1 /* 2 * In-Memory Collection (IMC) Performance Monitor counter support. 3 * 4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 5 * (C) 2017 Anju T Sudhakar, IBM Corporation. 6 * (C) 2017 Hemant K Shaw, IBM Corporation. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or later version. 12 */ 13 #include <linux/perf_event.h> 14 #include <linux/slab.h> 15 #include <asm/opal.h> 16 #include <asm/imc-pmu.h> 17 #include <asm/cputhreads.h> 18 #include <asm/smp.h> 19 #include <linux/string.h> 20 21 /* Nest IMC data structures and variables */ 22 23 /* 24 * Used to avoid races in counting the nest-pmu units during hotplug 25 * register and unregister 26 */ 27 static DEFINE_MUTEX(nest_init_lock); 28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 29 static struct imc_pmu **per_nest_pmu_arr; 30 static cpumask_t nest_imc_cpumask; 31 static struct imc_pmu_ref *nest_imc_refc; 32 static int nest_pmus; 33 34 /* Core IMC data structures and variables */ 35 36 static cpumask_t core_imc_cpumask; 37 static struct imc_pmu_ref *core_imc_refc; 38 static struct imc_pmu *core_imc_pmu; 39 40 /* Thread IMC data structures and variables */ 41 42 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 43 static struct imc_pmu *thread_imc_pmu; 44 static int thread_imc_mem_size; 45 46 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 47 { 48 return container_of(event->pmu, struct imc_pmu, pmu); 49 } 50 51 PMU_FORMAT_ATTR(event, "config:0-40"); 52 PMU_FORMAT_ATTR(offset, "config:0-31"); 53 PMU_FORMAT_ATTR(rvalue, "config:32"); 54 PMU_FORMAT_ATTR(mode, "config:33-40"); 55 static struct attribute *imc_format_attrs[] = { 56 &format_attr_event.attr, 57 &format_attr_offset.attr, 58 &format_attr_rvalue.attr, 59 &format_attr_mode.attr, 60 NULL, 61 }; 62 63 static struct attribute_group imc_format_group = { 64 .name = "format", 65 .attrs = imc_format_attrs, 66 }; 67 68 /* Get the cpumask printed to a buffer "buf" */ 69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 70 struct device_attribute *attr, 71 char *buf) 72 { 73 struct pmu *pmu = dev_get_drvdata(dev); 74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 75 cpumask_t *active_mask; 76 77 switch(imc_pmu->domain){ 78 case IMC_DOMAIN_NEST: 79 active_mask = &nest_imc_cpumask; 80 break; 81 case IMC_DOMAIN_CORE: 82 active_mask = &core_imc_cpumask; 83 break; 84 default: 85 return 0; 86 } 87 88 return cpumap_print_to_pagebuf(true, buf, active_mask); 89 } 90 91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 92 93 static struct attribute *imc_pmu_cpumask_attrs[] = { 94 &dev_attr_cpumask.attr, 95 NULL, 96 }; 97 98 static struct attribute_group imc_pmu_cpumask_attr_group = { 99 .attrs = imc_pmu_cpumask_attrs, 100 }; 101 102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 103 static struct attribute *device_str_attr_create(const char *name, const char *str) 104 { 105 struct perf_pmu_events_attr *attr; 106 107 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 108 if (!attr) 109 return NULL; 110 sysfs_attr_init(&attr->attr.attr); 111 112 attr->event_str = str; 113 attr->attr.attr.name = name; 114 attr->attr.attr.mode = 0444; 115 attr->attr.show = perf_event_sysfs_show; 116 117 return &attr->attr.attr; 118 } 119 120 static int imc_parse_event(struct device_node *np, const char *scale, 121 const char *unit, const char *prefix, 122 u32 base, struct imc_events *event) 123 { 124 const char *s; 125 u32 reg; 126 127 if (of_property_read_u32(np, "reg", ®)) 128 goto error; 129 /* Add the base_reg value to the "reg" */ 130 event->value = base + reg; 131 132 if (of_property_read_string(np, "event-name", &s)) 133 goto error; 134 135 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 136 if (!event->name) 137 goto error; 138 139 if (of_property_read_string(np, "scale", &s)) 140 s = scale; 141 142 if (s) { 143 event->scale = kstrdup(s, GFP_KERNEL); 144 if (!event->scale) 145 goto error; 146 } 147 148 if (of_property_read_string(np, "unit", &s)) 149 s = unit; 150 151 if (s) { 152 event->unit = kstrdup(s, GFP_KERNEL); 153 if (!event->unit) 154 goto error; 155 } 156 157 return 0; 158 error: 159 kfree(event->unit); 160 kfree(event->scale); 161 kfree(event->name); 162 return -EINVAL; 163 } 164 165 /* 166 * imc_free_events: Function to cleanup the events list, having 167 * "nr_entries". 168 */ 169 static void imc_free_events(struct imc_events *events, int nr_entries) 170 { 171 int i; 172 173 /* Nothing to clean, return */ 174 if (!events) 175 return; 176 for (i = 0; i < nr_entries; i++) { 177 kfree(events[i].unit); 178 kfree(events[i].scale); 179 kfree(events[i].name); 180 } 181 182 kfree(events); 183 } 184 185 /* 186 * update_events_in_group: Update the "events" information in an attr_group 187 * and assign the attr_group to the pmu "pmu". 