xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision a4718a5b)
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20 
21 /* Nest IMC data structures and variables */
22 
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu *per_nest_pmu_arr[IMC_MAX_PMUS];
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33 
34 /* Core IMC data structures and variables */
35 
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39 
40 /* Thread IMC data structures and variables */
41 
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45 
46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48 	return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50 
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56 	&format_attr_event.attr,
57 	&format_attr_offset.attr,
58 	&format_attr_rvalue.attr,
59 	&format_attr_mode.attr,
60 	NULL,
61 };
62 
63 static struct attribute_group imc_format_group = {
64 	.name = "format",
65 	.attrs = imc_format_attrs,
66 };
67 
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 					struct device_attribute *attr,
71 					char *buf)
72 {
73 	struct pmu *pmu = dev_get_drvdata(dev);
74 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 	cpumask_t *active_mask;
76 
77 	switch(imc_pmu->domain){
78 	case IMC_DOMAIN_NEST:
79 		active_mask = &nest_imc_cpumask;
80 		break;
81 	case IMC_DOMAIN_CORE:
82 		active_mask = &core_imc_cpumask;
83 		break;
84 	default:
85 		return 0;
86 	}
87 
88 	return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90 
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92 
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94 	&dev_attr_cpumask.attr,
95 	NULL,
96 };
97 
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99 	.attrs = imc_pmu_cpumask_attrs,
100 };
101 
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105 	struct perf_pmu_events_attr *attr;
106 
107 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 	if (!attr)
109 		return NULL;
110 	sysfs_attr_init(&attr->attr.attr);
111 
112 	attr->event_str = str;
113 	attr->attr.attr.name = name;
114 	attr->attr.attr.mode = 0444;
115 	attr->attr.show = perf_event_sysfs_show;
116 
117 	return &attr->attr.attr;
118 }
119 
120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121 				  const char *unit, const char *prefix, u32 base)
122 {
123 	struct imc_events *event;
124 	const char *s;
125 	u32 reg;
126 
127 	event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
128 	if (!event)
129 		return NULL;
130 
131 	if (of_property_read_u32(np, "reg", &reg))
132 		goto error;
133 	/* Add the base_reg value to the "reg" */
134 	event->value = base + reg;
135 
136 	if (of_property_read_string(np, "event-name", &s))
137 		goto error;
138 
139 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
140 	if (!event->name)
141 		goto error;
142 
143 	if (of_property_read_string(np, "scale", &s))
144 		s = scale;
145 
146 	if (s) {
147 		event->scale = kstrdup(s, GFP_KERNEL);
148 		if (!event->scale)
149 			goto error;
150 	}
151 
152 	if (of_property_read_string(np, "unit", &s))
153 		s = unit;
154 
155 	if (s) {
156 		event->unit = kstrdup(s, GFP_KERNEL);
157 		if (!event->unit)
158 			goto error;
159 	}
160 
161 	return event;
162 error:
163 	kfree(event->unit);
164 	kfree(event->scale);
165 	kfree(event->name);
166 	kfree(event);
167 
168 	return NULL;
169 }
170 
171 /*
172  * update_events_in_group: Update the "events" information in an attr_group
173  *                         and assign the attr_group to the pmu "pmu".
174  */
175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
176 {
177 	struct attribute_group *attr_group;
178 	struct attribute **attrs, *dev_str;
179 	struct device_node *np, *pmu_events;
180 	struct imc_events *ev;
181 	u32 handle, base_reg;
182 	int i=0, j=0, ct;
183 	const char *prefix, *g_scale, *g_unit;
184 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
185 
186 	if (!of_property_read_u32(node, "events", &handle))
187 		pmu_events = of_find_node_by_phandle(handle);
188 	else
189 		return 0;
190 
191 	/* Did not find any node with a given phandle */
192 	if (!pmu_events)
193 		return 0;
194 
195 	/* Get a count of number of child nodes */
196 	ct = of_get_child_count(pmu_events);
197 
198 	/* Get the event prefix */
199 	if (of_property_read_string(node, "events-prefix", &prefix))
200 		return 0;
201 
202 	/* Get a global unit and scale data if available */
203 	if (of_property_read_string(node, "scale", &g_scale))
204 		g_scale = NULL;
205 
206 	if (of_property_read_string(node, "unit", &g_unit))
207 		g_unit = NULL;
208 
209 	/* "reg" property gives out the base offset of the counters data */
210 	of_property_read_u32(node, "reg", &base_reg);
211 
212 	/* Allocate memory for the events */
213 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
214 	if (!pmu->events)
215 		return -ENOMEM;
216 
217 	ct = 0;
218 	/* Parse the events and update the struct */
219 	for_each_child_of_node(pmu_events, np) {
220 		ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
221 		if (ev)
222 			pmu->events[ct++] = ev;
223 	}
224 
225 	/* Allocate memory for attribute group */
226 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
227 	if (!attr_group)
228 		return -ENOMEM;
229 
230 	/*
231 	 * Allocate memory for attributes.
