xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/of.h>
10 #include <linux/perf_event.h>
11 #include <linux/slab.h>
12 #include <asm/opal.h>
13 #include <asm/imc-pmu.h>
14 #include <asm/cputhreads.h>
15 #include <asm/smp.h>
16 #include <linux/string.h>
17 
18 /* Nest IMC data structures and variables */
19 
20 /*
21  * Used to avoid races in counting the nest-pmu units during hotplug
22  * register and unregister
23  */
24 static DEFINE_MUTEX(nest_init_lock);
25 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
26 static struct imc_pmu **per_nest_pmu_arr;
27 static cpumask_t nest_imc_cpumask;
28 static struct imc_pmu_ref *nest_imc_refc;
29 static int nest_pmus;
30 
31 /* Core IMC data structures and variables */
32 
33 static cpumask_t core_imc_cpumask;
34 static struct imc_pmu_ref *core_imc_refc;
35 static struct imc_pmu *core_imc_pmu;
36 
37 /* Thread IMC data structures and variables */
38 
39 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
40 static struct imc_pmu *thread_imc_pmu;
41 static int thread_imc_mem_size;
42 
43 /* Trace IMC data structures */
44 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
45 static struct imc_pmu_ref *trace_imc_refc;
46 static int trace_imc_mem_size;
47 
48 /*
49  * Global data structure used to avoid races between thread,
50  * core and trace-imc
51  */
52 static struct imc_pmu_ref imc_global_refc = {
53 	.lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
54 	.id = 0,
55 	.refc = 0,
56 };
57 
58 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
59 {
60 	return container_of(event->pmu, struct imc_pmu, pmu);
61 }
62 
63 PMU_FORMAT_ATTR(event, "config:0-61");
64 PMU_FORMAT_ATTR(offset, "config:0-31");
65 PMU_FORMAT_ATTR(rvalue, "config:32");
66 PMU_FORMAT_ATTR(mode, "config:33-40");
67 static struct attribute *imc_format_attrs[] = {
68 	&format_attr_event.attr,
69 	&format_attr_offset.attr,
70 	&format_attr_rvalue.attr,
71 	&format_attr_mode.attr,
72 	NULL,
73 };
74 
75 static const struct attribute_group imc_format_group = {
76 	.name = "format",
77 	.attrs = imc_format_attrs,
78 };
79 
80 /* Format attribute for imc trace-mode */
81 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
82 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
83 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
84 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
85 static struct attribute *trace_imc_format_attrs[] = {
86 	&format_attr_event.attr,
87 	&format_attr_cpmc_reserved.attr,
88 	&format_attr_cpmc_event.attr,
89 	&format_attr_cpmc_samplesel.attr,
90 	&format_attr_cpmc_load.attr,
91 	NULL,
92 };
93 
94 static const struct attribute_group trace_imc_format_group = {
95 .name = "format",
96 .attrs = trace_imc_format_attrs,
97 };
98 
99 /* Get the cpumask printed to a buffer "buf" */
100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
101 					struct device_attribute *attr,
102 					char *buf)
103 {
104 	struct pmu *pmu = dev_get_drvdata(dev);
105 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
106 	cpumask_t *active_mask;
107 
108 	switch(imc_pmu->domain){
109 	case IMC_DOMAIN_NEST:
110 		active_mask = &nest_imc_cpumask;
111 		break;
112 	case IMC_DOMAIN_CORE:
113 		active_mask = &core_imc_cpumask;
114 		break;
115 	default:
116 		return 0;
117 	}
118 
119 	return cpumap_print_to_pagebuf(true, buf, active_mask);
120 }
121 
122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
123 
124 static struct attribute *imc_pmu_cpumask_attrs[] = {
125 	&dev_attr_cpumask.attr,
126 	NULL,
127 };
128 
129 static const struct attribute_group imc_pmu_cpumask_attr_group = {
130 	.attrs = imc_pmu_cpumask_attrs,
131 };
132 
133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
134 static struct attribute *device_str_attr_create(const char *name, const char *str)
135 {
136 	struct perf_pmu_events_attr *attr;
137 
138 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
139 	if (!attr)
140 		return NULL;
141 	sysfs_attr_init(&attr->attr.attr);
142 
143 	attr->event_str = str;
144 	attr->attr.attr.name = name;
145 	attr->attr.attr.mode = 0444;
146 	attr->attr.show = perf_event_sysfs_show;
147 
148 	return &attr->attr.attr;
149 }
150 
151 static int imc_parse_event(struct device_node *np, const char *scale,
152 				  const char *unit, const char *prefix,
153 				  u32 base, struct imc_events *event)
154 {
155 	const char *s;
156 	u32 reg;
157 
158 	if (of_property_read_u32(np, "reg", &reg))
159 		goto error;
160 	/* Add the base_reg value to the "reg" */
161 	event->value = base + reg;
162 
163 	if (of_property_read_string(np, "event-name", &s))
164 		goto error;
165 
166 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
167 	if (!event->name)
168 		goto error;
169 
170 	if (of_property_read_string(np, "scale", &s))
171 		s = scale;
172 
173 	if (s) {
174 		event->scale = kstrdup(s, GFP_KERNEL);
175 		if (!event->scale)
176 			goto error;
177 	}
178 
179 	if (of_property_read_string(np, "unit", &s))
180 		s = unit;
181 
182 	if (s) {
183 		event->unit = kstrdup(s, GFP_KERNEL);
184 		if (!event->unit)
185 			goto error;
186 	}
187 
188 	return 0;
189 error:
190 	kfree(event->unit);
191 	kfree(event->scale);
192 	kfree(event->name);
193 	return -EINVAL;
194 }
195 
196 /*
197  * imc_free_events: Function to cleanup the events list, having
198  * 		    "nr_entries".
199  */
200 static void imc_free_events(struct imc_events *events, int nr_entries)
201 {
202 	int i;
203 
204 	/* Nothing to clean, return */
205 	if (!events)
206 		return;
207 	for (i = 0; i < nr_entries; i++) {
208 		kfree(events[i].unit);
209 		kfree(events[i].scale);
210 		kfree(events[i].name);
211 	}
212 
213 	kfree(events);
214 }
215 
216 /*
217  * update_events_in_group: Update the "events" information in an attr_group
218  *                         and assign the attr_group to the pmu "pmu".