188 */ 189 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 190 { 191 struct attribute_group *attr_group; 192 struct attribute **attrs, *dev_str; 193 struct device_node *np, *pmu_events; 194 u32 handle, base_reg; 195 int i = 0, j = 0, ct, ret; 196 const char *prefix, *g_scale, *g_unit; 197 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 198 199 if (!of_property_read_u32(node, "events", &handle)) 200 pmu_events = of_find_node_by_phandle(handle); 201 else 202 return 0; 203 204 /* Did not find any node with a given phandle */ 205 if (!pmu_events) 206 return 0; 207 208 /* Get a count of number of child nodes */ 209 ct = of_get_child_count(pmu_events); 210 211 /* Get the event prefix */ 212 if (of_property_read_string(node, "events-prefix", &prefix)) 213 return 0; 214 215 /* Get a global unit and scale data if available */ 216 if (of_property_read_string(node, "scale", &g_scale)) 217 g_scale = NULL; 218 219 if (of_property_read_string(node, "unit", &g_unit)) 220 g_unit = NULL; 221 222 /* "reg" property gives out the base offset of the counters data */ 223 of_property_read_u32(node, "reg", &base_reg); 224 225 /* Allocate memory for the events */ 226 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 227 if (!pmu->events) 228 return -ENOMEM; 229 230 ct = 0; 231 /* Parse the events and update the struct */ 232 for_each_child_of_node(pmu_events, np) { 233 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 234 if (!ret) 235 ct++; 236 } 237 238 /* Allocate memory for attribute group */ 239 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 240 if (!attr_group) { 241 imc_free_events(pmu->events, ct); 242 return -ENOMEM; 243 } 244 245 /* 246 * Allocate memory for attributes. 247 * Since we have count of events for this pmu, we also allocate 248 * memory for the scale and unit attribute for now. 249 * "ct" has the total event structs added from the events-parent node. 250 * So allocate three times the "ct" (this includes event, event_scale and 251 * event_unit). 252 */ 253 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 254 if (!attrs) { 255 kfree(attr_group); 256 imc_free_events(pmu->events, ct); 257 return -ENOMEM; 258 } 259 260 attr_group->name = "events"; 261 attr_group->attrs = attrs; 262 do { 263 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 264 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 265 if (!dev_str) 266 continue; 267 268 attrs[j++] = dev_str; 269 if (pmu->events[i].scale) { 270 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 271 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 272 if (!dev_str) 273 continue; 274 275 attrs[j++] = dev_str; 276 } 277 278 if (pmu->events[i].unit) { 279 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 280 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 281 if (!dev_str) 282 continue; 283 284 attrs[j++] = dev_str; 285 } 286 } while (++i < ct); 287 288 /* Save the event attribute */ 289 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 290 291 return 0; 292 } 293 294 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 295 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 296 { 297 return per_cpu(local_nest_imc_refc, cpu); 298 } 299 300 static void nest_change_cpu_context(int old_cpu, int new_cpu) 301 { 302 struct imc_pmu **pn = per_nest_pmu_arr; 303 304 if (old_cpu < 0 || new_cpu < 0) 305 return; 306 307 while (*pn) { 308 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 309 pn++; 310 } 311 } 312 313 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 314 { 315 int nid, target = -1; 316 const struct cpumask *l_cpumask; 317 struct imc_pmu_ref *ref; 318 319 /* 320 * Check in the designated list for this cpu. Dont bother 321 * if not one of them. 322 */ 323 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 324 return 0; 325 326 /* 327 * Check whether nest_imc is registered. We could end up here if the 328 * cpuhotplug callback registration fails. i.e, callback invokes the 329 * offline path for all successfully registered nodes. At this stage, 330 * nest_imc pmu will not be registered and we should return here. 331 * 332 * We return with a zero since this is not an offline failure. And 333 * cpuhp_setup_state() returns the actual failure reason to the caller, 334 * which in turn will call the cleanup routine. 