpumask; 83 break; 84 default: 85 return 0; 86 } 87 88 return cpumap_print_to_pagebuf(true, buf, active_mask); 89 } 90 91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 92 93 static struct attribute *imc_pmu_cpumask_attrs[] = { 94 &dev_attr_cpumask.attr, 95 NULL, 96 }; 97 98 static struct attribute_group imc_pmu_cpumask_attr_group = { 99 .attrs = imc_pmu_cpumask_attrs, 100 }; 101 102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 103 static struct attribute *device_str_attr_create(const char *name, const char *str) 104 { 105 struct perf_pmu_events_attr *attr; 106 107 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 108 if (!attr) 109 return NULL; 110 sysfs_attr_init(&attr->attr.attr); 111 112 attr->event_str = str; 113 attr->attr.attr.name = name; 114 attr->attr.attr.mode = 0444; 115 attr->attr.show = perf_event_sysfs_show; 116 117 return &attr->attr.attr; 118 } 119 120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale, 121 const char *unit, const char *prefix, u32 base) 122 { 123 struct imc_events *event; 124 const char *s; 125 u32 reg; 126 127 event = kzalloc(sizeof(struct imc_events), GFP_KERNEL); 128 if (!event) 129 return NULL; 130 131 if (of_property_read_u32(np, "reg", ®)) 132 goto error; 133 /* Add the base_reg value to the "reg" */ 134 event->value = base + reg; 135 136 if (of_property_read_string(np, "event-name", &s)) 137 goto error; 138 139 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 140 if (!event->name) 141 goto error; 142 143 if (of_property_read_string(np, "scale", &s)) 144 s = scale; 145 146 if (s) { 147 event->scale = kstrdup(s, GFP_KERNEL); 148 if (!event->scale) 149 goto error; 150 } 151 152 if (of_property_read_string(np, "unit", &s)) 153 s = unit; 154 155 if (s) { 156 event->unit = kstrdup(s, GFP_KERNEL); 157 if (!event->unit) 158 goto error; 159 } 160 161 return event; 162 error: 163 kfree(event->unit); 164 kfree(event->scale); 165 kfree(event->name); 166 kfree(event); 167 168 return NULL; 169 } 170 171 /* 172 * update_events_in_group: Update the "events" information in an attr_group 173 * and assign the attr_group to the pmu "pmu". 174 */ 175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 176 { 177 struct attribute_group *attr_group; 178 struct attribute **attrs, *dev_str; 179 struct device_node *np, *pmu_events; 180 struct imc_events *ev; 181 u32 handle, base_reg; 182 int i=0, j=0, ct; 183 const char *prefix, *g_scale, *g_unit; 184 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 185 186 if (!of_property_read_u32(node, "events", &handle)) 187 pmu_events = of_find_node_by_phandle(handle); 188 else 189 return 0; 190 191 /* Did not find any node with a given phandle */ 192 if (!pmu_events) 193 return 0; 194 195 /* Get a count of number of child nodes */ 196 ct = of_get_child_count(pmu_events); 197 198 /* Get the event prefix */ 199 if (of_property_read_string(node, "events-prefix", &prefix)) 200 return 0; 201 202 /* Get a global unit and scale data if available */ 203 if (of_property_read_string(node, "scale", &g_scale)) 204 g_scale = NULL; 205 206 if (of_property_read_string(node, "unit", &g_unit)) 207 g_unit = NULL; 208 209 /* "reg" property gives out the base offset of the counters data */ 210 of_property_read_u32(node, "reg", &base_reg); 211 212 /* Allocate memory for the events */ 213 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 214 if (!pmu->events) 215 return -ENOMEM; 216 217 ct = 0; 218 /* Parse the events and update the struct */ 219 for_each_child_of_node(pmu_events, np) { 220 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg); 221 if (ev) 222 pmu->events[ct++] = ev; 223 } 224 225 /* Allocate memory for attribute group */ 226 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 227 if (!attr_group) 228 return -ENOMEM; 229 230 /* 231 * Allocate memory for attributes. 232 * Since we have count of events for this pmu, we also allocate 233 * memory for the scale and unit attribute for now. 234 * "ct" has the total event structs added from the events-parent node. 235 * So allocate three times the "ct" (this includes event, event_scale and 236 * event_unit). 