219  */
220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
221 {
222 	struct attribute_group *attr_group;
223 	struct attribute **attrs, *dev_str;
224 	struct device_node *np, *pmu_events;
225 	u32 handle, base_reg;
226 	int i = 0, j = 0, ct, ret;
227 	const char *prefix, *g_scale, *g_unit;
228 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
229 
230 	if (!of_property_read_u32(node, "events", &handle))
231 		pmu_events = of_find_node_by_phandle(handle);
232 	else
233 		return 0;
234 
235 	/* Did not find any node with a given phandle */
236 	if (!pmu_events)
237 		return 0;
238 
239 	/* Get a count of number of child nodes */
240 	ct = of_get_child_count(pmu_events);
241 
242 	/* Get the event prefix */
243 	if (of_property_read_string(node, "events-prefix", &prefix)) {
244 		of_node_put(pmu_events);
245 		return 0;
246 	}
247 
248 	/* Get a global unit and scale data if available */
249 	if (of_property_read_string(node, "scale", &g_scale))
250 		g_scale = NULL;
251 
252 	if (of_property_read_string(node, "unit", &g_unit))
253 		g_unit = NULL;
254 
255 	/* "reg" property gives out the base offset of the counters data */
256 	of_property_read_u32(node, "reg", &base_reg);
257 
258 	/* Allocate memory for the events */
259 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
260 	if (!pmu->events) {
261 		of_node_put(pmu_events);
262 		return -ENOMEM;
263 	}
264 
265 	ct = 0;
266 	/* Parse the events and update the struct */
267 	for_each_child_of_node(pmu_events, np) {
268 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
269 		if (!ret)
270 			ct++;
271 	}
272 
273 	of_node_put(pmu_events);
274 
275 	/* Allocate memory for attribute group */
276 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
277 	if (!attr_group) {
278 		imc_free_events(pmu->events, ct);
279 		return -ENOMEM;
280 	}
281 
282 	/*
283 	 * Allocate memory for attributes.
284 	 * Since we have count of events for this pmu, we also allocate
285 	 * memory for the scale and unit attribute for now.
286 	 * "ct" has the total event structs added from the events-parent node.
287 	 * So allocate three times the "ct" (this includes event, event_scale and
288 	 * event_unit).
289 	 */
290 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
291 	if (!attrs) {
292 		kfree(attr_group);
293 		imc_free_events(pmu->events, ct);
294 		return -ENOMEM;
295 	}
296 
297 	attr_group->name = "events";
298 	attr_group->attrs = attrs;
299 	do {
300 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
301 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
302 		if (!dev_str)
303 			continue;
304 
305 		attrs[j++] = dev_str;
306 		if (pmu->events[i].scale) {
307 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
308 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
309 			if (!dev_str)
310 				continue;
311 
312 			attrs[j++] = dev_str;
313 		}
314 
315 		if (pmu->events[i].unit) {
316 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
317 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
318 			if (!dev_str)
319 				continue;
320 
321 			attrs[j++] = dev_str;
322 		}
323 	} while (++i < ct);
324 
325 	/* Save the event attribute */
326 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
327 
328 	return 0;
329 }
330 
331 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
332 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
333 {
334 	return per_cpu(local_nest_imc_refc, cpu);
335 }
336 
337 static void nest_change_cpu_context(int old_cpu, int new_cpu)
338 {
339 	struct imc_pmu **pn = per_nest_pmu_arr;
340 
341 	if (old_cpu < 0 || new_cpu < 0)
342 		return;
343 
344 	while (*pn) {
345 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
346 		pn++;
347 	}
348 }
349 
350 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
351 {
352 	int nid, target = -1;
353 	const struct cpumask *l_cpumask;
354 	struct imc_pmu_ref *ref;
355 
356 	/*
357 	 * Check in the designated list for this cpu. Dont bother
358 	 * if not one of them.
359 	 */
360 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
361 		return 0;
362 
363 	/*
364 	 * Check whether nest_imc is registered. We could end up here if the
365 	 * cpuhotplug callback registration fails. i.e, callback invokes the
366 	 * offline path for all successfully registered nodes. At this stage,
367 	 * nest_imc pmu will not be registered and we should return here.
368 	 *
369 	 * We return with a zero since this is not an offline failure. And
370 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
371 	 * which in turn will call the cleanup routine.
372 	 */
373 	if (!nest_pmus)
374 		return 0;
375 
376 	/*
377 	 * Now that this cpu is one of the designated,
378 	 * find a next cpu a) which is online and b) in same chip.
379 	 */
380 	nid = cpu_to_node(cpu);
381 	l_cpumask = cpumask_of_node(nid);
382 	target = cpumask_last(l_cpumask);
383 
384 	/*
385 	 * If this(target) is the last cpu in the cpumask for this chip,
386 	 * check for any possible online cpu in the chip.
387 	 */
388 	if (unlikely(target == cpu))
389 		target = cpumask_any_but(l_cpumask, cpu);
390 
391 	/*
392 	 * Update the cpumask with the target cpu and
393 	 * migrate the context if needed
394 	 */
395 	if (target >= 0 && target < nr_cpu_ids) {
396 		cpumask_set_cpu(target, &nest_imc_cpumask);
397 		nest_change_cpu_context(cpu, target);
398 	} else {
399 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
400 				       get_hard_smp_processor_id(cpu));
401 		/*
402 		 * If this is the last cpu in this chip then, skip the reference
403 		 * count mutex lock and make the reference count on this chip zero.
404 		 */
405 		ref = get_nest_pmu_ref(cpu);
406 		if (!ref)
407 			return -EINVAL;
408 
409 		ref->refc = 0;
410 	}
411 	return 0;
412 }
413 
414 static int ppc_nest_imc_cpu_online(unsigned int cpu)
415 {
416 	const struct cpumask *l_cpumask;
417 	static struct cpumask tmp_mask;
418 	int res;
419 
420 	/* Get the cpumask of this node */
421 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
422 
423 	/*
424 	 * If this is not the first online CPU on this node, then
425 	 * just return.
426 	 */
427 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
428 		return 0;
429 
430 	/*
431 	 * If this is the first online cpu on this node
432 	 * disable the nest counters by making an OPAL call.
433 	 */
434 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
435 				     get_hard_smp_processor_id(cpu));
436 	if (res)
437 		return res;
438 
439 	/* Make this CPU the designated target for counter collection */
440 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
441 	return 0;
442 }
443 
444 static int nest_pmu_cpumask_init(void)
445 {
446 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
447 				 "perf/powerpc/imc:online",
448 				 ppc_nest_imc_cpu_online,
449 				 ppc_nest_imc_cpu_offline);
450 }
451 
452 static void nest_imc_counters_release(struct perf_event *event)
453 {
454 	int rc, node_id;
455 	struct imc_pmu_ref *ref;
456 
457 	if (event->cpu < 0)
458 		return;
459 
460 	node_id = cpu_to_node(event->cpu);
461 
462 	/*
463 	 * See if we need to disable the nest PMU.
464 	 * If no events are currently in use, then we have to take a
465 	 * mutex to ensure that we don't race with another task doing
466 	 * enable or disable the nest counters.
467 	 */
468 	ref = get_nest_pmu_ref(event->cpu);
469 	if (!ref)
470 		return;
471 
472 	/* Take the mutex lock for this node and then decrement the reference count */
473 	mutex_lock(&ref->lock);
474 	if (ref->refc == 0) {
475 		/*
476 		 * The scenario where this is true is, when perf session is
477 		 * started, followed by offlining of all cpus in a given node.
478 		 *
479 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
480 		 * function set the ref->count to zero, if the cpu which is
481 		 * about to offline is the last cpu in a given node and make
482 		 * an OPAL call to disable the engine in that node.