232 	 * Since we have count of events for this pmu, we also allocate
233 	 * memory for the scale and unit attribute for now.
234 	 * "ct" has the total event structs added from the events-parent node.
235 	 * So allocate three times the "ct" (this includes event, event_scale and
236 	 * event_unit).
237 	 */
238 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
239 	if (!attrs) {
240 		kfree(attr_group);
241 		kfree(pmu->events);
242 		return -ENOMEM;
243 	}
244 
245 	attr_group->name = "events";
246 	attr_group->attrs = attrs;
247 	do {
248 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249 		dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
250 		if (!dev_str)
251 			continue;
252 
253 		attrs[j++] = dev_str;
254 		if (pmu->events[i]->scale) {
255 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
257 			if (!dev_str)
258 				continue;
259 
260 			attrs[j++] = dev_str;
261 		}
262 
263 		if (pmu->events[i]->unit) {
264 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
266 			if (!dev_str)
267 				continue;
268 
269 			attrs[j++] = dev_str;
270 		}
271 	} while (++i < ct);
272 
273 	/* Save the event attribute */
274 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
275 
276 	kfree(pmu->events);
277 	return 0;
278 }
279 
280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
282 {
283 	return per_cpu(local_nest_imc_refc, cpu);
284 }
285 
286 static void nest_change_cpu_context(int old_cpu, int new_cpu)
287 {
288 	struct imc_pmu **pn = per_nest_pmu_arr;
289 	int i;
290 
291 	if (old_cpu < 0 || new_cpu < 0)
292 		return;
293 
294 	for (i = 0; *pn && i < IMC_MAX_PMUS; i++, pn++)
295 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
296 }
297 
298 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
299 {
300 	int nid, target = -1;
301 	const struct cpumask *l_cpumask;
302 	struct imc_pmu_ref *ref;
303 
304 	/*
305 	 * Check in the designated list for this cpu. Dont bother
306 	 * if not one of them.
307 	 */
308 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
309 		return 0;
310 
311 	/*
312 	 * Now that this cpu is one of the designated,
313 	 * find a next cpu a) which is online and b) in same chip.
314 	 */
315 	nid = cpu_to_node(cpu);
316 	l_cpumask = cpumask_of_node(nid);
317 	target = cpumask_any_but(l_cpumask, cpu);
318 
319 	/*
320 	 * Update the cpumask with the target cpu and
321 	 * migrate the context if needed
322 	 */
323 	if (target >= 0 && target < nr_cpu_ids) {
324 		cpumask_set_cpu(target, &nest_imc_cpumask);
325 		nest_change_cpu_context(cpu, target);
326 	} else {
327 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
328 				       get_hard_smp_processor_id(cpu));
329 		/*
330 		 * If this is the last cpu in this chip then, skip the reference
331 		 * count mutex lock and make the reference count on this chip zero.
332 		 */
333 		ref = get_nest_pmu_ref(cpu);
334 		if (!ref)
335 			return -EINVAL;
336 
337 		ref->refc = 0;
338 	}
339 	return 0;
340 }
341 
342 static int ppc_nest_imc_cpu_online(unsigned int cpu)
343 {
344 	const struct cpumask *l_cpumask;
345 	static struct cpumask tmp_mask;
346 	int res;
347 
348 	/* Get the cpumask of this node */
349 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
350 
351 	/*
352 	 * If this is not the first online CPU on this node, then
353 	 * just return.
354 	 */
355 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
356 		return 0;
357 
358 	/*
359 	 * If this is the first online cpu on this node
360 	 * disable the nest counters by making an OPAL call.
361 	 */
362 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
363 				     get_hard_smp_processor_id(cpu));
364 	if (res)
365 		return res;
366 
367 	/* Make this CPU the designated target for counter collection */
368 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
369 	return 0;
370 }
371 
372 static int nest_pmu_cpumask_init(void)
373 {
374 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
375 				 "perf/powerpc/imc:online",
376 				 ppc_nest_imc_cpu_online,
377 				 ppc_nest_imc_cpu_offline);
378 }
379 
380 static void nest_imc_counters_release(struct perf_event *event)
381 {
382 	int rc, node_id;
383 	struct imc_pmu_ref *ref;
384 
385 	if (event->cpu < 0)
386 		return;
387 
388 	node_id = cpu_to_node(event->cpu);
389 
390 	/*
391 	 * See if we need to disable the nest PMU.