237 */ 238 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 239 if (!attrs) { 240 kfree(attr_group); 241 kfree(pmu->events); 242 return -ENOMEM; 243 } 244 245 attr_group->name = "events"; 246 attr_group->attrs = attrs; 247 do { 248 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value); 249 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str); 250 if (!dev_str) 251 continue; 252 253 attrs[j++] = dev_str; 254 if (pmu->events[i]->scale) { 255 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name); 256 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale); 257 if (!dev_str) 258 continue; 259 260 attrs[j++] = dev_str; 261 } 262 263 if (pmu->events[i]->unit) { 264 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name); 265 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit); 266 if (!dev_str) 267 continue; 268 269 attrs[j++] = dev_str; 270 } 271 } while (++i < ct); 272 273 /* Save the event attribute */ 274 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 275 276 kfree(pmu->events); 277 return 0; 278 } 279 280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 282 { 283 return per_cpu(local_nest_imc_refc, cpu); 284 } 285 286 static void nest_change_cpu_context(int old_cpu, int new_cpu) 287 { 288 struct imc_pmu **pn = per_nest_pmu_arr; 289 int i; 290 291 if (old_cpu < 0 || new_cpu < 0) 292 return; 293 294 for (i = 0; *pn && i < IMC_MAX_PMUS; i++, pn++) 295 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 296 } 297 298 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 299 { 300 int nid, target = -1; 301 const struct cpumask *l_cpumask; 302 struct imc_pmu_ref *ref; 303 304 /* 305 * Check in the designated list for this cpu. Dont bother 306 * if not one of them. 307 */ 308 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 309 return 0; 310 311 /* 312 * Now that this cpu is one of the designated, 313 * find a next cpu a) which is online and b) in same chip. 314 */ 315 nid = cpu_to_node(cpu); 316 l_cpumask = cpumask_of_node(nid); 317 target = cpumask_any_but(l_cpumask, cpu); 318 319 /* 320 * Update the cpumask with the target cpu and 321 * migrate the context if needed 322 */ 323 if (target >= 0 && target < nr_cpu_ids) { 324 cpumask_set_cpu(target, &nest_imc_cpumask); 325 nest_change_cpu_context(cpu, target); 326 } else { 327 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 328 get_hard_smp_processor_id(cpu)); 329 /* 330 * If this is the last cpu in this chip then, skip the reference 331 * count mutex lock and make the reference count on this chip zero. 332 */ 333 ref = get_nest_pmu_ref(cpu); 334 if (!ref) 335 return -EINVAL; 336 337 ref->refc = 0; 338 } 339 return 0; 340 } 341 342 static int ppc_nest_imc_cpu_online(unsigned int cpu) 343 { 344 const struct cpumask *l_cpumask; 345 static struct cpumask tmp_mask; 346 int res; 347 348 /* Get the cpumask of this node */ 349 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 350 351 /* 352 * If this is not the first online CPU on this node, then 353 * just return. 354 */ 355 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 356 return 0; 357 358 /* 359 * If this is the first online cpu on this node 360 * disable the nest counters by making an OPAL call. 361 */ 362 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 363 get_hard_smp_processor_id(cpu)); 364 if (res) 365 return res; 366 367 /* Make this CPU the designated target for counter collection */ 368 cpumask_set_cpu(cpu, &nest_imc_cpumask); 369 return 0; 370 } 371 372 static int nest_pmu_cpumask_init(void) 373 { 374 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 375 "perf/powerpc/imc:online", 376 ppc_nest_imc_cpu_online, 377 ppc_nest_imc_cpu_offline); 378 } 379 380 static void nest_imc_counters_release(struct perf_event *event) 381 { 382 int rc, node_id; 383 struct imc_pmu_ref *ref; 384 385 if (event->cpu < 0) 386 return; 387 388 node_id = cpu_to_node(event->cpu); 389 390 /* 391 * See if we need to disable the nest PMU. 392 * If no events are currently in use, then we have to take a 393 * mutex to ensure that we don't race with another task doing 394 * enable or disable the nest counters. 