483 		 *
484 		 */
485 		mutex_unlock(&ref->lock);
486 		return;
487 	}
488 	ref->refc--;
489 	if (ref->refc == 0) {
490 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
491 					    get_hard_smp_processor_id(event->cpu));
492 		if (rc) {
493 			mutex_unlock(&ref->lock);
494 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
495 			return;
496 		}
497 	} else if (ref->refc < 0) {
498 		WARN(1, "nest-imc: Invalid event reference count\n");
499 		ref->refc = 0;
500 	}
501 	mutex_unlock(&ref->lock);
502 }
503 
504 static int nest_imc_event_init(struct perf_event *event)
505 {
506 	int chip_id, rc, node_id;
507 	u32 l_config, config = event->attr.config;
508 	struct imc_mem_info *pcni;
509 	struct imc_pmu *pmu;
510 	struct imc_pmu_ref *ref;
511 	bool flag = false;
512 
513 	if (event->attr.type != event->pmu->type)
514 		return -ENOENT;
515 
516 	/* Sampling not supported */
517 	if (event->hw.sample_period)
518 		return -EINVAL;
519 
520 	if (event->cpu < 0)
521 		return -EINVAL;
522 
523 	pmu = imc_event_to_pmu(event);
524 
525 	/* Sanity check for config (event offset) */
526 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
527 		return -EINVAL;
528 
529 	/*
530 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
531 	 * Get the base memory address for this cpu.
532 	 */
533 	chip_id = cpu_to_chip_id(event->cpu);
534 
535 	/* Return, if chip_id is not valid */
536 	if (chip_id < 0)
537 		return -ENODEV;
538 
539 	pcni = pmu->mem_info;
540 	do {
541 		if (pcni->id == chip_id) {
542 			flag = true;
543 			break;
544 		}
545 		pcni++;
546 	} while (pcni->vbase != 0);
547 
548 	if (!flag)
549 		return -ENODEV;
550 
551 	/*
552 	 * Add the event offset to the base address.
553 	 */
554 	l_config = config & IMC_EVENT_OFFSET_MASK;
555 	event->hw.event_base = (u64)pcni->vbase + l_config;
556 	node_id = cpu_to_node(event->cpu);
557 
558 	/*
559 	 * Get the imc_pmu_ref struct for this node.
560 	 * Take the mutex lock and then increment the count of nest pmu events
561 	 * inited.
562 	 */
563 	ref = get_nest_pmu_ref(event->cpu);
564 	if (!ref)
565 		return -EINVAL;
566 
567 	mutex_lock(&ref->lock);
568 	if (ref->refc == 0) {
569 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
570 					     get_hard_smp_processor_id(event->cpu));
571 		if (rc) {
572 			mutex_unlock(&ref->lock);
573 			pr_err("nest-imc: Unable to start the counters for node %d\n",
574 									node_id);
575 			return rc;
576 		}
577 	}
578 	++ref->refc;
579 	mutex_unlock(&ref->lock);
580 
581 	event->destroy = nest_imc_counters_release;
582 	return 0;
583 }
584 
585 /*
586  * core_imc_mem_init : Initializes memory for the current core.
587  *
588  * Uses alloc_pages_node() and uses the returned address as an argument to
589  * an opal call to configure the pdbar. The address sent as an argument is
590  * converted to physical address before the opal call is made. This is the
591  * base address at which the core imc counters are populated.
592  */
593 static int core_imc_mem_init(int cpu, int size)
594 {
595 	int nid, rc = 0, core_id = (cpu / threads_per_core);
596 	struct imc_mem_info *mem_info;
597 	struct page *page;
598 
599 	/*
600 	 * alloc_pages_node() will allocate memory for core in the
601 	 * local node only.
602 	 */
603 	nid = cpu_to_node(cpu);
604 	mem_info = &core_imc_pmu->mem_info[core_id];
605 	mem_info->id = core_id;
606 
607 	/* We need only vbase for core counters */
608 	page = alloc_pages_node(nid,
609 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
610 				__GFP_NOWARN, get_order(size));
611 	if (!page)
612 		return -ENOMEM;
613 	mem_info->vbase = page_address(page);
614 
615 	/* Init the mutex */
616 	core_imc_refc[core_id].id = core_id;
617 	mutex_init(&core_imc_refc[core_id].lock);
618 
619 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
620 				__pa((void *)mem_info->vbase),
621 				get_hard_smp_processor_id(cpu));
622 	if (rc) {
623 		free_pages((u64)mem_info->vbase, get_order(size));
624 		mem_info->vbase = NULL;
625 	}
626 
627 	return rc;
628 }
629 
630 static bool is_core_imc_mem_inited(int cpu)
631 {
632 	struct imc_mem_info *mem_info;
633 	int core_id = (cpu / threads_per_core);
634 
635 	mem_info = &core_imc_pmu->mem_info[core_id];
636 	if (!mem_info->vbase)
637 		return false;
638 
639 	return true;
640 }
641 
642 static int ppc_core_imc_cpu_online(unsigned int cpu)
643 {
644 	const struct cpumask *l_cpumask;
645 	static struct cpumask tmp_mask;
646 	int ret = 0;
647 
648 	/* Get the cpumask for this core */
649 	l_cpumask = cpu_sibling_mask(cpu);
650 
651 	/* If a cpu for this core is already set, then, don't do anything */
652 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
653 		return 0;
654 
655 	if (!is_core_imc_mem_inited(cpu)) {
656 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
657 		if (ret) {
658 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
659 			return ret;
660 		}
661 	}
662 
663 	/* set the cpu in the mask */
664 	cpumask_set_cpu(cpu, &core_imc_cpumask);
665 	return 0;
666 }
667 
668 static int ppc_core_imc_cpu_offline(unsigned int cpu)
669 {
670 	unsigned int core_id;
671 	int ncpu;
672 	struct imc_pmu_ref *ref;
673 
674 	/*
675 	 * clear this cpu out of the mask, if not present in the mask,
676 	 * don't bother doing anything.
677 	 */
678 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
679 		return 0;
680 
681 	/*
682 	 * Check whether core_imc is registered. We could end up here
683 	 * if the cpuhotplug callback registration fails. i.e, callback
684 	 * invokes the offline path for all successfully registered cpus.
685 	 * At this stage, core_imc pmu will not be registered and we
686 	 * should return here.
687 	 *
688 	 * We return with a zero since this is not an offline failure.
689 	 * And cpuhp_setup_state() returns the actual failure reason
690 	 * to the caller, which inturn will call the cleanup routine.
691 	 */
692 	if (!core_imc_pmu->pmu.event_init)
693 		return 0;
694 
695 	/* Find any online cpu in that core except the current "cpu" */
696 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
697 
698 	if (unlikely(ncpu == cpu))
699 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
700 
701 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
702 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
703 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
704 	} else {
705 		/*
706 		 * If this is the last cpu in this core then, skip taking refernce
707 		 * count mutex lock for this core and directly zero "refc" for
708 		 * this core.
709 		 */
710 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
711 				       get_hard_smp_processor_id(cpu));
712 		core_id = cpu / threads_per_core;
713 		ref = &core_imc_refc[core_id];
714 		if (!ref)
715 			return -EINVAL;
716 
717 		ref->refc = 0;
718 		/*
719 		 * Reduce the global reference count, if this is the
720 		 * last cpu in this core and core-imc event running
721 		 * in this cpu.