392 	 * If no events are currently in use, then we have to take a
393 	 * mutex to ensure that we don't race with another task doing
394 	 * enable or disable the nest counters.
395 	 */
396 	ref = get_nest_pmu_ref(event->cpu);
397 	if (!ref)
398 		return;
399 
400 	/* Take the mutex lock for this node and then decrement the reference count */
401 	mutex_lock(&ref->lock);
402 	ref->refc--;
403 	if (ref->refc == 0) {
404 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
405 					    get_hard_smp_processor_id(event->cpu));
406 		if (rc) {
407 			mutex_unlock(&ref->lock);
408 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
409 			return;
410 		}
411 	} else if (ref->refc < 0) {
412 		WARN(1, "nest-imc: Invalid event reference count\n");
413 		ref->refc = 0;
414 	}
415 	mutex_unlock(&ref->lock);
416 }
417 
418 static int nest_imc_event_init(struct perf_event *event)
419 {
420 	int chip_id, rc, node_id;
421 	u32 l_config, config = event->attr.config;
422 	struct imc_mem_info *pcni;
423 	struct imc_pmu *pmu;
424 	struct imc_pmu_ref *ref;
425 	bool flag = false;
426 
427 	if (event->attr.type != event->pmu->type)
428 		return -ENOENT;
429 
430 	/* Sampling not supported */
431 	if (event->hw.sample_period)
432 		return -EINVAL;
433 
434 	/* unsupported modes and filters */
435 	if (event->attr.exclude_user   ||
436 	    event->attr.exclude_kernel ||
437 	    event->attr.exclude_hv     ||
438 	    event->attr.exclude_idle   ||
439 	    event->attr.exclude_host   ||
440 	    event->attr.exclude_guest)
441 		return -EINVAL;
442 
443 	if (event->cpu < 0)
444 		return -EINVAL;
445 
446 	pmu = imc_event_to_pmu(event);
447 
448 	/* Sanity check for config (event offset) */
449 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
450 		return -EINVAL;
451 
452 	/*
453 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
454 	 * Get the base memory addresss for this cpu.
455 	 */
456 	chip_id = topology_physical_package_id(event->cpu);
457 	pcni = pmu->mem_info;
458 	do {
459 		if (pcni->id == chip_id) {
460 			flag = true;
461 			break;
462 		}
463 		pcni++;
464 	} while (pcni);
465 
466 	if (!flag)
467 		return -ENODEV;
468 
469 	/*
470 	 * Add the event offset to the base address.
471 	 */
472 	l_config = config & IMC_EVENT_OFFSET_MASK;
473 	event->hw.event_base = (u64)pcni->vbase + l_config;
474 	node_id = cpu_to_node(event->cpu);
475 
476 	/*
477 	 * Get the imc_pmu_ref struct for this node.
478 	 * Take the mutex lock and then increment the count of nest pmu events
479 	 * inited.
480 	 */
481 	ref = get_nest_pmu_ref(event->cpu);
482 	if (!ref)
483 		return -EINVAL;
484 
485 	mutex_lock(&ref->lock);
486 	if (ref->refc == 0) {
487 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
488 					     get_hard_smp_processor_id(event->cpu));
489 		if (rc) {
490 			mutex_unlock(&ref->lock);
491 			pr_err("nest-imc: Unable to start the counters for node %d\n",
492 									node_id);
493 			return rc;
494 		}
495 	}
496 	++ref->refc;
497 	mutex_unlock(&ref->lock);
498 
499 	event->destroy = nest_imc_counters_release;
500 	return 0;
501 }
502 
503 /*
504  * core_imc_mem_init : Initializes memory for the current core.
505  *
506  * Uses alloc_pages_node() and uses the returned address as an argument to
507  * an opal call to configure the pdbar. The address sent as an argument is
508  * converted to physical address before the opal call is made. This is the
509  * base address at which the core imc counters are populated.
510  */
511 static int core_imc_mem_init(int cpu, int size)
512 {
513 	int phys_id, rc = 0, core_id = (cpu / threads_per_core);
514 	struct imc_mem_info *mem_info;
515 
516 	/*
517 	 * alloc_pages_node() will allocate memory for core in the
518 	 * local node only.