395 */ 396 ref = get_nest_pmu_ref(event->cpu); 397 if (!ref) 398 return; 399 400 /* Take the mutex lock for this node and then decrement the reference count */ 401 mutex_lock(&ref->lock); 402 if (ref->refc == 0) { 403 /* 404 * The scenario where this is true is, when perf session is 405 * started, followed by offlining of all cpus in a given node. 406 * 407 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 408 * function set the ref->count to zero, if the cpu which is 409 * about to offline is the last cpu in a given node and make 410 * an OPAL call to disable the engine in that node. 411 * 412 */ 413 mutex_unlock(&ref->lock); 414 return; 415 } 416 ref->refc--; 417 if (ref->refc == 0) { 418 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 419 get_hard_smp_processor_id(event->cpu)); 420 if (rc) { 421 mutex_unlock(&ref->lock); 422 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 423 return; 424 } 425 } else if (ref->refc < 0) { 426 WARN(1, "nest-imc: Invalid event reference count\n"); 427 ref->refc = 0; 428 } 429 mutex_unlock(&ref->lock); 430 } 431 432 static int nest_imc_event_init(struct perf_event *event) 433 { 434 int chip_id, rc, node_id; 435 u32 l_config, config = event->attr.config; 436 struct imc_mem_info *pcni; 437 struct imc_pmu *pmu; 438 struct imc_pmu_ref *ref; 439 bool flag = false; 440 441 if (event->attr.type != event->pmu->type) 442 return -ENOENT; 443 444 /* Sampling not supported */ 445 if (event->hw.sample_period) 446 return -EINVAL; 447 448 /* unsupported modes and filters */ 449 if (event->attr.exclude_user || 450 event->attr.exclude_kernel || 451 event->attr.exclude_hv || 452 event->attr.exclude_idle || 453 event->attr.exclude_host || 454 event->attr.exclude_guest) 455 return -EINVAL; 456 457 if (event->cpu < 0) 458 return -EINVAL; 459 460 pmu = imc_event_to_pmu(event); 461 462 /* Sanity check for config (event offset) */ 463 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 464 return -EINVAL; 465 466 /* 467 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 468 * Get the base memory addresss for this cpu. 469 */ 470 chip_id = topology_physical_package_id(event->cpu); 471 pcni = pmu->mem_info; 472 do { 473 if (pcni->id == chip_id) { 474 flag = true; 475 break; 476 } 477 pcni++; 478 } while (pcni); 479 480 if (!flag) 481 return -ENODEV; 482 483 /* 484 * Add the event offset to the base address. 485 */ 486 l_config = config & IMC_EVENT_OFFSET_MASK; 487 event->hw.event_base = (u64)pcni->vbase + l_config; 488 node_id = cpu_to_node(event->cpu); 489 490 /* 491 * Get the imc_pmu_ref struct for this node. 492 * Take the mutex lock and then increment the count of nest pmu events 493 * inited. 494 */ 495 ref = get_nest_pmu_ref(event->cpu); 496 if (!ref) 497 return -EINVAL; 498 499 mutex_lock(&ref->lock); 500 if (ref->refc == 0) { 501 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 502 get_hard_smp_processor_id(event->cpu)); 503 if (rc) { 504 mutex_unlock(&ref->lock); 505 pr_err("nest-imc: Unable to start the counters for node %d\n", 506 node_id); 507 return rc; 508 } 509 } 510 ++ref->refc; 511 mutex_unlock(&ref->lock); 512 513 event->destroy = nest_imc_counters_release; 514 return 0; 515 } 516 517 /* 518 * core_imc_mem_init : Initializes memory for the current core. 519 * 520 * Uses alloc_pages_node() and uses the returned address as an argument to 521 * an opal call to configure the pdbar. The address sent as an argument is 522 * converted to physical address before the opal call is made. This is the 523 * base address at which the core imc counters are populated. 524 */ 525 static int core_imc_mem_init(int cpu, int size) 526 { 527 int phys_id, rc = 0, core_id = (cpu / threads_per_core); 528 struct imc_mem_info *mem_info; 529 530 /* 531 * alloc_pages_node() will allocate memory for core in the 532 * local node only. 533 */ 534 phys_id = topology_physical_package_id(cpu); 535 mem_info = &core_imc_pmu->mem_info[core_id]; 536 mem_info->id = core_id; 537 538 /* We need only vbase for core counters */ 539 mem_info->vbase = page_address(alloc_pages_node(phys_id, 540 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 541 __GFP_NOWARN, get_order(size))); 542 if (!mem_info->vbase) 543 return -ENOMEM; 544 545 /* Init the mutex */ 546 core_imc_refc[core_id].id = core_id; 547 mutex_init(&core_imc_refc[core_id].lock); 548 549 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 550 __pa((void *)mem_info->vbase), 551 get_hard_smp_processor_id(cpu)); 552 if (rc) { 553 free_pages((u64)mem_info->vbase, get_order(size)); 554 mem_info->vbase = NULL; 555 } 556 557 return rc; 558 } 