335 */ 336 if (!nest_pmus) 337 return 0; 338 339 /* 340 * Now that this cpu is one of the designated, 341 * find a next cpu a) which is online and b) in same chip. 342 */ 343 nid = cpu_to_node(cpu); 344 l_cpumask = cpumask_of_node(nid); 345 target = cpumask_any_but(l_cpumask, cpu); 346 347 /* 348 * Update the cpumask with the target cpu and 349 * migrate the context if needed 350 */ 351 if (target >= 0 && target < nr_cpu_ids) { 352 cpumask_set_cpu(target, &nest_imc_cpumask); 353 nest_change_cpu_context(cpu, target); 354 } else { 355 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 356 get_hard_smp_processor_id(cpu)); 357 /* 358 * If this is the last cpu in this chip then, skip the reference 359 * count mutex lock and make the reference count on this chip zero. 360 */ 361 ref = get_nest_pmu_ref(cpu); 362 if (!ref) 363 return -EINVAL; 364 365 ref->refc = 0; 366 } 367 return 0; 368 } 369 370 static int ppc_nest_imc_cpu_online(unsigned int cpu) 371 { 372 const struct cpumask *l_cpumask; 373 static struct cpumask tmp_mask; 374 int res; 375 376 /* Get the cpumask of this node */ 377 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 378 379 /* 380 * If this is not the first online CPU on this node, then 381 * just return. 382 */ 383 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 384 return 0; 385 386 /* 387 * If this is the first online cpu on this node 388 * disable the nest counters by making an OPAL call. 389 */ 390 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 391 get_hard_smp_processor_id(cpu)); 392 if (res) 393 return res; 394 395 /* Make this CPU the designated target for counter collection */ 396 cpumask_set_cpu(cpu, &nest_imc_cpumask); 397 return 0; 398 } 399 400 static int nest_pmu_cpumask_init(void) 401 { 402 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 403 "perf/powerpc/imc:online", 404 ppc_nest_imc_cpu_online, 405 ppc_nest_imc_cpu_offline); 406 } 407 408 static void nest_imc_counters_release(struct perf_event *event) 409 { 410 int rc, node_id; 411 struct imc_pmu_ref *ref; 412 413 if (event->cpu < 0) 414 return; 415 416 node_id = cpu_to_node(event->cpu); 417 418 /* 419 * See if we need to disable the nest PMU. 420 * If no events are currently in use, then we have to take a 421 * mutex to ensure that we don't race with another task doing 422 * enable or disable the nest counters. 423 */ 424 ref = get_nest_pmu_ref(event->cpu); 425 if (!ref) 426 return; 427 428 /* Take the mutex lock for this node and then decrement the reference count */ 429 mutex_lock(&ref->lock); 430 if (ref->refc == 0) { 431 /* 432 * The scenario where this is true is, when perf session is 433 * started, followed by offlining of all cpus in a given node. 434 * 435 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 436 * function set the ref->count to zero, if the cpu which is 437 * about to offline is the last cpu in a given node and make 438 * an OPAL call to disable the engine in that node. 439 * 440 */ 441 mutex_unlock(&ref->lock); 442 return; 443 } 444 ref->refc--; 445 if (ref->refc == 0) { 446 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 447 get_hard_smp_processor_id(event->cpu)); 448 if (rc) { 449 mutex_unlock(&ref->lock); 450 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 451 return; 452 } 453 } else if (ref->refc < 0) { 454 WARN(1, "nest-imc: Invalid event reference count\n"); 455 ref->refc = 0; 456 } 457 mutex_unlock(&ref->lock); 458 } 459 460 static int nest_imc_event_init(struct perf_event *event) 461 { 462 int chip_id, rc, node_id; 463 u32 l_config, config = event->attr.config; 464 struct imc_mem_info *pcni; 465 struct imc_pmu *pmu; 466 struct imc_pmu_ref *ref; 467 bool flag = false; 468 469 if (event->attr.type != event->pmu->type) 470 return -ENOENT; 471 472 /* Sampling not supported */ 473 if (event->hw.sample_period) 474 return -EINVAL; 475 476 if (event->cpu < 0) 477 return -EINVAL; 478 479 pmu = imc_event_to_pmu(event); 480 481 /* Sanity check for config (event offset) */ 482 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 483 return -EINVAL; 484 485 /* 486 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 487 * Get the base memory addresss for this cpu. 488 */ 489 chip_id = cpu_to_chip_id(event->cpu); 490 pcni = pmu->mem_info; 491 do { 492 if (pcni->id == chip_id) { 493 flag = true; 494 break; 495 } 496 pcni++; 497 } while (pcni); 498 499 if (!flag) 500 return -ENODEV; 501 502 /* 503 * Add the event offset to the base address. 504 */ 505 l_config = config & IMC_EVENT_OFFSET_MASK; 506 event->hw.event_base = (u64)pcni->vbase + l_config; 507 node_id = cpu_to_node(event->cpu); 508 509 /* 510 * Get the imc_pmu_ref struct for this node. 511 * Take the mutex lock and then increment the count of nest pmu events 512 * inited. 