519 	 */
520 	phys_id = topology_physical_package_id(cpu);
521 	mem_info = &core_imc_pmu->mem_info[core_id];
522 	mem_info->id = core_id;
523 
524 	/* We need only vbase for core counters */
525 	mem_info->vbase = page_address(alloc_pages_node(phys_id,
526 					  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
527 					  get_order(size)));
528 	if (!mem_info->vbase)
529 		return -ENOMEM;
530 
531 	/* Init the mutex */
532 	core_imc_refc[core_id].id = core_id;
533 	mutex_init(&core_imc_refc[core_id].lock);
534 
535 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
536 				__pa((void *)mem_info->vbase),
537 				get_hard_smp_processor_id(cpu));
538 	if (rc) {
539 		free_pages((u64)mem_info->vbase, get_order(size));
540 		mem_info->vbase = NULL;
541 	}
542 
543 	return rc;
544 }
545 
546 static bool is_core_imc_mem_inited(int cpu)
547 {
548 	struct imc_mem_info *mem_info;
549 	int core_id = (cpu / threads_per_core);
550 
551 	mem_info = &core_imc_pmu->mem_info[core_id];
552 	if (!mem_info->vbase)
553 		return false;
554 
555 	return true;
556 }
557 
558 static int ppc_core_imc_cpu_online(unsigned int cpu)
559 {
560 	const struct cpumask *l_cpumask;
561 	static struct cpumask tmp_mask;
562 	int ret = 0;
563 
564 	/* Get the cpumask for this core */
565 	l_cpumask = cpu_sibling_mask(cpu);
566 
567 	/* If a cpu for this core is already set, then, don't do anything */
568 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
569 		return 0;
570 
571 	if (!is_core_imc_mem_inited(cpu)) {
572 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
573 		if (ret) {
574 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
575 			return ret;
576 		}
577 	}
578 
579 	/* set the cpu in the mask */
580 	cpumask_set_cpu(cpu, &core_imc_cpumask);
581 	return 0;
582 }
583 
584 static int ppc_core_imc_cpu_offline(unsigned int cpu)
585 {
586 	unsigned int ncpu, core_id;
587 	struct imc_pmu_ref *ref;
588 
589 	/*
590 	 * clear this cpu out of the mask, if not present in the mask,
591 	 * don't bother doing anything.
592 	 */
593 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
594 		return 0;
595 
596 	/* Find any online cpu in that core except the current "cpu" */
597 	ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
598 
599 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
600 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
601 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
602 	} else {
603 		/*
604 		 * If this is the last cpu in this core then, skip taking refernce
605 		 * count mutex lock for this core and directly zero "refc" for
606 		 * this core.
607 		 */
608 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
609 				       get_hard_smp_processor_id(cpu));
610 		core_id = cpu / threads_per_core;
611 		ref = &core_imc_refc[core_id];
612 		if (!ref)
613 			return -EINVAL;
614 
615 		ref->refc = 0;
616 	}
617 	return 0;
618 }
619 
620 static int core_imc_pmu_cpumask_init(void)
621 {
622 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
623 				 "perf/powerpc/imc_core:online",
624 				 ppc_core_imc_cpu_online,
625 				 ppc_core_imc_cpu_offline);
626 }
627 
628 static void core_imc_counters_release(struct perf_event *event)
629 {
630 	int rc, core_id;
631 	struct imc_pmu_ref *ref;
632 
633 	if (event->cpu < 0)
634 		return;
635 	/*
636 	 * See if we need to disable the IMC PMU.
637 	 * If no events are currently in use, then we have to take a
638 	 * mutex to ensure that we don't race with another task doing
639 	 * enable or disable the core counters.
640 	 */
641 	core_id = event->cpu / threads_per_core;
642 
643 	/* Take the mutex lock and decrement the refernce count for this core */
644 	ref = &core_imc_refc[core_id];
645 	if (!ref)
646 		return;
647 
648 	mutex_lock(&ref->lock);
649 	ref->refc--;
650 	if (ref->refc == 0) {
651 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
652 					    get_hard_smp_processor_id(event->cpu));
653 		if (rc) {
654 			mutex_unlock(&ref->lock);
655 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
656 			return;
657 		}
658 	} else if (ref->refc < 0) {
659 		WARN(1, "core-imc: Invalid event reference count\n");
660 		ref->refc = 0;
661 	}
662 	mutex_unlock(&ref->lock);
663 }
664 
665 static int core_imc_event_init(struct perf_event *event)
666 {
667 	int core_id, rc;
668 	u64 config = event->attr.config;
669 	struct imc_mem_info *pcmi;
670 	struct imc_pmu *pmu;
671 	struct imc_pmu_ref *ref;
672 
673 	if (event->attr.type != event->pmu->type)
674 		return -ENOENT;
675 
676 	/* Sampling not supported */
677 	if (event->hw.sample_period)
678 		return -EINVAL;
679 
680 	/* unsupported modes and filters */
681 	if (event->attr.exclude_user   ||
682 	    event->attr.exclude_kernel ||
683 	    event->attr.exclude_hv     ||
684 	    event->attr.exclude_idle   ||
685 	    event->attr.exclude_host   ||
686 	    event->attr.exclude_guest)
687 		return -EINVAL;
688 
689 	if (event->cpu < 0)
690 		return -EINVAL;
691 
692 	event->hw.idx = -1;
693 	pmu = imc_event_to_pmu(event);
694 
695 	/* Sanity check for config (event offset) */
696 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
697 		return -EINVAL;
698 
699 	if (!is_core_imc_mem_inited(event->cpu))
700 		return -ENODEV;
701 
702 	core_id = event->cpu / threads_per_core;
703 	pcmi = &core_imc_pmu->mem_info[core_id];
704 	if ((!pcmi->vbase))
705 		return -ENODEV;
706 
707 	/* Get the core_imc mutex for this core */
708 	ref = &core_imc_refc[core_id];
709 	if (!ref)
710 		return -EINVAL;
711 
712 	/*
713 	 * Core pmu units are enabled only when it is used.