722 		 */
723 		mutex_lock(&imc_global_refc.lock);
724 		if (imc_global_refc.id == IMC_DOMAIN_CORE)
725 			imc_global_refc.refc--;
726 
727 		mutex_unlock(&imc_global_refc.lock);
728 	}
729 	return 0;
730 }
731 
732 static int core_imc_pmu_cpumask_init(void)
733 {
734 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
735 				 "perf/powerpc/imc_core:online",
736 				 ppc_core_imc_cpu_online,
737 				 ppc_core_imc_cpu_offline);
738 }
739 
740 static void reset_global_refc(struct perf_event *event)
741 {
742 		mutex_lock(&imc_global_refc.lock);
743 		imc_global_refc.refc--;
744 
745 		/*
746 		 * If no other thread is running any
747 		 * event for this domain(thread/core/trace),
748 		 * set the global id to zero.
749 		 */
750 		if (imc_global_refc.refc <= 0) {
751 			imc_global_refc.refc = 0;
752 			imc_global_refc.id = 0;
753 		}
754 		mutex_unlock(&imc_global_refc.lock);
755 }
756 
757 static void core_imc_counters_release(struct perf_event *event)
758 {
759 	int rc, core_id;
760 	struct imc_pmu_ref *ref;
761 
762 	if (event->cpu < 0)
763 		return;
764 	/*
765 	 * See if we need to disable the IMC PMU.
766 	 * If no events are currently in use, then we have to take a
767 	 * mutex to ensure that we don't race with another task doing
768 	 * enable or disable the core counters.
769 	 */
770 	core_id = event->cpu / threads_per_core;
771 
772 	/* Take the mutex lock and decrement the refernce count for this core */
773 	ref = &core_imc_refc[core_id];
774 	if (!ref)
775 		return;
776 
777 	mutex_lock(&ref->lock);
778 	if (ref->refc == 0) {
779 		/*
780 		 * The scenario where this is true is, when perf session is
781 		 * started, followed by offlining of all cpus in a given core.
782 		 *
783 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
784 		 * function set the ref->count to zero, if the cpu which is
785 		 * about to offline is the last cpu in a given core and make
786 		 * an OPAL call to disable the engine in that core.
787 		 *
788 		 */
789 		mutex_unlock(&ref->lock);
790 		return;
791 	}
792 	ref->refc--;
793 	if (ref->refc == 0) {
794 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
795 					    get_hard_smp_processor_id(event->cpu));
796 		if (rc) {
797 			mutex_unlock(&ref->lock);
798 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
799 			return;
800 		}
801 	} else if (ref->refc < 0) {
802 		WARN(1, "core-imc: Invalid event reference count\n");
803 		ref->refc = 0;
804 	}
805 	mutex_unlock(&ref->lock);
806 
807 	reset_global_refc(event);
808 }
809 
810 static int core_imc_event_init(struct perf_event *event)
811 {
812 	int core_id, rc;
813 	u64 config = event->attr.config;
814 	struct imc_mem_info *pcmi;
815 	struct imc_pmu *pmu;
816 	struct imc_pmu_ref *ref;
817 
818 	if (event->attr.type != event->pmu->type)
819 		return -ENOENT;
820 
821 	/* Sampling not supported */
822 	if (event->hw.sample_period)
823 		return -EINVAL;
824 
825 	if (event->cpu < 0)
826 		return -EINVAL;
827 
828 	event->hw.idx = -1;
829 	pmu = imc_event_to_pmu(event);
830 
831 	/* Sanity check for config (event offset) */
832 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
833 		return -EINVAL;
834 
835 	if (!is_core_imc_mem_inited(event->cpu))
836 		return -ENODEV;
837 
838 	core_id = event->cpu / threads_per_core;
839 	pcmi = &core_imc_pmu->mem_info[core_id];
840 	if ((!pcmi->vbase))
841 		return -ENODEV;
842 
843 	/* Get the core_imc mutex for this core */
844 	ref = &core_imc_refc[core_id];
845 	if (!ref)
846 		return -EINVAL;
847 
848 	/*
849 	 * Core pmu units are enabled only when it is used.
850 	 * See if this is triggered for the first time.
851 	 * If yes, take the mutex lock and enable the core counters.
852 	 * If not, just increment the count in core_imc_refc struct.
853 	 */
854 	mutex_lock(&ref->lock);
855 	if (ref->refc == 0) {
856 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
857 					     get_hard_smp_processor_id(event->cpu));
858 		if (rc) {
859 			mutex_unlock(&ref->lock);
860 			pr_err("core-imc: Unable to start the counters for core %d\n",
861 									core_id);
862 			return rc;
863 		}
864 	}
865 	++ref->refc;
866 	mutex_unlock(&ref->lock);
867 
868 	/*
869 	 * Since the system can run either in accumulation or trace-mode
870 	 * of IMC at a time, core-imc events are allowed only if no other
871 	 * trace/thread imc events are enabled/monitored.
872 	 *
873 	 * Take the global lock, and check the refc.id
874 	 * to know whether any other trace/thread imc
875 	 * events are running.
876 	 */
877 	mutex_lock(&imc_global_refc.lock);
878 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
879 		/*
880 		 * No other trace/thread imc events are running in
881 		 * the system, so set the refc.id to core-imc.
882 		 */
883 		imc_global_refc.id = IMC_DOMAIN_CORE;
884 		imc_global_refc.refc++;
885 	} else {
886 		mutex_unlock(&imc_global_refc.lock);
887 		return -EBUSY;
888 	}
889 	mutex_unlock(&imc_global_refc.lock);
890 
891 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
892 	event->destroy = core_imc_counters_release;
893 	return 0;
894 }
895 
896 /*
897  * Allocates a page of memory for each of the online cpus, and load
898  * LDBAR with 0.
899  * The physical base address of the page allocated for a cpu will be
900  * written to the LDBAR for that cpu, when the thread-imc event
901  * is added.
902  *
903  * LDBAR Register Layout:
904  *
905  *  0          4         8         12        16        20        24        28
906  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
907  *   | |       [   ]    [                   Counter Address [8:50]
908  *   | * Mode    |
909  *   |           * PB Scope
910  *   * Enable/Disable
911  *
912  *  32        36        40        44        48        52        56        60
913  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
914  *           Counter Address [8:50]              ]
915  *
916  */
917 static int thread_imc_mem_alloc(int cpu_id, int size)
918 {
919 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
920 	int nid = cpu_to_node(cpu_id);
921 
922 	if (!local_mem) {
923 		struct page *page;
924 		/*
925 		 * This case could happen only once at start, since we dont
926 		 * free the memory in cpu offline path.