513 */ 514 ref = get_nest_pmu_ref(event->cpu); 515 if (!ref) 516 return -EINVAL; 517 518 mutex_lock(&ref->lock); 519 if (ref->refc == 0) { 520 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 521 get_hard_smp_processor_id(event->cpu)); 522 if (rc) { 523 mutex_unlock(&ref->lock); 524 pr_err("nest-imc: Unable to start the counters for node %d\n", 525 node_id); 526 return rc; 527 } 528 } 529 ++ref->refc; 530 mutex_unlock(&ref->lock); 531 532 event->destroy = nest_imc_counters_release; 533 return 0; 534 } 535 536 /* 537 * core_imc_mem_init : Initializes memory for the current core. 538 * 539 * Uses alloc_pages_node() and uses the returned address as an argument to 540 * an opal call to configure the pdbar. The address sent as an argument is 541 * converted to physical address before the opal call is made. This is the 542 * base address at which the core imc counters are populated. 543 */ 544 static int core_imc_mem_init(int cpu, int size) 545 { 546 int nid, rc = 0, core_id = (cpu / threads_per_core); 547 struct imc_mem_info *mem_info; 548 549 /* 550 * alloc_pages_node() will allocate memory for core in the 551 * local node only. 552 */ 553 nid = cpu_to_node(cpu); 554 mem_info = &core_imc_pmu->mem_info[core_id]; 555 mem_info->id = core_id; 556 557 /* We need only vbase for core counters */ 558 mem_info->vbase = page_address(alloc_pages_node(nid, 559 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 560 __GFP_NOWARN, get_order(size))); 561 if (!mem_info->vbase) 562 return -ENOMEM; 563 564 /* Init the mutex */ 565 core_imc_refc[core_id].id = core_id; 566 mutex_init(&core_imc_refc[core_id].lock); 567 568 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 569 __pa((void *)mem_info->vbase), 570 get_hard_smp_processor_id(cpu)); 571 if (rc) { 572 free_pages((u64)mem_info->vbase, get_order(size)); 573 mem_info->vbase = NULL; 574 } 575 576 return rc; 577 } 578 579 static bool is_core_imc_mem_inited(int cpu) 580 { 581 struct imc_mem_info *mem_info; 582 int core_id = (cpu / threads_per_core); 583 584 mem_info = &core_imc_pmu->mem_info[core_id]; 585 if (!mem_info->vbase) 586 return false; 587 588 return true; 589 } 590 591 static int ppc_core_imc_cpu_online(unsigned int cpu) 592 { 593 const struct cpumask *l_cpumask; 594 static struct cpumask tmp_mask; 595 int ret = 0; 596 597 /* Get the cpumask for this core */ 598 l_cpumask = cpu_sibling_mask(cpu); 599 600 /* If a cpu for this core is already set, then, don't do anything */ 601 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 602 return 0; 603 604 if (!is_core_imc_mem_inited(cpu)) { 605 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 606 if (ret) { 607 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 608 return ret; 609 } 610 } 611 612 /* set the cpu in the mask */ 613 cpumask_set_cpu(cpu, &core_imc_cpumask); 614 return 0; 615 } 616 617 static int ppc_core_imc_cpu_offline(unsigned int cpu) 618 { 619 unsigned int core_id; 620 int ncpu; 621 struct imc_pmu_ref *ref; 622 623 /* 624 * clear this cpu out of the mask, if not present in the mask, 625 * don't bother doing anything. 626 */ 627 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 628 return 0; 629 630 /* 631 * Check whether core_imc is registered. We could end up here 632 * if the cpuhotplug callback registration fails. i.e, callback 633 * invokes the offline path for all sucessfully registered cpus. 634 * At this stage, core_imc pmu will not be registered and we 635 * should return here. 636 * 637 * We return with a zero since this is not an offline failure. 638 * And cpuhp_setup_state() returns the actual failure reason 639 * to the caller, which inturn will call the cleanup routine. 640 */ 641 if (!core_imc_pmu->pmu.event_init) 642 return 0; 643 644 /* Find any online cpu in that core except the current "cpu" */ 645 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 646 647 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 648 cpumask_set_cpu(ncpu, &core_imc_cpumask); 649 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 650 } else { 651 /* 652 * If this is the last cpu in this core then, skip taking refernce 653 * count mutex lock for this core and directly zero "refc" for 654 * this core. 655 */ 656 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 657 get_hard_smp_processor_id(cpu)); 658 core_id = cpu / threads_per_core; 659 ref = &core_imc_refc[core_id]; 660 if (!ref) 661 return -EINVAL; 662 663 ref->refc = 0; 664 } 665 return 0; 666 } 667 668 static int core_imc_pmu_cpumask_init(void) 669 { 670 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 671 "perf/powerpc/imc_core:online", 672 ppc_core_imc_cpu_online, 673 ppc_core_imc_cpu_offline); 674 } 675 676 static void core_imc_counters_release(struct perf_event *event) 677 { 678 int rc, core_id; 679 struct imc_pmu_ref *ref; 680 681 if (event->cpu < 0) 682 return; 683 /* 684 * See if we need to disable the IMC PMU. 685 * If no events are currently in use, then we have to take a 686 * mutex to ensure that we don't race with another task doing 687 * enable or disable the core counters. 