714 	 * See if this is triggered for the first time.
715 	 * If yes, take the mutex lock and enable the core counters.
716 	 * If not, just increment the count in core_imc_refc struct.
717 	 */
718 	mutex_lock(&ref->lock);
719 	if (ref->refc == 0) {
720 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
721 					     get_hard_smp_processor_id(event->cpu));
722 		if (rc) {
723 			mutex_unlock(&ref->lock);
724 			pr_err("core-imc: Unable to start the counters for core %d\n",
725 									core_id);
726 			return rc;
727 		}
728 	}
729 	++ref->refc;
730 	mutex_unlock(&ref->lock);
731 
732 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
733 	event->destroy = core_imc_counters_release;
734 	return 0;
735 }
736 
737 /*
738  * Allocates a page of memory for each of the online cpus, and write the
739  * physical base address of that page to the LDBAR for that cpu.
740  *
741  * LDBAR Register Layout:
742  *
743  *  0          4         8         12        16        20        24        28
744  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
745  *   | |       [   ]    [                   Counter Address [8:50]
746  *   | * Mode    |
747  *   |           * PB Scope
748  *   * Enable/Disable
749  *
750  *  32        36        40        44        48        52        56        60
751  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
752  *           Counter Address [8:50]              ]
753  *
754  */
755 static int thread_imc_mem_alloc(int cpu_id, int size)
756 {
757 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
758 	int phys_id = topology_physical_package_id(cpu_id);
759 
760 	if (!local_mem) {
761 		/*
762 		 * This case could happen only once at start, since we dont
763 		 * free the memory in cpu offline path.
764 		 */
765 		local_mem = page_address(alloc_pages_node(phys_id,
766 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
767 				  get_order(size)));
768 		if (!local_mem)
769 			return -ENOMEM;
770 
771 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
772 	}
773 
774 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
775 
776 	mtspr(SPRN_LDBAR, ldbar_value);
777 	return 0;
778 }
779 
780 static int ppc_thread_imc_cpu_online(unsigned int cpu)
781 {
782 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
783 }
784 
785 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
786 {
787 	mtspr(SPRN_LDBAR, 0);
788 	return 0;
789 }
790 
791 static int thread_imc_cpu_init(void)
792 {
793 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
794 			  "perf/powerpc/imc_thread:online",
795 			  ppc_thread_imc_cpu_online,
796 			  ppc_thread_imc_cpu_offline);
797 }
798 
799 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
800 				      bool sched_in)
801 {
802 	int core_id;
803 	struct imc_pmu_ref *ref;
804 
805 	if (!is_core_imc_mem_inited(smp_processor_id()))
806 		return;
807 
808 	core_id = smp_processor_id() / threads_per_core;
809 	/*
810 	 * imc pmus are enabled only when it is used.
811 	 * See if this is triggered for the first time.
812 	 * If yes, take the mutex lock and enable the counters.
813 	 * If not, just increment the count in ref count struct.