927 		 */
928 		page = alloc_pages_node(nid,
929 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
930 				  __GFP_NOWARN, get_order(size));
931 		if (!page)
932 			return -ENOMEM;
933 		local_mem = page_address(page);
934 
935 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
936 	}
937 
938 	mtspr(SPRN_LDBAR, 0);
939 	return 0;
940 }
941 
942 static int ppc_thread_imc_cpu_online(unsigned int cpu)
943 {
944 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
945 }
946 
947 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
948 {
949 	/*
950 	 * Set the bit 0 of LDBAR to zero.
951 	 *
952 	 * If bit 0 of LDBAR is unset, it will stop posting
953 	 * the counter data to memory.
954 	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
955 	 * event_add function. So reset this bit here, to stop the updates
956 	 * to memory in the cpu_offline path.
957 	 */
958 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
959 
960 	/* Reduce the refc if thread-imc event running on this cpu */
961 	mutex_lock(&imc_global_refc.lock);
962 	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
963 		imc_global_refc.refc--;
964 	mutex_unlock(&imc_global_refc.lock);
965 
966 	return 0;
967 }
968 
969 static int thread_imc_cpu_init(void)
970 {
971 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
972 			  "perf/powerpc/imc_thread:online",
973 			  ppc_thread_imc_cpu_online,
974 			  ppc_thread_imc_cpu_offline);
975 }
976 
977 static int thread_imc_event_init(struct perf_event *event)
978 {
979 	u32 config = event->attr.config;
980 	struct task_struct *target;
981 	struct imc_pmu *pmu;
982 
983 	if (event->attr.type != event->pmu->type)
984 		return -ENOENT;
985 
986 	if (!perfmon_capable())
987 		return -EACCES;
988 
989 	/* Sampling not supported */
990 	if (event->hw.sample_period)
991 		return -EINVAL;
992 
993 	event->hw.idx = -1;
994 	pmu = imc_event_to_pmu(event);
995 
996 	/* Sanity check for config offset */
997 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
998 		return -EINVAL;
999 
1000 	target = event->hw.target;
1001 	if (!target)
1002 		return -EINVAL;
1003 
1004 	mutex_lock(&imc_global_refc.lock);
1005 	/*
1006 	 * Check if any other trace/core imc events are running in the
1007 	 * system, if not set the global id to thread-imc.
1008 	 */
1009 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1010 		imc_global_refc.id = IMC_DOMAIN_THREAD;
1011 		imc_global_refc.refc++;
1012 	} else {
1013 		mutex_unlock(&imc_global_refc.lock);
1014 		return -EBUSY;
1015 	}
1016 	mutex_unlock(&imc_global_refc.lock);
1017 
1018 	event->pmu->task_ctx_nr = perf_sw_context;
1019 	event->destroy = reset_global_refc;
1020 	return 0;
1021 }
1022 
1023 static bool is_thread_imc_pmu(struct perf_event *event)
1024 {
1025 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1026 		return true;
1027 
1028 	return false;
1029 }
1030 
1031 static u64 * get_event_base_addr(struct perf_event *event)
1032 {
1033 	u64 addr;
1034 
1035 	if (is_thread_imc_pmu(event)) {
1036 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1037 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1038 	}
1039 
1040 	return (u64 *)event->hw.event_base;
1041 }
1042 
1043 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1044 				     unsigned int txn_flags)
1045 {
1046 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1047 		return;
1048 	perf_pmu_disable(pmu);
1049 }
1050 
1051 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1052 {
1053 	perf_pmu_enable(pmu);
1054 }
1055 
1056 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1057 {
1058 	perf_pmu_enable(pmu);
1059 	return 0;
1060 }
1061 
1062 static u64 imc_read_counter(struct perf_event *event)
1063 {
1064 	u64 *addr, data;
1065 
1066 	/*
1067 	 * In-Memory Collection (IMC) counters are free flowing counters.
1068 	 * So we take a snapshot of the counter value on enable and save it
1069 	 * to calculate the delta at later stage to present the event counter
1070 	 * value.
1071 	 */
1072 	addr = get_event_base_addr(event);
1073 	data = be64_to_cpu(READ_ONCE(*addr));
1074 	local64_set(&event->hw.prev_count, data);
1075 
1076 	return data;
1077 }
1078 
1079 static void imc_event_update(struct perf_event *event)
1080 {
1081 	u64 counter_prev, counter_new, final_count;
1082 
1083 	counter_prev = local64_read(&event->hw.prev_count);
1084 	counter_new = imc_read_counter(event);
1085 	final_count = counter_new - counter_prev;
1086 
1087 	/* Update the delta to the event count */
1088 	local64_add(final_count, &event->count);
1089 }
1090 
1091 static void imc_event_start(struct perf_event *event, int flags)
1092 {
1093 	/*
1094 	 * In Memory Counters are free flowing counters. HW or the microcode
1095 	 * keeps adding to the counter offset in memory. To get event
1096 	 * counter value, we snapshot the value here and we calculate
1097 	 * delta at later point.
1098 	 */
1099 	imc_read_counter(event);
1100 }
1101 
1102 static void imc_event_stop(struct perf_event *event, int flags)
1103 {
1104 	/*
1105 	 * Take a snapshot and calculate the delta and update
1106 	 * the event counter values.
1107 	 */
1108 	imc_event_update(event);
1109 }
1110 
1111 static int imc_event_add(struct perf_event *event, int flags)
1112 {
1113 	if (flags & PERF_EF_START)
1114 		imc_event_start(event, flags);
1115 
1116 	return 0;
1117 }
1118 
1119 static int thread_imc_event_add(struct perf_event *event, int flags)
1120 {
1121 	int core_id;
1122 	struct imc_pmu_ref *ref;
1123 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1124 
1125 	if (flags & PERF_EF_START)
1126 		imc_event_start(event, flags);
1127 
1128 	if (!is_core_imc_mem_inited(smp_processor_id()))
1129 		return -EINVAL;
1130 
1131 	core_id = smp_processor_id() / threads_per_core;
1132 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1133 	mtspr(SPRN_LDBAR, ldbar_value);
1134 
1135 	/*
1136 	 * imc pmus are enabled only when it is used.
1137 	 * See if this is triggered for the first time.
1138 	 * If yes, take the mutex lock and enable the counters.
1139 	 * If not, just increment the count in ref count struct.
1140 	 */
1141 	ref = &core_imc_refc[core_id];
1142 	if (!ref)
1143 		return -EINVAL;
1144 
1145 	mutex_lock(&ref->lock);
1146 	if (ref->refc == 0) {
1147 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1148 		    get_hard_smp_processor_id(smp_processor_id()))) {
1149 			mutex_unlock(&ref->lock);
1150 			pr_err("thread-imc: Unable to start the counter\
1151 				for core %d\n", core_id);
1152 			return -EINVAL;
1153 		}
1154 	}
1155 	++ref->refc;
1156 	mutex_unlock(&ref->lock);
1157 	return 0;
1158 }
1159 
1160 static void thread_imc_event_del(struct perf_event *event, int flags)
1161 {
1162 
1163 	int core_id;
1164 	struct imc_pmu_ref *ref;
1165 
1166 	core_id = smp_processor_id() / threads_per_core;
1167 	ref = &core_imc_refc[core_id];
1168 	if (!ref) {
1169 		pr_debug("imc: Failed to get event reference count\n");
1170 		return;
1171 	}
1172 
1173 	mutex_lock(&ref->lock);
1174 	ref->refc--;
1175 	if (ref->refc == 0) {
1176 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1177 		    get_hard_smp_processor_id(smp_processor_id()))) {
1178 			mutex_unlock(&ref->lock);
1179 			pr_err("thread-imc: Unable to stop the counters\
1180 				for core %d\n", core_id);
1181 			return;
1182 		}
1183 	} else if (ref->refc < 0) {
1184 		ref->refc = 0;
1185 	}
1186 	mutex_unlock(&ref->lock);
1187 
1188 	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1189 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1190 
1191 	/*
1192 	 * Take a snapshot and calculate the delta and update
1193 	 * the event counter values.