688 */ 689 core_id = event->cpu / threads_per_core; 690 691 /* Take the mutex lock and decrement the refernce count for this core */ 692 ref = &core_imc_refc[core_id]; 693 if (!ref) 694 return; 695 696 mutex_lock(&ref->lock); 697 if (ref->refc == 0) { 698 /* 699 * The scenario where this is true is, when perf session is 700 * started, followed by offlining of all cpus in a given core. 701 * 702 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 703 * function set the ref->count to zero, if the cpu which is 704 * about to offline is the last cpu in a given core and make 705 * an OPAL call to disable the engine in that core. 706 * 707 */ 708 mutex_unlock(&ref->lock); 709 return; 710 } 711 ref->refc--; 712 if (ref->refc == 0) { 713 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 714 get_hard_smp_processor_id(event->cpu)); 715 if (rc) { 716 mutex_unlock(&ref->lock); 717 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 718 return; 719 } 720 } else if (ref->refc < 0) { 721 WARN(1, "core-imc: Invalid event reference count\n"); 722 ref->refc = 0; 723 } 724 mutex_unlock(&ref->lock); 725 } 726 727 static int core_imc_event_init(struct perf_event *event) 728 { 729 int core_id, rc; 730 u64 config = event->attr.config; 731 struct imc_mem_info *pcmi; 732 struct imc_pmu *pmu; 733 struct imc_pmu_ref *ref; 734 735 if (event->attr.type != event->pmu->type) 736 return -ENOENT; 737 738 /* Sampling not supported */ 739 if (event->hw.sample_period) 740 return -EINVAL; 741 742 if (event->cpu < 0) 743 return -EINVAL; 744 745 event->hw.idx = -1; 746 pmu = imc_event_to_pmu(event); 747 748 /* Sanity check for config (event offset) */ 749 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 750 return -EINVAL; 751 752 if (!is_core_imc_mem_inited(event->cpu)) 753 return -ENODEV; 754 755 core_id = event->cpu / threads_per_core; 756 pcmi = &core_imc_pmu->mem_info[core_id]; 757 if ((!pcmi->vbase)) 758 return -ENODEV; 759 760 /* Get the core_imc mutex for this core */ 761 ref = &core_imc_refc[core_id]; 762 if (!ref) 763 return -EINVAL; 764 765 /* 766 * Core pmu units are enabled only when it is used. 767 * See if this is triggered for the first time. 768 * If yes, take the mutex lock and enable the core counters. 769 * If not, just increment the count in core_imc_refc struct. 770 */ 771 mutex_lock(&ref->lock); 772 if (ref->refc == 0) { 773 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 774 get_hard_smp_processor_id(event->cpu)); 775 if (rc) { 776 mutex_unlock(&ref->lock); 777 pr_err("core-imc: Unable to start the counters for core %d\n", 778 core_id); 779 return rc; 780 } 781 } 782 ++ref->refc; 783 mutex_unlock(&ref->lock); 784 785 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 786 event->destroy = core_imc_counters_release; 787 return 0; 788 } 789 790 /* 791 * Allocates a page of memory for each of the online cpus, and write the 792 * physical base address of that page to the LDBAR for that cpu. 793 * 794 * LDBAR Register Layout: 795 * 796 * 0 4 8 12 16 20 24 28 797 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 798 * | | [ ] [ Counter Address [8:50] 799 * | * Mode | 800 * | * PB Scope 801 * * Enable/Disable 802 * 803 * 32 36 40 44 48 52 56 60 804 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 805 * Counter Address [8:50] ] 806 * 807 */ 808 static int thread_imc_mem_alloc(int cpu_id, int size) 809 { 810 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id); 811 int nid = cpu_to_node(cpu_id); 812 813 if (!local_mem) { 814 /* 815 * This case could happen only once at start, since we dont 816 * free the memory in cpu offline path. 817 */ 818 local_mem = page_address(alloc_pages_node(nid, 819 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 820 __GFP_NOWARN, get_order(size))); 821 if (!local_mem) 822 return -ENOMEM; 823 824 per_cpu(thread_imc_mem, cpu_id) = local_mem; 825 } 826 827 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 828 829 mtspr(SPRN_LDBAR, ldbar_value); 830 return 0; 831 } 832 833 static int ppc_thread_imc_cpu_online(unsigned int cpu) 834 { 835 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 836 } 837 838 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 839 { 840 mtspr(SPRN_LDBAR, 0); 841 return 0; 842 } 843 844 static int thread_imc_cpu_init(void) 845 { 846 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 847 "perf/powerpc/imc_thread:online", 848 ppc_thread_imc_cpu_online, 849 ppc_thread_imc_cpu_offline); 850 } 851 852 static int thread_imc_event_init(struct perf_event *event) 853 { 854 u32 config = event->attr.config; 855 struct task_struct *target; 856 struct imc_pmu *pmu; 857 858 if (event->attr.type != event->pmu->type) 859 return -ENOENT; 860 861 /* Sampling not supported */ 862 if (event->hw.sample_period) 863 return -EINVAL; 864 865 event->hw.idx = -1; 866 pmu = imc_event_to_pmu(event); 867 868 /* Sanity check for config offset */ 869 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 870 return -EINVAL; 871 872 target = event->hw.target; 873 if (!target) 874 return -EINVAL; 875 876 event->pmu->task_ctx_nr = perf_sw_context; 877 return 0; 878 } 879 880 static bool is_thread_imc_pmu(struct perf_event *event) 881 { 882 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 883 return true; 884 885 return false; 886 } 887 888 static u64 * get_event_base_addr(struct perf_event *event) 889 { 890 u64 addr; 891 892 if (is_thread_imc_pmu(event)) { 893 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 894 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 895 } 896 897 return (u64 *)event->hw.event_base; 898 } 899 900 static void thread_imc_pmu_start_txn(struct pmu *pmu, 901 unsigned int txn_flags) 902 { 903 if (txn_flags & ~PERF_PMU_TXN_ADD) 904 return; 905 perf_pmu_disable(pmu); 906 } 907 908 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 909 { 910 perf_pmu_enable(pmu); 911 } 912 913 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 914 { 915 perf_pmu_enable(pmu); 916 return 0; 917 } 918 919 static u64 imc_read_counter(struct perf_event *event) 920 { 921 u64 *addr, data; 922 923 /* 924 * In-Memory Collection (IMC) counters are free flowing counters. 925 * So we take a snapshot of the counter value on enable and save it 926 * to calculate the delta at later stage to present the event counter 927 * value. 928 */ 929 addr = get_event_base_addr(event); 930 data = be64_to_cpu(READ_ONCE(*addr)); 931 local64_set(&event->hw.prev_count, data); 932 933 return data; 934 } 935 936 static void imc_event_update(struct perf_event *event) 937 { 938 u64 counter_prev, counter_new, final_count; 939 940 counter_prev = local64_read(&event->hw.prev_count); 941 counter_new = imc_read_counter(event); 942 final_count = counter_new - counter_prev; 943 944 /* Update the delta to the event count */ 945 local64_add(final_count, &event->count); 946 } 947 948 static void imc_event_start(struct perf_event *event, int flags) 949 { 950 /* 951 * In Memory Counters are free flowing counters. HW or the microcode 952 * keeps adding to the counter offset in memory. To get event 953 * counter value, we snapshot the value here and we calculate 954 * delta at later point. 955 */ 956 imc_read_counter(event); 957 } 958 959 static void imc_event_stop(struct perf_event *event, int flags) 960 { 961 /* 962 * Take a snapshot and calculate the delta and update 963 * the event counter values. 964 */ 965 imc_event_update(event); 966 } 967 968 static int imc_event_add(struct perf_event *event, int flags) 969 { 970 if (flags & PERF_EF_START) 971 imc_event_start(event, flags); 972 973 return 0; 974 } 975 976 static int thread_imc_event_add(struct perf_event *event, int flags) 977 { 978 int core_id; 979 struct imc_pmu_ref *ref; 980 981 if (flags & PERF_EF_START) 982 imc_event_start(event, flags); 983 984 if (!is_core_imc_mem_inited(smp_processor_id())) 985 return -EINVAL; 986 987 core_id = smp_processor_id() / threads_per_core; 988 /* 989 * imc pmus are enabled only when it is used. 990 * See if this is triggered for the first time. 991 * If yes, take the mutex lock and enable the counters. 992 * If not, just increment the count in ref count struct. 993 */ 994 ref = &core_imc_refc[core_id]; 995 if (!ref) 996 return -EINVAL; 997 998 mutex_lock(&ref->lock); 999 if (ref->refc == 0) { 1000 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1001 get_hard_smp_processor_id(smp_processor_id()))) { 1002 mutex_unlock(&ref->lock); 1003 pr_err("thread-imc: Unable to start the counter\ 1004 for core %d\n", core_id); 1005 return -EINVAL; 1006 } 1007 } 1008 ++ref->refc; 1009 mutex_unlock(&ref->lock); 1010 return 0; 1011 } 1012 1013 static void thread_imc_event_del(struct perf_event *event, int flags) 1014 { 1015 1016 int core_id; 1017 struct imc_pmu_ref *ref; 1018 1019 /* 1020 * Take a snapshot and calculate the delta and update 1021 * the event counter values. 