1 /* 2 * In-Memory Collection (IMC) Performance Monitor counter support. 3 * 4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 5 * (C) 2017 Anju T Sudhakar, IBM Corporation. 6 * (C) 2017 Hemant K Shaw, IBM Corporation. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or later version. 12 */ 13 #include <linux/perf_event.h> 14 #include <linux/slab.h> 15 #include <asm/opal.h> 16 #include <asm/imc-pmu.h> 17 #include <asm/cputhreads.h> 18 #include <asm/smp.h> 19 #include <linux/string.h> 20 21 /* Nest IMC data structures and variables */ 22 23 /* 24 * Used to avoid races in counting the nest-pmu units during hotplug 25 * register and unregister 26 */ 27 static DEFINE_MUTEX(nest_init_lock); 28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 29 static struct imc_pmu **per_nest_pmu_arr; 30 static cpumask_t nest_imc_cpumask; 31 struct imc_pmu_ref *nest_imc_refc; 32 static int nest_pmus; 33 34 /* Core IMC data structures and variables */ 35 36 static cpumask_t core_imc_cpumask; 37 struct imc_pmu_ref *core_imc_refc; 38 static struct imc_pmu *core_imc_pmu; 39 40 /* Thread IMC data structures and variables */ 41 42 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 43 static struct imc_pmu *thread_imc_pmu; 44 static int thread_imc_mem_size; 45 46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 47 { 48 return container_of(event->pmu, struct imc_pmu, pmu); 49 } 50 51 PMU_FORMAT_ATTR(event, "config:0-40"); 52 PMU_FORMAT_ATTR(offset, "config:0-31"); 53 PMU_FORMAT_ATTR(rvalue, "config:32"); 54 PMU_FORMAT_ATTR(mode, "config:33-40"); 55 static struct attribute *imc_format_attrs[] = { 56 &format_attr_event.attr, 57 &format_attr_offset.attr, 58 &format_attr_rvalue.attr, 59 &format_attr_mode.attr, 60 NULL, 61 }; 62 63 static struct attribute_group imc_format_group = { 64 .name = "format", 65 .attrs = imc_format_attrs, 66 }; 67 68 /* Get the cpumask printed to a buffer "buf" */ 69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 70 struct device_attribute *attr, 71 char *buf) 72 { 73 struct pmu *pmu = dev_get_drvdata(dev); 74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 75 cpumask_t *active_mask; 76 77 switch(imc_pmu->domain){ 78 case IMC_DOMAIN_NEST: 79 active_mask = &nest_imc_cpumask; 80 break; 81 case IMC_DOMAIN_CORE: 82 active_mask = &core_imc_cpumask; 83 break; 84 default: 85 return 0; 86 } 87 88 return cpumap_print_to_pagebuf(true, buf, active_mask); 89 } 90 91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 92 93 static struct attribute *imc_pmu_cpumask_attrs[] = { 94 &dev_attr_cpumask.attr, 95 NULL, 96 }; 97 98 static struct attribute_group imc_pmu_cpumask_attr_group = { 99 .attrs = imc_pmu_cpumask_attrs, 100 }; 101 102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 103 static struct attribute *device_str_attr_create(const char *name, const char *str) 104 { 105 struct perf_pmu_events_attr *attr; 106 107 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 108 if (!attr) 109 return NULL; 110 sysfs_attr_init(&attr->attr.attr); 111 112 attr->event_str = str; 113 attr->attr.attr.name = name; 114 attr->attr.attr.mode = 0444; 115 attr->attr.show = perf_event_sysfs_show; 116 117 return &attr->attr.attr; 118 } 119 120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale, 121 const char *unit, const char *prefix, u32 base) 122 { 123 struct imc_events *event; 124 const char *s; 125 u32 reg; 126 127 event = kzalloc(sizeof(struct imc_events), GFP_KERNEL); 128 if (!event) 129 return NULL; 130 131 if (of_property_read_u32(np, "reg", ®)) 132 goto error; 133 /* Add the base_reg value to the "reg" */ 134 event->value = base + reg; 135 136 if (of_property_read_string(np, "event-name", &s)) 137 goto error; 138 139 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 140 if (!event->name) 141 goto error; 142 143 if (of_property_read_string(np, "scale", &s)) 144 s = scale; 145 146 if (s) { 147 event->scale = kstrdup(s, GFP_KERNEL); 148 if (!event->scale) 149 goto error; 150 } 151 152 if (of_property_read_string(np, "unit", &s)) 153 s = unit; 154 155 if (s) { 156 event->unit = kstrdup(s, GFP_KERNEL); 157 if (!event->unit) 158 goto error; 159 } 160 161 return event; 162 error: 163 kfree(event->unit); 164 kfree(event->scale); 165 kfree(event->name); 166 kfree(event); 167 168 return NULL; 169 } 170 171 /* 172 * update_events_in_group: Update the "events" information in an attr_group 173 * and assign the attr_group to the pmu "pmu". 