1194 	 */
1195 	imc_event_update(event);
1196 }
1197 
1198 /*
1199  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1200  */
1201 static int trace_imc_mem_alloc(int cpu_id, int size)
1202 {
1203 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1204 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1205 	int core_id = (cpu_id / threads_per_core);
1206 
1207 	if (!local_mem) {
1208 		struct page *page;
1209 
1210 		page = alloc_pages_node(phys_id,
1211 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1212 				__GFP_NOWARN, get_order(size));
1213 		if (!page)
1214 			return -ENOMEM;
1215 		local_mem = page_address(page);
1216 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1217 
1218 		/* Initialise the counters for trace mode */
1219 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1220 					    get_hard_smp_processor_id(cpu_id));
1221 		if (rc) {
1222 			pr_info("IMC:opal init failed for trace imc\n");
1223 			return rc;
1224 		}
1225 	}
1226 
1227 	/* Init the mutex, if not already */
1228 	trace_imc_refc[core_id].id = core_id;
1229 	mutex_init(&trace_imc_refc[core_id].lock);
1230 
1231 	mtspr(SPRN_LDBAR, 0);
1232 	return 0;
1233 }
1234 
1235 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1236 {
1237 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1238 }
1239 
1240 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1241 {
1242 	/*
1243 	 * No need to set bit 0 of LDBAR to zero, as
1244 	 * it is set to zero for imc trace-mode
1245 	 *
1246 	 * Reduce the refc if any trace-imc event running
1247 	 * on this cpu.
1248 	 */
1249 	mutex_lock(&imc_global_refc.lock);
1250 	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1251 		imc_global_refc.refc--;
1252 	mutex_unlock(&imc_global_refc.lock);
1253 
1254 	return 0;
1255 }
1256 
1257 static int trace_imc_cpu_init(void)
1258 {
1259 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1260 			  "perf/powerpc/imc_trace:online",
1261 			  ppc_trace_imc_cpu_online,
1262 			  ppc_trace_imc_cpu_offline);
1263 }
1264 
1265 static u64 get_trace_imc_event_base_addr(void)
1266 {
1267 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1268 }
1269 
1270 /*
1271  * Function to parse trace-imc data obtained
1272  * and to prepare the perf sample.
1273  */
1274 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1275 				    struct perf_sample_data *data,
1276 				    u64 *prev_tb,
1277 				    struct perf_event_header *header,
1278 				    struct perf_event *event)
1279 {
1280 	/* Sanity checks for a valid record */
1281 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1282 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1283 	else
1284 		return -EINVAL;
1285 
1286 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1287 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1288 		return -EINVAL;
1289 
1290 	/* Prepare perf sample */
1291 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1292 	data->period = event->hw.last_period;
1293 
1294 	header->type = PERF_RECORD_SAMPLE;
1295 	header->size = sizeof(*header) + event->header_size;
1296 	header->misc = 0;
1297 
1298 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1299 		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1300 		case 0:/* when MSR HV and PR not set in the trace-record */
1301 			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1302 			break;
1303 		case 1: /* MSR HV is 0 and PR is 1 */
1304 			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1305 			break;
1306 		case 2: /* MSR HV is 1 and PR is 0 */
1307 			header->misc |= PERF_RECORD_MISC_KERNEL;
1308 			break;
1309 		case 3: /* MSR HV is 1 and PR is 1 */
1310 			header->misc |= PERF_RECORD_MISC_USER;
1311 			break;
1312 		default:
1313 			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1314 			break;
1315 		}
1316 	} else {
1317 		if (is_kernel_addr(data->ip))
1318 			header->misc |= PERF_RECORD_MISC_KERNEL;
1319 		else
1320 			header->misc |= PERF_RECORD_MISC_USER;
1321 	}
1322 	perf_event_header__init_id(header, data, event);
1323 
1324 	return 0;
1325 }
1326 
1327 static void dump_trace_imc_data(struct perf_event *event)
1328 {
1329 	struct trace_imc_data *mem;
1330 	int i, ret;
1331 	u64 prev_tb = 0;
1332 
1333 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1334 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1335 		i++, mem++) {
1336 		struct perf_sample_data data;
1337 		struct perf_event_header header;
1338 
1339 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1340 		if (ret) /* Exit, if not a valid record */
1341 			break;
1342 		else {
1343 			/* If this is a valid record, create the sample */
1344 			struct perf_output_handle handle;
1345 
1346 			if (perf_output_begin(&handle, &data, event, header.size))
1347 				return;
1348 
1349 			perf_output_sample(&handle, &header, &data, event);
1350 			perf_output_end(&handle);
1351 		}
1352 	}
1353 }
1354 
1355 static int trace_imc_event_add(struct perf_event *event, int flags)
1356 {
1357 	int core_id = smp_processor_id() / threads_per_core;
1358 	struct imc_pmu_ref *ref = NULL;
1359 	u64 local_mem, ldbar_value;
1360 
1361 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1362 	local_mem = get_trace_imc_event_base_addr();
1363 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1364 
1365 	/* trace-imc reference count */
1366 	if (trace_imc_refc)
1367 		ref = &trace_imc_refc[core_id];
1368 	if (!ref) {
1369 		pr_debug("imc: Failed to get the event reference count\n");
1370 		return -EINVAL;
1371 	}
1372 
1373 	mtspr(SPRN_LDBAR, ldbar_value);
1374 	mutex_lock(&ref->lock);
1375 	if (ref->refc == 0) {
1376 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1377 				get_hard_smp_processor_id(smp_processor_id()))) {
1378 			mutex_unlock(&ref->lock);
1379 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1380 			return -EINVAL;
1381 		}
1382 	}
1383 	++ref->refc;
1384 	mutex_unlock(&ref->lock);
1385 	return 0;
1386 }
1387 
1388 static void trace_imc_event_read(struct perf_event *event)
1389 {
1390 	return;
1391 }
1392 
1393 static void trace_imc_event_stop(struct perf_event *event, int flags)
1394 {
1395 	u64 local_mem = get_trace_imc_event_base_addr();
1396 	dump_trace_imc_data(event);
1397 	memset((void *)local_mem, 0, sizeof(u64));
1398 }
1399 
1400 static void trace_imc_event_start(struct perf_event *event, int flags)
1401 {
1402 	return;
1403 }
1404 
1405 static void trace_imc_event_del(struct perf_event *event, int flags)
1406 {
1407 	int core_id = smp_processor_id() / threads_per_core;
1408 	struct imc_pmu_ref *ref = NULL;
1409 
1410 	if (trace_imc_refc)
1411 		ref = &trace_imc_refc[core_id];
1412 	if (!ref) {
1413 		pr_debug("imc: Failed to get event reference count\n");
1414 		return;
1415 	}
1416 
1417 	mutex_lock(&ref->lock);
1418 	ref->refc--;
1419 	if (ref->refc == 0) {
1420 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1421 				get_hard_smp_processor_id(smp_processor_id()))) {
1422 			mutex_unlock(&ref->lock);
1423 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1424 			return;
1425 		}
1426 	} else if (ref->refc < 0) {
1427 		ref->refc = 0;
1428 	}
1429 	mutex_unlock(&ref->lock);
1430 
1431 	trace_imc_event_stop(event, flags);
1432 }
1433 
1434 static int trace_imc_event_init(struct perf_event *event)
1435 {
1436 	if (event->attr.type != event->pmu->type)
1437 		return -ENOENT;
1438 
1439 	if (!perfmon_capable())
1440 		return -EACCES;
1441 
1442 	/* Return if this is a couting event */
1443 	if (event->attr.sample_period == 0)
1444 		return -ENOENT;
1445 
1446 	/*
1447 	 * Take the global lock, and make sure
1448 	 * no other thread is running any core/thread imc
1449 	 * events
1450 	 */
1451 	mutex_lock(&imc_global_refc.lock);
1452 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1453 		/*
1454 		 * No core/thread imc events are running in the
1455 		 * system, so set the refc.id to trace-imc.