1022 */ 1023 imc_event_update(event); 1024 1025 core_id = smp_processor_id() / threads_per_core; 1026 ref = &core_imc_refc[core_id]; 1027 1028 mutex_lock(&ref->lock); 1029 ref->refc--; 1030 if (ref->refc == 0) { 1031 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1032 get_hard_smp_processor_id(smp_processor_id()))) { 1033 mutex_unlock(&ref->lock); 1034 pr_err("thread-imc: Unable to stop the counters\ 1035 for core %d\n", core_id); 1036 return; 1037 } 1038 } else if (ref->refc < 0) { 1039 ref->refc = 0; 1040 } 1041 mutex_unlock(&ref->lock); 1042 } 1043 1044 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1045 static int update_pmu_ops(struct imc_pmu *pmu) 1046 { 1047 pmu->pmu.task_ctx_nr = perf_invalid_context; 1048 pmu->pmu.add = imc_event_add; 1049 pmu->pmu.del = imc_event_stop; 1050 pmu->pmu.start = imc_event_start; 1051 pmu->pmu.stop = imc_event_stop; 1052 pmu->pmu.read = imc_event_update; 1053 pmu->pmu.attr_groups = pmu->attr_groups; 1054 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1055 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1056 1057 switch (pmu->domain) { 1058 case IMC_DOMAIN_NEST: 1059 pmu->pmu.event_init = nest_imc_event_init; 1060 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1061 break; 1062 case IMC_DOMAIN_CORE: 1063 pmu->pmu.event_init = core_imc_event_init; 1064 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1065 break; 1066 case IMC_DOMAIN_THREAD: 1067 pmu->pmu.event_init = thread_imc_event_init; 1068 pmu->pmu.add = thread_imc_event_add; 1069 pmu->pmu.del = thread_imc_event_del; 1070 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1071 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1072 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1073 break; 1074 default: 1075 break; 1076 } 1077 1078 return 0; 1079 } 1080 1081 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1082 static int init_nest_pmu_ref(void) 1083 { 1084 int nid, i, cpu; 1085 1086 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1087 GFP_KERNEL); 1088 1089 if (!nest_imc_refc) 1090 return -ENOMEM; 1091 1092 i = 0; 1093 for_each_node(nid) { 1094 /* 1095 * Mutex lock to avoid races while tracking the number of 1096 * sessions using the chip's nest pmu units. 1097 */ 1098 mutex_init(&nest_imc_refc[i].lock); 1099 1100 /* 1101 * Loop to init the "id" with the node_id. Variable "i" initialized to 1102 * 0 and will be used as index to the array. "i" will not go off the 1103 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1104 * nodes only. 1105 */ 1106 nest_imc_refc[i++].id = nid; 1107 } 1108 1109 /* 1110 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1111 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1112 */ 1113 for_each_possible_cpu(cpu) { 1114 nid = cpu_to_node(cpu); 1115 for (i = 0; i < num_possible_nodes(); i++) { 1116 if (nest_imc_refc[i].id == nid) { 1117 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1118 break; 1119 } 1120 } 1121 } 1122 return 0; 1123 } 1124 1125 static void cleanup_all_core_imc_memory(void) 1126 { 1127 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1128 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1129 int size = core_imc_pmu->counter_mem_size; 1130 1131 /* mem_info will never be NULL */ 1132 for (i = 0; i < nr_cores; i++) { 1133 if (ptr[i].vbase) 1134 free_pages((u64)ptr[i].vbase, get_order(size)); 1135 } 1136 1137 kfree(ptr); 1138 kfree(core_imc_refc); 1139 } 1140 1141 static void thread_imc_ldbar_disable(void *dummy) 1142 { 1143 /* 1144 * By Zeroing LDBAR, we disable thread-imc 1145 * updates. 1146 */ 1147 mtspr(SPRN_LDBAR, 0); 1148 } 1149 1150 void thread_imc_disable(void) 1151 { 1152 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1153 } 1154 1155 static void cleanup_all_thread_imc_memory(void) 1156 { 1157 int i, order = get_order(thread_imc_mem_size); 1158 1159 for_each_online_cpu(i) { 1160 if (per_cpu(thread_imc_mem, i)) 1161 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1162 1163 } 1164 } 1165 1166 /* Function to free the attr_groups which are dynamically allocated */ 1167 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1168 { 1169 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1170 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1171 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1172 } 1173 1174 /* 1175 * Common function to unregister cpu hotplug callback and 1176 * free the memory. 1177 * TODO: Need to handle pmu unregistering, which will be 1178 * done in followup series. 1179 */ 1180 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1181 { 1182 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1183 mutex_lock(&nest_init_lock); 1184 if (nest_pmus == 1) { 1185 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1186 kfree(nest_imc_refc); 1187 kfree(per_nest_pmu_arr); 1188 per_nest_pmu_arr = NULL; 1189 } 1190 1191 if (nest_pmus > 0) 1192 nest_pmus--; 1193 mutex_unlock(&nest_init_lock); 1194 } 1195 1196 /* Free core_imc memory */ 1197 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1198 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1199 cleanup_all_core_imc_memory(); 1200 } 1201 1202 /* Free thread_imc memory */ 1203 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1204 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1205 cleanup_all_thread_imc_memory(); 1206 } 1207 } 1208 1209 /* 1210 * Function to unregister thread-imc if core-imc 1211 * is not registered. 