559 560 static bool is_core_imc_mem_inited(int cpu) 561 { 562 struct imc_mem_info *mem_info; 563 int core_id = (cpu / threads_per_core); 564 565 mem_info = &core_imc_pmu->mem_info[core_id]; 566 if (!mem_info->vbase) 567 return false; 568 569 return true; 570 } 571 572 static int ppc_core_imc_cpu_online(unsigned int cpu) 573 { 574 const struct cpumask *l_cpumask; 575 static struct cpumask tmp_mask; 576 int ret = 0; 577 578 /* Get the cpumask for this core */ 579 l_cpumask = cpu_sibling_mask(cpu); 580 581 /* If a cpu for this core is already set, then, don't do anything */ 582 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 583 return 0; 584 585 if (!is_core_imc_mem_inited(cpu)) { 586 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 587 if (ret) { 588 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 589 return ret; 590 } 591 } 592 593 /* set the cpu in the mask */ 594 cpumask_set_cpu(cpu, &core_imc_cpumask); 595 return 0; 596 } 597 598 static int ppc_core_imc_cpu_offline(unsigned int cpu) 599 { 600 unsigned int ncpu, core_id; 601 struct imc_pmu_ref *ref; 602 603 /* 604 * clear this cpu out of the mask, if not present in the mask, 605 * don't bother doing anything. 606 */ 607 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 608 return 0; 609 610 /* 611 * Check whether core_imc is registered. We could end up here 612 * if the cpuhotplug callback registration fails. i.e, callback 613 * invokes the offline path for all sucessfully registered cpus. 614 * At this stage, core_imc pmu will not be registered and we 615 * should return here. 616 * 617 * We return with a zero since this is not an offline failure. 618 * And cpuhp_setup_state() returns the actual failure reason 619 * to the caller, which inturn will call the cleanup routine. 620 */ 621 if (!core_imc_pmu->pmu.event_init) 622 return 0; 623 624 /* Find any online cpu in that core except the current "cpu" */ 625 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 626 627 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 628 cpumask_set_cpu(ncpu, &core_imc_cpumask); 629 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 630 } else { 631 /* 632 * If this is the last cpu in this core then, skip taking refernce 633 * count mutex lock for this core and directly zero "refc" for 634 * this core. 635 */ 636 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 637 get_hard_smp_processor_id(cpu)); 638 core_id = cpu / threads_per_core; 639 ref = &core_imc_refc[core_id]; 640 if (!ref) 641 return -EINVAL; 642 643 ref->refc = 0; 644 } 645 return 0; 646 } 647 648 static int core_imc_pmu_cpumask_init(void) 649 { 650 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 651 "perf/powerpc/imc_core:online", 652 ppc_core_imc_cpu_online, 653 ppc_core_imc_cpu_offline); 654 } 655 656 static void core_imc_counters_release(struct perf_event *event) 657 { 658 int rc, core_id; 659 struct imc_pmu_ref *ref; 660 661 if (event->cpu < 0) 662 return; 663 /* 664 * See if we need to disable the IMC PMU. 665 * If no events are currently in use, then we have to take a 666 * mutex to ensure that we don't race with another task doing 667 * enable or disable the core counters. 668 */ 669 core_id = event->cpu / threads_per_core; 670 671 /* Take the mutex lock and decrement the refernce count for this core */ 672 ref = &core_imc_refc[core_id]; 673 if (!ref) 674 return; 675 676 mutex_lock(&ref->lock); 677 if (ref->refc == 0) { 678 /* 679 * The scenario where this is true is, when perf session is 680 * started, followed by offlining of all cpus in a given core. 681 * 682 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 683 * function set the ref->count to zero, if the cpu which is 684 * about to offline is the last cpu in a given core and make 685 * an OPAL call to disable the engine in that core. 686 * 687 */ 688 mutex_unlock(&ref->lock); 689 return; 690 } 691 ref->refc--; 692 if (ref->refc == 0) { 693 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 694 get_hard_smp_processor_id(event->cpu)); 695 if (rc) { 696 mutex_unlock(&ref->lock); 697 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 698 return; 699 } 700 } else if (ref->refc < 0) { 701 WARN(1, "core-imc: Invalid event reference count\n"); 702 ref->refc = 0; 703 } 704 mutex_unlock(&ref->lock); 