814 	 */
815 	ref = &core_imc_refc[core_id];
816 	if (!ref)
817 		return;
818 
819 	if (sched_in) {
820 		mutex_lock(&ref->lock);
821 		if (ref->refc == 0) {
822 			if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
823 			     get_hard_smp_processor_id(smp_processor_id()))) {
824 				mutex_unlock(&ref->lock);
825 				pr_err("thread-imc: Unable to start the counter\
826 							for core %d\n", core_id);
827 				return;
828 			}
829 		}
830 		++ref->refc;
831 		mutex_unlock(&ref->lock);
832 	} else {
833 		mutex_lock(&ref->lock);
834 		ref->refc--;
835 		if (ref->refc == 0) {
836 			if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
837 			    get_hard_smp_processor_id(smp_processor_id()))) {
838 				mutex_unlock(&ref->lock);
839 				pr_err("thread-imc: Unable to stop the counters\
840 							for core %d\n", core_id);
841 				return;
842 			}
843 		} else if (ref->refc < 0) {
844 			ref->refc = 0;
845 		}
846 		mutex_unlock(&ref->lock);
847 	}
848 
849 	return;
850 }
851 
852 static int thread_imc_event_init(struct perf_event *event)
853 {
854 	u32 config = event->attr.config;
855 	struct task_struct *target;
856 	struct imc_pmu *pmu;
857 
858 	if (event->attr.type != event->pmu->type)
859 		return -ENOENT;
860 
861 	/* Sampling not supported */
862 	if (event->hw.sample_period)
863 		return -EINVAL;
864 
865 	event->hw.idx = -1;
866 	pmu = imc_event_to_pmu(event);
867 
868 	/* Sanity check for config offset */
869 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
870 		return -EINVAL;
871 
872 	target = event->hw.target;
873 	if (!target)
874 		return -EINVAL;
875 
876 	event->pmu->task_ctx_nr = perf_sw_context;
877 	return 0;
878 }
879 
880 static bool is_thread_imc_pmu(struct perf_event *event)
881 {
882 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
883 		return true;
884 
885 	return false;
886 }
887 
888 static u64 * get_event_base_addr(struct perf_event *event)
889 {
890 	u64 addr;
891 
892 	if (is_thread_imc_pmu(event)) {
893 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
894 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
895 	}
896 
897 	return (u64 *)event->hw.event_base;
898 }
899 
900 static void thread_imc_pmu_start_txn(struct pmu *pmu,
901 				     unsigned int txn_flags)
902 {
903 	if (txn_flags & ~PERF_PMU_TXN_ADD)
904 		return;
905 	perf_pmu_disable(pmu);
906 }
907 
908 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
909 {
910 	perf_pmu_enable(pmu);
911 }
912 
913 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
914 {
915 	perf_pmu_enable(pmu);
916 	return 0;
917 }
918 
919 static u64 imc_read_counter(struct perf_event *event)
920 {
921 	u64 *addr, data;
922 
923 	/*
924 	 * In-Memory Collection (IMC) counters are free flowing counters.
925 	 * So we take a snapshot of the counter value on enable and save it
926 	 * to calculate the delta at later stage to present the event counter
927 	 * value.
928 	 */
929 	addr = get_event_base_addr(event);
930 	data = be64_to_cpu(READ_ONCE(*addr));
931 	local64_set(&event->hw.prev_count, data);
932 
933 	return data;
934 }
935 
936 static void imc_event_update(struct perf_event *event)
937 {
938 	u64 counter_prev, counter_new, final_count;
939 
940 	counter_prev = local64_read(&event->hw.prev_count);
941 	counter_new = imc_read_counter(event);
942 	final_count = counter_new - counter_prev;
943 
944 	/* Update the delta to the event count */
945 	local64_add(final_count, &event->count);
946 }
947 
948 static void imc_event_start(struct perf_event *event, int flags)
949 {
950 	/*
951 	 * In Memory Counters are free flowing counters. HW or the microcode
952 	 * keeps adding to the counter offset in memory. To get event
953 	 * counter value, we snapshot the value here and we calculate
954 	 * delta at later point.
955 	 */
956 	imc_read_counter(event);
957 }
958 
959 static void imc_event_stop(struct perf_event *event, int flags)
960 {
961 	/*
962 	 * Take a snapshot and calculate the delta and update
963 	 * the event counter values.
964 	 */
965 	imc_event_update(event);
966 }
967 
968 static int imc_event_add(struct perf_event *event, int flags)
969 {
970 	if (flags & PERF_EF_START)
971 		imc_event_start(event, flags);
972 
973 	return 0;
974 }
975 
976 static int thread_imc_event_add(struct perf_event *event, int flags)
977 {
978 	if (flags & PERF_EF_START)
979 		imc_event_start(event, flags);
980 
981 	/* Enable the sched_task to start the engine */
982 	perf_sched_cb_inc(event->ctx->pmu);
983 	return 0;
984 }
985 
986 static void thread_imc_event_del(struct perf_event *event, int flags)
987 {
988 	/*
989 	 * Take a snapshot and calculate the delta and update
990 	 * the event counter values.