174 */ 175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 176 { 177 struct attribute_group *attr_group; 178 struct attribute **attrs, *dev_str; 179 struct device_node *np, *pmu_events; 180 struct imc_events *ev; 181 u32 handle, base_reg; 182 int i=0, j=0, ct; 183 const char *prefix, *g_scale, *g_unit; 184 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 185 186 if (!of_property_read_u32(node, "events", &handle)) 187 pmu_events = of_find_node_by_phandle(handle); 188 else 189 return 0; 190 191 /* Did not find any node with a given phandle */ 192 if (!pmu_events) 193 return 0; 194 195 /* Get a count of number of child nodes */ 196 ct = of_get_child_count(pmu_events); 197 198 /* Get the event prefix */ 199 if (of_property_read_string(node, "events-prefix", &prefix)) 200 return 0; 201 202 /* Get a global unit and scale data if available */ 203 if (of_property_read_string(node, "scale", &g_scale)) 204 g_scale = NULL; 205 206 if (of_property_read_string(node, "unit", &g_unit)) 207 g_unit = NULL; 208 209 /* "reg" property gives out the base offset of the counters data */ 210 of_property_read_u32(node, "reg", &base_reg); 211 212 /* Allocate memory for the events */ 213 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 214 if (!pmu->events) 215 return -ENOMEM; 216 217 ct = 0; 218 /* Parse the events and update the struct */ 219 for_each_child_of_node(pmu_events, np) { 220 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg); 221 if (ev) 222 pmu->events[ct++] = ev; 223 } 224 225 /* Allocate memory for attribute group */ 226 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 227 if (!attr_group) 228 return -ENOMEM; 229 230 /* 231 * Allocate memory for attributes. 232 * Since we have count of events for this pmu, we also allocate 233 * memory for the scale and unit attribute for now. 234 * "ct" has the total event structs added from the events-parent node. 235 * So allocate three times the "ct" (this includes event, event_scale and 236 * event_unit). 237 */ 238 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 239 if (!attrs) { 240 kfree(attr_group); 241 kfree(pmu->events); 242 return -ENOMEM; 243 } 244 245 attr_group->name = "events"; 246 attr_group->attrs = attrs; 247 do { 248 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value); 249 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str); 250 if (!dev_str) 251 continue; 252 253 attrs[j++] = dev_str; 254 if (pmu->events[i]->scale) { 255 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name); 256 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale); 257 if (!dev_str) 258 continue; 259 260 attrs[j++] = dev_str; 261 } 262 263 if (pmu->events[i]->unit) { 264 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name); 265 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit); 266 if (!dev_str) 267 continue; 268 269 attrs[j++] = dev_str; 270 } 271 } while (++i < ct); 272 273 /* Save the event attribute */ 274 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 275 276 kfree(pmu->events); 277 return 0; 278 } 279 280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 282 { 283 return per_cpu(local_nest_imc_refc, cpu); 284 } 285 286 static void nest_change_cpu_context(int old_cpu, int new_cpu) 287 { 288 struct imc_pmu **pn = per_nest_pmu_arr; 289 290 if (old_cpu < 0 || new_cpu < 0) 291 return; 292 293 while (*pn) { 