705 } 706 707 static int core_imc_event_init(struct perf_event *event) 708 { 709 int core_id, rc; 710 u64 config = event->attr.config; 711 struct imc_mem_info *pcmi; 712 struct imc_pmu *pmu; 713 struct imc_pmu_ref *ref; 714 715 if (event->attr.type != event->pmu->type) 716 return -ENOENT; 717 718 /* Sampling not supported */ 719 if (event->hw.sample_period) 720 return -EINVAL; 721 722 /* unsupported modes and filters */ 723 if (event->attr.exclude_user || 724 event->attr.exclude_kernel || 725 event->attr.exclude_hv || 726 event->attr.exclude_idle || 727 event->attr.exclude_host || 728 event->attr.exclude_guest) 729 return -EINVAL; 730 731 if (event->cpu < 0) 732 return -EINVAL; 733 734 event->hw.idx = -1; 735 pmu = imc_event_to_pmu(event); 736 737 /* Sanity check for config (event offset) */ 738 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 739 return -EINVAL; 740 741 if (!is_core_imc_mem_inited(event->cpu)) 742 return -ENODEV; 743 744 core_id = event->cpu / threads_per_core; 745 pcmi = &core_imc_pmu->mem_info[core_id]; 746 if ((!pcmi->vbase)) 747 return -ENODEV; 748 749 /* Get the core_imc mutex for this core */ 750 ref = &core_imc_refc[core_id]; 751 if (!ref) 752 return -EINVAL; 753 754 /* 755 * Core pmu units are enabled only when it is used. 756 * See if this is triggered for the first time. 757 * If yes, take the mutex lock and enable the core counters. 758 * If not, just increment the count in core_imc_refc struct. 759 */ 760 mutex_lock(&ref->lock); 761 if (ref->refc == 0) { 762 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 763 get_hard_smp_processor_id(event->cpu)); 764 if (rc) { 765 mutex_unlock(&ref->lock); 766 pr_err("core-imc: Unable to start the counters for core %d\n", 767 core_id); 768 return rc; 769 } 770 } 771 ++ref->refc; 772 mutex_unlock(&ref->lock); 773 774 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 775 event->destroy = core_imc_counters_release; 776 return 0; 777 } 778 779 /* 780 * Allocates a page of memory for each of the online cpus, and write the 781 * physical base address of that page to the LDBAR for that cpu. 782 * 783 * LDBAR Register Layout: 784 * 785 * 0 4 8 12 16 20 24 28 786 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 787 * | | [ ] [ Counter Address [8:50] 788 * | * Mode | 789 * | * PB Scope 790 * * Enable/Disable 791 * 792 * 32 36 40 44 48 52 56 60 793 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 794 * Counter Address [8:50] ] 795 * 796 */ 797 static int thread_imc_mem_alloc(int cpu_id, int size) 798 { 799 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id); 800 int phys_id = topology_physical_package_id(cpu_id); 801 802 if (!local_mem) { 803 /* 804 * This case could happen only once at start, since we dont 805 * free the memory in cpu offline path. 806 */ 807 local_mem = page_address(alloc_pages_node(phys_id, 808 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 809 __GFP_NOWARN, get_order(size))); 810 if (!local_mem) 811 return -ENOMEM; 812 813 per_cpu(thread_imc_mem, cpu_id) = local_mem; 814 } 815 816 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 817 818 mtspr(SPRN_LDBAR, ldbar_value); 819 return 0; 820 } 821 822 static int ppc_thread_imc_cpu_online(unsigned int cpu) 823 { 824 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 825 } 826 827 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 828 { 829 mtspr(SPRN_LDBAR, 0); 830 return 0; 831 } 832 833 static int thread_imc_cpu_init(void) 834 { 835 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 836 "perf/powerpc/imc_thread:online", 837 ppc_thread_imc_cpu_online, 838 ppc_thread_imc_cpu_offline); 839 } 840 841 void thread_imc_pmu_sched_task(struct perf_event_context *ctx, 842 bool sched_in) 843 { 844 int core_id; 845 struct imc_pmu_ref *ref; 846 847 if (!is_core_imc_mem_inited(smp_processor_id())) 848 return; 849 850 core_id = smp_processor_id() / threads_per_core; 851 /* 852 * imc pmus are enabled only when it is used. 853 * See if this is triggered for the first time. 854 * If yes, take the mutex lock and enable the counters. 855 * If not, just increment the count in ref count struct. 