1456 		 */
1457 		imc_global_refc.id = IMC_DOMAIN_TRACE;
1458 		imc_global_refc.refc++;
1459 	} else {
1460 		mutex_unlock(&imc_global_refc.lock);
1461 		return -EBUSY;
1462 	}
1463 	mutex_unlock(&imc_global_refc.lock);
1464 
1465 	event->hw.idx = -1;
1466 
1467 	/*
1468 	 * There can only be a single PMU for perf_hw_context events which is assigned to
1469 	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1470 	 */
1471 	event->pmu->task_ctx_nr = perf_sw_context;
1472 	event->destroy = reset_global_refc;
1473 	return 0;
1474 }
1475 
1476 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1477 static int update_pmu_ops(struct imc_pmu *pmu)
1478 {
1479 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1480 	pmu->pmu.add = imc_event_add;
1481 	pmu->pmu.del = imc_event_stop;
1482 	pmu->pmu.start = imc_event_start;
1483 	pmu->pmu.stop = imc_event_stop;
1484 	pmu->pmu.read = imc_event_update;
1485 	pmu->pmu.attr_groups = pmu->attr_groups;
1486 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1487 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1488 
1489 	switch (pmu->domain) {
1490 	case IMC_DOMAIN_NEST:
1491 		pmu->pmu.event_init = nest_imc_event_init;
1492 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1493 		break;
1494 	case IMC_DOMAIN_CORE:
1495 		pmu->pmu.event_init = core_imc_event_init;
1496 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1497 		break;
1498 	case IMC_DOMAIN_THREAD:
1499 		pmu->pmu.event_init = thread_imc_event_init;
1500 		pmu->pmu.add = thread_imc_event_add;
1501 		pmu->pmu.del = thread_imc_event_del;
1502 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1503 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1504 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1505 		break;
1506 	case IMC_DOMAIN_TRACE:
1507 		pmu->pmu.event_init = trace_imc_event_init;
1508 		pmu->pmu.add = trace_imc_event_add;
1509 		pmu->pmu.del = trace_imc_event_del;
1510 		pmu->pmu.start = trace_imc_event_start;
1511 		pmu->pmu.stop = trace_imc_event_stop;
1512 		pmu->pmu.read = trace_imc_event_read;
1513 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1514 		break;
1515 	default:
1516 		break;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1523 static int init_nest_pmu_ref(void)
1524 {
1525 	int nid, i, cpu;
1526 
1527 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1528 								GFP_KERNEL);
1529 
1530 	if (!nest_imc_refc)
1531 		return -ENOMEM;
1532 
1533 	i = 0;
1534 	for_each_node(nid) {
1535 		/*
1536 		 * Mutex lock to avoid races while tracking the number of
1537 		 * sessions using the chip's nest pmu units.
1538 		 */
1539 		mutex_init(&nest_imc_refc[i].lock);
1540 
1541 		/*
1542 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1543 		 * 0 and will be used as index to the array. "i" will not go off the
1544 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1545 		 * nodes only.
1546 		 */
1547 		nest_imc_refc[i++].id = nid;
1548 	}
1549 
1550 	/*
1551 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1552 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1553 	 */
1554 	for_each_possible_cpu(cpu) {
1555 		nid = cpu_to_node(cpu);
1556 		for (i = 0; i < num_possible_nodes(); i++) {
1557 			if (nest_imc_refc[i].id == nid) {
1558 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1559 				break;
1560 			}
1561 		}
1562 	}
1563 	return 0;
1564 }
1565 
1566 static void cleanup_all_core_imc_memory(void)
1567 {
1568 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1569 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1570 	int size = core_imc_pmu->counter_mem_size;
1571 
1572 	/* mem_info will never be NULL */
1573 	for (i = 0; i < nr_cores; i++) {
1574 		if (ptr[i].vbase)
1575 			free_pages((u64)ptr[i].vbase, get_order(size));
1576 	}
1577 
1578 	kfree(ptr);
1579 	kfree(core_imc_refc);
1580 }
1581 
1582 static void thread_imc_ldbar_disable(void *dummy)
1583 {
1584 	/*
1585 	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1586 	 * updates to memory.
1587 	 */
1588 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1589 }
1590 
1591 void thread_imc_disable(void)
1592 {
1593 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1594 }
1595 
1596 static void cleanup_all_thread_imc_memory(void)
1597 {
1598 	int i, order = get_order(thread_imc_mem_size);
1599 
1600 	for_each_online_cpu(i) {
1601 		if (per_cpu(thread_imc_mem, i))
1602 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1603 
1604 	}
1605 }
1606 
1607 static void cleanup_all_trace_imc_memory(void)
1608 {
1609 	int i, order = get_order(trace_imc_mem_size);
1610 
1611 	for_each_online_cpu(i) {
1612 		if (per_cpu(trace_imc_mem, i))
1613 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1614 
1615 	}
1616 	kfree(trace_imc_refc);
1617 }
1618 
1619 /* Function to free the attr_groups which are dynamically allocated */
1620 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1621 {
1622 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1623 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1624 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1625 }
1626 
1627 /*
1628  * Common function to unregister cpu hotplug callback and
1629  * free the memory.
1630  * TODO: Need to handle pmu unregistering, which will be
1631  * done in followup series.