991 	 */
992 	imc_event_update(event);
993 	perf_sched_cb_dec(event->ctx->pmu);
994 }
995 
996 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
997 static int update_pmu_ops(struct imc_pmu *pmu)
998 {
999 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1000 	pmu->pmu.add = imc_event_add;
1001 	pmu->pmu.del = imc_event_stop;
1002 	pmu->pmu.start = imc_event_start;
1003 	pmu->pmu.stop = imc_event_stop;
1004 	pmu->pmu.read = imc_event_update;
1005 	pmu->pmu.attr_groups = pmu->attr_groups;
1006 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1007 
1008 	switch (pmu->domain) {
1009 	case IMC_DOMAIN_NEST:
1010 		pmu->pmu.event_init = nest_imc_event_init;
1011 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1012 		break;
1013 	case IMC_DOMAIN_CORE:
1014 		pmu->pmu.event_init = core_imc_event_init;
1015 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1016 		break;
1017 	case IMC_DOMAIN_THREAD:
1018 		pmu->pmu.event_init = thread_imc_event_init;
1019 		pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1020 		pmu->pmu.add = thread_imc_event_add;
1021 		pmu->pmu.del = thread_imc_event_del;
1022 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1023 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1024 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1025 		break;
1026 	default:
1027 		break;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1034 static int init_nest_pmu_ref(void)
1035 {
1036 	int nid, i, cpu;
1037 
1038 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1039 								GFP_KERNEL);
1040 
1041 	if (!nest_imc_refc)
1042 		return -ENOMEM;
1043 
1044 	i = 0;
1045 	for_each_node(nid) {
1046 		/*
1047 		 * Mutex lock to avoid races while tracking the number of
1048 		 * sessions using the chip's nest pmu units.
1049 		 */
1050 		mutex_init(&nest_imc_refc[i].lock);
1051 
1052 		/*
1053 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1054 		 * 0 and will be used as index to the array. "i" will not go off the
1055 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1056 		 * nodes only.
1057 		 */
1058 		nest_imc_refc[i++].id = nid;
1059 	}
1060 
1061 	/*
1062 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1063 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1064 	 */
1065 	for_each_possible_cpu(cpu) {
1066 		nid = cpu_to_node(cpu);
1067 		for (i = 0; i < num_possible_nodes(); i++) {
1068 			if (nest_imc_refc[i].id == nid) {
1069 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1070 				break;
1071 			}
1072 		}
1073 	}
1074 	return 0;
1075 }
1076 
1077 static void cleanup_all_core_imc_memory(void)
1078 {
1079 	int i, nr_cores = num_present_cpus() / threads_per_core;
1080 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1081 	int size = core_imc_pmu->counter_mem_size;
1082 
1083 	/* mem_info will never be NULL */
1084 	for (i = 0; i < nr_cores; i++) {
1085 		if (ptr[i].vbase)
1086 			free_pages((u64)ptr->vbase, get_order(size));
1087 	}
1088 
1089 	kfree(ptr);
1090 	kfree(core_imc_refc);
1091 }
1092 
1093 static void thread_imc_ldbar_disable(void *dummy)
1094 {
1095 	/*
1096 	 * By Zeroing LDBAR, we disable thread-imc
1097 	 * updates.
1098 	 */
1099 	mtspr(SPRN_LDBAR, 0);
1100 }
1101 
1102 void thread_imc_disable(void)
1103 {
1104 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1105 }
1106 
1107 static void cleanup_all_thread_imc_memory(void)
1108 {
1109 	int i, order = get_order(thread_imc_mem_size);
1110 
1111 	for_each_online_cpu(i) {
1112 		if (per_cpu(thread_imc_mem, i))
1113 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1114 
1115 	}
1116 }
1117 
1118 /*
1119  * Common function to unregister cpu hotplug callback and
1120  * free the memory.
1121  * TODO: Need to handle pmu unregistering, which will be
1122  * done in followup series.
1123  */
1124 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1125 {
1126 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1127 		mutex_lock(&nest_init_lock);
1128 		if (nest_pmus == 1) {
1129 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1130 			kfree(nest_imc_refc);
1131 		}
1132 
1133 		if (nest_pmus > 0)
1134 			nest_pmus--;
1135 		mutex_unlock(&nest_init_lock);
1136 	}
1137 
1138 	/* Free core_imc memory */
1139 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1140 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1141 		cleanup_all_core_imc_memory();
1142 	}
1143 
1144 	/* Free thread_imc memory */
1145 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1146 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1147 		cleanup_all_thread_imc_memory();
1148 	}
1149 
1150 	/* Only free the attr_groups which are dynamically allocated  */
1151 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1152 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1153 	kfree(pmu_ptr);
1154 	return;
1155 }
1156 
1157 
1158 /*
1159  * imc_mem_init : Function to support memory allocation for core imc.