856 */ 857 ref = &core_imc_refc[core_id]; 858 if (!ref) 859 return; 860 861 if (sched_in) { 862 mutex_lock(&ref->lock); 863 if (ref->refc == 0) { 864 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 865 get_hard_smp_processor_id(smp_processor_id()))) { 866 mutex_unlock(&ref->lock); 867 pr_err("thread-imc: Unable to start the counter\ 868 for core %d\n", core_id); 869 return; 870 } 871 } 872 ++ref->refc; 873 mutex_unlock(&ref->lock); 874 } else { 875 mutex_lock(&ref->lock); 876 ref->refc--; 877 if (ref->refc == 0) { 878 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 879 get_hard_smp_processor_id(smp_processor_id()))) { 880 mutex_unlock(&ref->lock); 881 pr_err("thread-imc: Unable to stop the counters\ 882 for core %d\n", core_id); 883 return; 884 } 885 } else if (ref->refc < 0) { 886 ref->refc = 0; 887 } 888 mutex_unlock(&ref->lock); 889 } 890 891 return; 892 } 893 894 static int thread_imc_event_init(struct perf_event *event) 895 { 896 u32 config = event->attr.config; 897 struct task_struct *target; 898 struct imc_pmu *pmu; 899 900 if (event->attr.type != event->pmu->type) 901 return -ENOENT; 902 903 /* Sampling not supported */ 904 if (event->hw.sample_period) 905 return -EINVAL; 906 907 event->hw.idx = -1; 908 pmu = imc_event_to_pmu(event); 909 910 /* Sanity check for config offset */ 911 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 912 return -EINVAL; 913 914 target = event->hw.target; 915 if (!target) 916 return -EINVAL; 917 918 event->pmu->task_ctx_nr = perf_sw_context; 919 return 0; 920 } 921 922 static bool is_thread_imc_pmu(struct perf_event *event) 923 { 924 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 925 return true; 926 927 return false; 928 } 929 930 static u64 * get_event_base_addr(struct perf_event *event) 931 { 932 u64 addr; 933 934 if (is_thread_imc_pmu(event)) { 935 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 936 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 937 } 938 939 return (u64 *)event->hw.event_base; 940 } 941 942 static void thread_imc_pmu_start_txn(struct pmu *pmu, 943 unsigned int txn_flags) 944 { 945 if (txn_flags & ~PERF_PMU_TXN_ADD) 946 return; 947 perf_pmu_disable(pmu); 948 } 949 950 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 951 { 952 perf_pmu_enable(pmu); 953 } 954 955 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 956 { 957 perf_pmu_enable(pmu); 958 return 0; 959 } 960 961 static u64 imc_read_counter(struct perf_event *event) 962 { 963 u64 *addr, data; 964 965 /* 966 * In-Memory Collection (IMC) counters are free flowing counters. 967 * So we take a snapshot of the counter value on enable and save it 968 * to calculate the delta at later stage to present the event counter 969 * value. 970 */ 971 addr = get_event_base_addr(event); 972 data = be64_to_cpu(READ_ONCE(*addr)); 973 local64_set(&event->hw.prev_count, data); 974 975 return data; 976 } 977 978 static void imc_event_update(struct perf_event *event) 979 { 980 u64 counter_prev, counter_new, final_count; 981 982 counter_prev = local64_read(&event->hw.prev_count); 983 counter_new = imc_read_counter(event); 984 final_count = counter_new - counter_prev; 985 986 /* Update the delta to the event count */ 987 local64_add(final_count, &event->count); 988 } 989 990 static void imc_event_start(struct perf_event *event, int flags) 991 { 992 /* 993 * In Memory Counters are free flowing counters. HW or the microcode 994 * keeps adding to the counter offset in memory. To get event 995 * counter value, we snapshot the value here and we calculate 996 * delta at later point. 997 */ 998 imc_read_counter(event); 999 } 1000 1001 static void imc_event_stop(struct perf_event *event, int flags) 1002 { 1003 /* 1004 * Take a snapshot and calculate the delta and update 1005 * the event counter values. 1006 */ 1007 imc_event_update(event); 1008 } 1009 1010 static int imc_event_add(struct perf_event *event, int flags) 1011 { 1012 if (flags & PERF_EF_START) 1013 imc_event_start(event, flags); 1014 1015 return 0; 1016 } 1017 1018 static int thread_imc_event_add(struct perf_event *event, int flags) 1019 { 1020 if (flags & PERF_EF_START) 1021 imc_event_start(event, flags); 1022 1023 /* Enable the sched_task to start the engine */ 1024 perf_sched_cb_inc(event->ctx->pmu); 1025 return 0; 1026 } 1027 1028 static void thread_imc_event_del(struct perf_event *event, int flags) 1029 { 1030 /* 1031 * Take a snapshot and calculate the delta and update 1032 * the event counter values. 