1212 */ 1213 void unregister_thread_imc(void) 1214 { 1215 imc_common_cpuhp_mem_free(thread_imc_pmu); 1216 imc_common_mem_free(thread_imc_pmu); 1217 perf_pmu_unregister(&thread_imc_pmu->pmu); 1218 } 1219 1220 /* 1221 * imc_mem_init : Function to support memory allocation for core imc. 1222 */ 1223 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1224 int pmu_index) 1225 { 1226 const char *s; 1227 int nr_cores, cpu, res = -ENOMEM; 1228 1229 if (of_property_read_string(parent, "name", &s)) 1230 return -ENODEV; 1231 1232 switch (pmu_ptr->domain) { 1233 case IMC_DOMAIN_NEST: 1234 /* Update the pmu name */ 1235 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1236 if (!pmu_ptr->pmu.name) 1237 goto err; 1238 1239 /* Needed for hotplug/migration */ 1240 if (!per_nest_pmu_arr) { 1241 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1242 sizeof(struct imc_pmu *), 1243 GFP_KERNEL); 1244 if (!per_nest_pmu_arr) 1245 goto err; 1246 } 1247 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1248 break; 1249 case IMC_DOMAIN_CORE: 1250 /* Update the pmu name */ 1251 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1252 if (!pmu_ptr->pmu.name) 1253 goto err; 1254 1255 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1256 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1257 GFP_KERNEL); 1258 1259 if (!pmu_ptr->mem_info) 1260 goto err; 1261 1262 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1263 GFP_KERNEL); 1264 1265 if (!core_imc_refc) { 1266 kfree(pmu_ptr->mem_info); 1267 goto err; 1268 } 1269 1270 core_imc_pmu = pmu_ptr; 1271 break; 1272 case IMC_DOMAIN_THREAD: 1273 /* Update the pmu name */ 1274 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1275 if (!pmu_ptr->pmu.name) 1276 goto err; 1277 1278 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1279 for_each_online_cpu(cpu) { 1280 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1281 if (res) { 1282 cleanup_all_thread_imc_memory(); 1283 goto err; 1284 } 1285 } 1286 1287 thread_imc_pmu = pmu_ptr; 1288 break; 1289 default: 1290 return -EINVAL; 1291 } 1292 1293 return 0; 1294 err: 1295 return res; 1296 } 1297 1298 /* 1299 * init_imc_pmu : Setup and register the IMC pmu device. 1300 * 1301 * @parent: Device tree unit node 1302 * @pmu_ptr: memory allocated for this pmu 1303 * @pmu_idx: Count of nest pmc registered 1304 * 1305 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1306 * Handles failure cases and accordingly frees memory. 1307 */ 1308 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1309 { 1310 int ret; 1311 1312 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1313 if (ret) 1314 goto err_free_mem; 1315 1316 switch (pmu_ptr->domain) { 1317 case IMC_DOMAIN_NEST: 1318 /* 1319 * Nest imc pmu need only one cpu per chip, we initialize the 1320 * cpumask for the first nest imc pmu and use the same for the 1321 * rest. To handle the cpuhotplug callback unregister, we track 1322 * the number of nest pmus in "nest_pmus". 1323 */ 1324 mutex_lock(&nest_init_lock); 1325 if (nest_pmus == 0) { 1326 ret = init_nest_pmu_ref(); 1327 if (ret) { 1328 mutex_unlock(&nest_init_lock); 1329 kfree(per_nest_pmu_arr); 1330 per_nest_pmu_arr = NULL; 1331 goto err_free_mem; 1332 } 1333 /* Register for cpu hotplug notification. */ 1334 ret = nest_pmu_cpumask_init(); 1335 if (ret) { 1336 mutex_unlock(&nest_init_lock); 1337 kfree(nest_imc_refc); 1338 kfree(per_nest_pmu_arr); 1339 per_nest_pmu_arr = NULL; 1340 goto err_free_mem; 1341 } 1342 } 1343 nest_pmus++; 1344 mutex_unlock(&nest_init_lock); 1345 break; 1346 case IMC_DOMAIN_CORE: 1347 ret = core_imc_pmu_cpumask_init(); 1348 if (ret) { 1349 cleanup_all_core_imc_memory(); 1350 goto err_free_mem; 1351 } 1352 1353 break; 1354 case IMC_DOMAIN_THREAD: 1355 ret = thread_imc_cpu_init(); 1356 if (ret) { 1357 cleanup_all_thread_imc_memory(); 1358 goto err_free_mem; 1359 } 1360 1361 break; 1362 default: 1363 return -EINVAL; /* Unknown domain */ 1364 } 1365 1366 ret = update_events_in_group(parent, pmu_ptr); 1367 if (ret) 1368 goto err_free_cpuhp_mem; 1369 1370 ret = update_pmu_ops(pmu_ptr); 1371 if (ret) 1372 goto err_free_cpuhp_mem; 1373 1374 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1375 if (ret) 1376 goto err_free_cpuhp_mem; 1377 1378 pr_debug("%s performance monitor hardware support registered\n", 1379 pmu_ptr->pmu.name); 1380 1381 return 0; 1382 1383 err_free_cpuhp_mem: 1384 imc_common_cpuhp_mem_free(pmu_ptr); 1385 err_free_mem: 1386 imc_common_mem_free(pmu_ptr); 1387 return ret; 1388 } 1389