1160  */
1161 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1162 								int pmu_index)
1163 {
1164 	const char *s;
1165 	int nr_cores, cpu, res;
1166 
1167 	if (of_property_read_string(parent, "name", &s))
1168 		return -ENODEV;
1169 
1170 	switch (pmu_ptr->domain) {
1171 	case IMC_DOMAIN_NEST:
1172 		/* Update the pmu name */
1173 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1174 		if (!pmu_ptr->pmu.name)
1175 			return -ENOMEM;
1176 
1177 		/* Needed for hotplug/migration */
1178 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1179 		break;
1180 	case IMC_DOMAIN_CORE:
1181 		/* Update the pmu name */
1182 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1183 		if (!pmu_ptr->pmu.name)
1184 			return -ENOMEM;
1185 
1186 		nr_cores = num_present_cpus() / threads_per_core;
1187 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1188 								GFP_KERNEL);
1189 
1190 		if (!pmu_ptr->mem_info)
1191 			return -ENOMEM;
1192 
1193 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1194 								GFP_KERNEL);
1195 
1196 		if (!core_imc_refc)
1197 			return -ENOMEM;
1198 
1199 		core_imc_pmu = pmu_ptr;
1200 		break;
1201 	case IMC_DOMAIN_THREAD:
1202 		/* Update the pmu name */
1203 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1204 		if (!pmu_ptr->pmu.name)
1205 			return -ENOMEM;
1206 
1207 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1208 		for_each_online_cpu(cpu) {
1209 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1210 			if (res)
1211 				return res;
1212 		}
1213 
1214 		thread_imc_pmu = pmu_ptr;
1215 		break;
1216 	default:
1217 		return -EINVAL;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * init_imc_pmu : Setup and register the IMC pmu device.
1225  *
1226  * @parent:	Device tree unit node
1227  * @pmu_ptr:	memory allocated for this pmu
1228  * @pmu_idx:	Count of nest pmc registered
1229  *
1230  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1231  * Handles failure cases and accordingly frees memory.
1232  */
1233 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1234 {
1235 	int ret;
1236 
1237 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1238 	if (ret)
1239 		goto err_free;
1240 
1241 	switch (pmu_ptr->domain) {
1242 	case IMC_DOMAIN_NEST:
1243 		/*
1244 		* Nest imc pmu need only one cpu per chip, we initialize the
1245 		* cpumask for the first nest imc pmu and use the same for the
1246 		* rest. To handle the cpuhotplug callback unregister, we track
1247 		* the number of nest pmus in "nest_pmus".
1248 		*/
1249 		mutex_lock(&nest_init_lock);
1250 		if (nest_pmus == 0) {
1251 			ret = init_nest_pmu_ref();
1252 			if (ret) {
1253 				mutex_unlock(&nest_init_lock);
1254 				goto err_free;
1255 			}
1256 			/* Register for cpu hotplug notification. */
1257 			ret = nest_pmu_cpumask_init();
1258 			if (ret) {
1259 				mutex_unlock(&nest_init_lock);
1260 				goto err_free;
1261 			}
1262 		}
1263 		nest_pmus++;
1264 		mutex_unlock(&nest_init_lock);
1265 		break;
1266 	case IMC_DOMAIN_CORE:
1267 		ret = core_imc_pmu_cpumask_init();
1268 		if (ret) {
1269 			cleanup_all_core_imc_memory();
1270 			return ret;
1271 		}
1272 
1273 		break;
1274 	case IMC_DOMAIN_THREAD:
1275 		ret = thread_imc_cpu_init();
1276 		if (ret) {
1277 			cleanup_all_thread_imc_memory();
1278 			return ret;
1279 		}
1280 
1281 		break;
1282 	default:
1283 		return  -1;	/* Unknown domain */
1284 	}
1285 
1286 	ret = update_events_in_group(parent, pmu_ptr);
1287 	if (ret)
1288 		goto err_free;
1289 
1290 	ret = update_pmu_ops(pmu_ptr);
1291 	if (ret)
1292 		goto err_free;
1293 
1294 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1295 	if (ret)
1296 		goto err_free;
1297 
1298 	pr_info("%s performance monitor hardware support registered\n",
1299 							pmu_ptr->pmu.name);
1300 
1301 	return 0;
1302 
1303 err_free:
1304 	imc_common_cpuhp_mem_free(pmu_ptr);
1305 	return ret;
1306 }
1307