1033 */ 1034 imc_event_update(event); 1035 perf_sched_cb_dec(event->ctx->pmu); 1036 } 1037 1038 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1039 static int update_pmu_ops(struct imc_pmu *pmu) 1040 { 1041 pmu->pmu.task_ctx_nr = perf_invalid_context; 1042 pmu->pmu.add = imc_event_add; 1043 pmu->pmu.del = imc_event_stop; 1044 pmu->pmu.start = imc_event_start; 1045 pmu->pmu.stop = imc_event_stop; 1046 pmu->pmu.read = imc_event_update; 1047 pmu->pmu.attr_groups = pmu->attr_groups; 1048 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1049 1050 switch (pmu->domain) { 1051 case IMC_DOMAIN_NEST: 1052 pmu->pmu.event_init = nest_imc_event_init; 1053 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1054 break; 1055 case IMC_DOMAIN_CORE: 1056 pmu->pmu.event_init = core_imc_event_init; 1057 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1058 break; 1059 case IMC_DOMAIN_THREAD: 1060 pmu->pmu.event_init = thread_imc_event_init; 1061 pmu->pmu.sched_task = thread_imc_pmu_sched_task; 1062 pmu->pmu.add = thread_imc_event_add; 1063 pmu->pmu.del = thread_imc_event_del; 1064 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1065 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1066 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1067 break; 1068 default: 1069 break; 1070 } 1071 1072 return 0; 1073 } 1074 1075 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1076 static int init_nest_pmu_ref(void) 1077 { 1078 int nid, i, cpu; 1079 1080 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1081 GFP_KERNEL); 1082 1083 if (!nest_imc_refc) 1084 return -ENOMEM; 1085 1086 i = 0; 1087 for_each_node(nid) { 1088 /* 1089 * Mutex lock to avoid races while tracking the number of 1090 * sessions using the chip's nest pmu units. 1091 */ 1092 mutex_init(&nest_imc_refc[i].lock); 1093 1094 /* 1095 * Loop to init the "id" with the node_id. Variable "i" initialized to 1096 * 0 and will be used as index to the array. "i" will not go off the 1097 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1098 * nodes only. 1099 */ 1100 nest_imc_refc[i++].id = nid; 1101 } 1102 1103 /* 1104 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1105 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1106 */ 1107 for_each_possible_cpu(cpu) { 1108 nid = cpu_to_node(cpu); 1109 for (i = 0; i < num_possible_nodes(); i++) { 1110 if (nest_imc_refc[i].id == nid) { 1111 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1112 break; 1113 } 1114 } 1115 } 1116 return 0; 1117 } 1118 1119 static void cleanup_all_core_imc_memory(void) 1120 { 1121 int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1122 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1123 int size = core_imc_pmu->counter_mem_size; 1124 1125 /* mem_info will never be NULL */ 1126 for (i = 0; i < nr_cores; i++) { 1127 if (ptr[i].vbase) 1128 free_pages((u64)ptr->vbase, get_order(size)); 1129 } 1130 1131 kfree(ptr); 1132 kfree(core_imc_refc); 1133 } 1134 1135 static void thread_imc_ldbar_disable(void *dummy) 1136 { 1137 /* 1138 * By Zeroing LDBAR, we disable thread-imc 1139 * updates. 1140 */ 1141 mtspr(SPRN_LDBAR, 0); 1142 } 1143 1144 void thread_imc_disable(void) 1145 { 1146 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1147 } 1148 1149 static void cleanup_all_thread_imc_memory(void) 1150 { 1151 int i, order = get_order(thread_imc_mem_size); 1152 1153 for_each_online_cpu(i) { 1154 if (per_cpu(thread_imc_mem, i)) 1155 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1156 1157 } 1158 } 1159 1160 /* 1161 * Common function to unregister cpu hotplug callback and 1162 * free the memory. 1163 * TODO: Need to handle pmu unregistering, which will be 1164 * done in followup series. 