1632  */
1633 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1634 {
1635 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1636 		mutex_lock(&nest_init_lock);
1637 		if (nest_pmus == 1) {
1638 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1639 			kfree(nest_imc_refc);
1640 			kfree(per_nest_pmu_arr);
1641 			per_nest_pmu_arr = NULL;
1642 		}
1643 
1644 		if (nest_pmus > 0)
1645 			nest_pmus--;
1646 		mutex_unlock(&nest_init_lock);
1647 	}
1648 
1649 	/* Free core_imc memory */
1650 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1651 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1652 		cleanup_all_core_imc_memory();
1653 	}
1654 
1655 	/* Free thread_imc memory */
1656 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1657 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1658 		cleanup_all_thread_imc_memory();
1659 	}
1660 
1661 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1662 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1663 		cleanup_all_trace_imc_memory();
1664 	}
1665 }
1666 
1667 /*
1668  * Function to unregister thread-imc if core-imc
1669  * is not registered.
1670  */
1671 void unregister_thread_imc(void)
1672 {
1673 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1674 	imc_common_mem_free(thread_imc_pmu);
1675 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1676 }
1677 
1678 /*
1679  * imc_mem_init : Function to support memory allocation for core imc.
1680  */
1681 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1682 								int pmu_index)
1683 {
1684 	const char *s;
1685 	int nr_cores, cpu, res = -ENOMEM;
1686 
1687 	if (of_property_read_string(parent, "name", &s))
1688 		return -ENODEV;
1689 
1690 	switch (pmu_ptr->domain) {
1691 	case IMC_DOMAIN_NEST:
1692 		/* Update the pmu name */
1693 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1694 		if (!pmu_ptr->pmu.name)
1695 			goto err;
1696 
1697 		/* Needed for hotplug/migration */
1698 		if (!per_nest_pmu_arr) {
1699 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1700 						sizeof(struct imc_pmu *),
1701 						GFP_KERNEL);
1702 			if (!per_nest_pmu_arr)
1703 				goto err;
1704 		}
1705 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1706 		break;
1707 	case IMC_DOMAIN_CORE:
1708 		/* Update the pmu name */
1709 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1710 		if (!pmu_ptr->pmu.name)
1711 			goto err;
1712 
1713 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1714 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1715 								GFP_KERNEL);
1716 
1717 		if (!pmu_ptr->mem_info)
1718 			goto err;
1719 
1720 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1721 								GFP_KERNEL);
1722 
1723 		if (!core_imc_refc) {
1724 			kfree(pmu_ptr->mem_info);
1725 			goto err;
1726 		}
1727 
1728 		core_imc_pmu = pmu_ptr;
1729 		break;
1730 	case IMC_DOMAIN_THREAD:
1731 		/* Update the pmu name */
1732 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1733 		if (!pmu_ptr->pmu.name)
1734 			goto err;
1735 
1736 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1737 		for_each_online_cpu(cpu) {
1738 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1739 			if (res) {
1740 				cleanup_all_thread_imc_memory();
1741 				goto err;
1742 			}
1743 		}
1744 
1745 		thread_imc_pmu = pmu_ptr;
1746 		break;
1747 	case IMC_DOMAIN_TRACE:
1748 		/* Update the pmu name */
1749 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1750 		if (!pmu_ptr->pmu.name)
1751 			return -ENOMEM;
1752 
1753 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1754 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1755 								GFP_KERNEL);
1756 		if (!trace_imc_refc)
1757 			return -ENOMEM;
1758 
1759 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1760 		for_each_online_cpu(cpu) {
1761 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1762 			if (res) {
1763 				cleanup_all_trace_imc_memory();
1764 				goto err;
1765 			}
1766 		}
1767 		break;
1768 	default:
1769 		return -EINVAL;
1770 	}
1771 
1772 	return 0;
1773 err:
1774 	return res;
1775 }
1776 
1777 /*
1778  * init_imc_pmu : Setup and register the IMC pmu device.
1779  *
1780  * @parent:	Device tree unit node
1781  * @pmu_ptr:	memory allocated for this pmu
1782  * @pmu_idx:	Count of nest pmc registered
1783  *
1784  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1785  * Handles failure cases and accordingly frees memory.
1786  */
1787 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1788 {
1789 	int ret;
1790 
1791 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1792 	if (ret)
1793 		goto err_free_mem;
1794 
1795 	switch (pmu_ptr->domain) {
1796 	case IMC_DOMAIN_NEST:
1797 		/*
1798 		* Nest imc pmu need only one cpu per chip, we initialize the
1799 		* cpumask for the first nest imc pmu and use the same for the
1800 		* rest. To handle the cpuhotplug callback unregister, we track
1801 		* the number of nest pmus in "nest_pmus".
1802 		*/
1803 		mutex_lock(&nest_init_lock);
1804 		if (nest_pmus == 0) {
1805 			ret = init_nest_pmu_ref();
1806 			if (ret) {
1807 				mutex_unlock(&nest_init_lock);
1808 				kfree(per_nest_pmu_arr);
1809 				per_nest_pmu_arr = NULL;
1810 				goto err_free_mem;
1811 			}
1812 			/* Register for cpu hotplug notification. */
1813 			ret = nest_pmu_cpumask_init();
1814 			if (ret) {
1815 				mutex_unlock(&nest_init_lock);
1816 				kfree(nest_imc_refc);
1817 				kfree(per_nest_pmu_arr);
1818 				per_nest_pmu_arr = NULL;
1819 				goto err_free_mem;
1820 			}
1821 		}
1822 		nest_pmus++;
1823 		mutex_unlock(&nest_init_lock);
1824 		break;
1825 	case IMC_DOMAIN_CORE:
1826 		ret = core_imc_pmu_cpumask_init();
1827 		if (ret) {
1828 			cleanup_all_core_imc_memory();
1829 			goto err_free_mem;
1830 		}
1831 
1832 		break;
1833 	case IMC_DOMAIN_THREAD:
1834 		ret = thread_imc_cpu_init();
1835 		if (ret) {
1836 			cleanup_all_thread_imc_memory();
1837 			goto err_free_mem;
1838 		}
1839 
1840 		break;
1841 	case IMC_DOMAIN_TRACE:
1842 		ret = trace_imc_cpu_init();
1843 		if (ret) {
1844 			cleanup_all_trace_imc_memory();
1845 			goto err_free_mem;
1846 		}
1847 
1848 		break;
1849 	default:
1850 		return  -EINVAL;	/* Unknown domain */
1851 	}
1852 
1853 	ret = update_events_in_group(parent, pmu_ptr);
1854 	if (ret)
1855 		goto err_free_cpuhp_mem;
1856 
1857 	ret = update_pmu_ops(pmu_ptr);
1858 	if (ret)
1859 		goto err_free_cpuhp_mem;
1860 
1861 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1862 	if (ret)
1863 		goto err_free_cpuhp_mem;
1864 
1865 	pr_debug("%s performance monitor hardware support registered\n",
1866 							pmu_ptr->pmu.name);
1867 
1868 	return 0;
1869 
1870 err_free_cpuhp_mem:
1871 	imc_common_cpuhp_mem_free(pmu_ptr);
1872 err_free_mem:
1873 	imc_common_mem_free(pmu_ptr);
1874 	return ret;
1875 }
1876