1165 */ 1166 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1167 { 1168 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1169 mutex_lock(&nest_init_lock); 1170 if (nest_pmus == 1) { 1171 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1172 kfree(nest_imc_refc); 1173 } 1174 1175 if (nest_pmus > 0) 1176 nest_pmus--; 1177 mutex_unlock(&nest_init_lock); 1178 } 1179 1180 /* Free core_imc memory */ 1181 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1182 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1183 cleanup_all_core_imc_memory(); 1184 } 1185 1186 /* Free thread_imc memory */ 1187 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1188 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1189 cleanup_all_thread_imc_memory(); 1190 } 1191 1192 /* Only free the attr_groups which are dynamically allocated */ 1193 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1194 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1195 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1196 kfree(pmu_ptr); 1197 return; 1198 } 1199 1200 1201 /* 1202 * imc_mem_init : Function to support memory allocation for core imc. 1203 */ 1204 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1205 int pmu_index) 1206 { 1207 const char *s; 1208 int nr_cores, cpu, res; 1209 1210 if (of_property_read_string(parent, "name", &s)) 1211 return -ENODEV; 1212 1213 switch (pmu_ptr->domain) { 1214 case IMC_DOMAIN_NEST: 1215 /* Update the pmu name */ 1216 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1217 if (!pmu_ptr->pmu.name) 1218 return -ENOMEM; 1219 1220 /* Needed for hotplug/migration */ 1221 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1222 break; 1223 case IMC_DOMAIN_CORE: 1224 /* Update the pmu name */ 1225 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1226 if (!pmu_ptr->pmu.name) 1227 return -ENOMEM; 1228 1229 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1230 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1231 GFP_KERNEL); 1232 1233 if (!pmu_ptr->mem_info) 1234 return -ENOMEM; 1235 1236 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1237 GFP_KERNEL); 1238 1239 if (!core_imc_refc) 1240 return -ENOMEM; 1241 1242 core_imc_pmu = pmu_ptr; 1243 break; 1244 case IMC_DOMAIN_THREAD: 1245 /* Update the pmu name */ 1246 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1247 if (!pmu_ptr->pmu.name) 1248 return -ENOMEM; 1249 1250 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1251 for_each_online_cpu(cpu) { 1252 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1253 if (res) 1254 return res; 1255 } 1256 1257 thread_imc_pmu = pmu_ptr; 1258 break; 1259 default: 1260 return -EINVAL; 1261 } 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * init_imc_pmu : Setup and register the IMC pmu device. 1268 * 1269 * @parent: Device tree unit node 1270 * @pmu_ptr: memory allocated for this pmu 1271 * @pmu_idx: Count of nest pmc registered 1272 * 1273 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1274 * Handles failure cases and accordingly frees memory. 1275 */ 1276 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1277 { 1278 int ret; 1279 1280 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1281 if (ret) 1282 goto err_free; 1283 1284 switch (pmu_ptr->domain) { 1285 case IMC_DOMAIN_NEST: 1286 /* 1287 * Nest imc pmu need only one cpu per chip, we initialize the 1288 * cpumask for the first nest imc pmu and use the same for the 1289 * rest. To handle the cpuhotplug callback unregister, we track 1290 * the number of nest pmus in "nest_pmus". 1291 */ 1292 mutex_lock(&nest_init_lock); 1293 if (nest_pmus == 0) { 1294 ret = init_nest_pmu_ref(); 1295 if (ret) { 1296 mutex_unlock(&nest_init_lock); 1297 goto err_free; 1298 } 1299 /* Register for cpu hotplug notification. */ 1300 ret = nest_pmu_cpumask_init(); 1301 if (ret) { 1302 mutex_unlock(&nest_init_lock); 1303 goto err_free; 1304 } 1305 } 1306 nest_pmus++; 1307 mutex_unlock(&nest_init_lock); 1308 break; 1309 case IMC_DOMAIN_CORE: 1310 ret = core_imc_pmu_cpumask_init(); 1311 if (ret) { 1312 cleanup_all_core_imc_memory(); 1313 return ret; 1314 } 1315 1316 break; 1317 case IMC_DOMAIN_THREAD: 1318 ret = thread_imc_cpu_init(); 1319 if (ret) { 1320 cleanup_all_thread_imc_memory(); 1321 return ret; 1322 } 1323 1324 break; 1325 default: 1326 return -1; /* Unknown domain */ 1327 } 1328 1329 ret = update_events_in_group(parent, pmu_ptr); 1330 if (ret) 1331 goto err_free; 1332 1333 ret = update_pmu_ops(pmu_ptr); 1334 if (ret) 1335 goto err_free; 1336 1337 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1338 if (ret) 1339 goto err_free; 1340 1341 pr_info("%s performance monitor hardware support registered\n", 1342 pmu_ptr->pmu.name); 1343 1344 return 0; 1345 1346 err_free: 1347 imc_common_cpuhp_mem_free(pmu_ptr); 1348 return ret; 1349 } 1350