294 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 295 pn++; 296 } 297 } 298 299 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 300 { 301 int nid, target = -1; 302 const struct cpumask *l_cpumask; 303 struct imc_pmu_ref *ref; 304 305 /* 306 * Check in the designated list for this cpu. Dont bother 307 * if not one of them. 308 */ 309 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 310 return 0; 311 312 /* 313 * Check whether nest_imc is registered. We could end up here if the 314 * cpuhotplug callback registration fails. i.e, callback invokes the 315 * offline path for all successfully registered nodes. At this stage, 316 * nest_imc pmu will not be registered and we should return here. 317 * 318 * We return with a zero since this is not an offline failure. And 319 * cpuhp_setup_state() returns the actual failure reason to the caller, 320 * which in turn will call the cleanup routine. 321 */ 322 if (!nest_pmus) 323 return 0; 324 325 /* 326 * Now that this cpu is one of the designated, 327 * find a next cpu a) which is online and b) in same chip. 328 */ 329 nid = cpu_to_node(cpu); 330 l_cpumask = cpumask_of_node(nid); 331 target = cpumask_any_but(l_cpumask, cpu); 332 333 /* 334 * Update the cpumask with the target cpu and 335 * migrate the context if needed 336 */ 337 if (target >= 0 && target < nr_cpu_ids) { 338 cpumask_set_cpu(target, &nest_imc_cpumask); 339 nest_change_cpu_context(cpu, target); 340 } else { 341 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 342 get_hard_smp_processor_id(cpu)); 343 /* 344 * If this is the last cpu in this chip then, skip the reference 345 * count mutex lock and make the reference count on this chip zero. 346 */ 347 ref = get_nest_pmu_ref(cpu); 348 if (!ref) 349 return -EINVAL; 350 351 ref->refc = 0; 352 } 353 return 0; 354 } 355 356 static int ppc_nest_imc_cpu_online(unsigned int cpu) 357 { 358 const struct cpumask *l_cpumask; 359 static struct cpumask tmp_mask; 360 int res; 361 362 /* Get the cpumask of this node */ 363 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 364 365 /* 366 * If this is not the first online CPU on this node, then 367 * just return. 368 */ 369 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 370 return 0; 371 372 /* 373 * If this is the first online cpu on this node 374 * disable the nest counters by making an OPAL call. 375 */ 376 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 377 get_hard_smp_processor_id(cpu)); 378 if (res) 379 return res; 380 381 /* Make this CPU the designated target for counter collection */ 382 cpumask_set_cpu(cpu, &nest_imc_cpumask); 383 return 0; 384 } 385 386 static int nest_pmu_cpumask_init(void) 387 { 388 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 389 "perf/powerpc/imc:online", 390 ppc_nest_imc_cpu_online, 391 ppc_nest_imc_cpu_offline); 392 } 393 394 static void nest_imc_counters_release(struct perf_event *event) 395 { 396 int rc, node_id; 397 struct imc_pmu_ref *ref; 398 399 if (event->cpu < 0) 400 return; 401 402 node_id = cpu_to_node(event->cpu); 403 404 /* 405 * See if we need to disable the nest PMU. 406 * If no events are currently in use, then we have to take a 407 * mutex to ensure that we don't race with another task doing 408 * enable or disable the nest counters. 409 */ 410 ref = get_nest_pmu_ref(event->cpu); 411 if (!ref) 412 return; 413 414 /* Take the mutex lock for this node and then decrement the reference count */ 415 mutex_lock(&ref->lock); 416 if (ref->refc == 0) { 417 /* 418 * The scenario where this is true is, when perf session is 419 * started, followed by offlining of all cpus in a given node. 420 * 421 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 422 * function set the ref->count to zero, if the cpu which is 423 * about to offline is the last cpu in a given node and make 424 * an OPAL call to disable the engine in that node. 425 * 426 */ 427 mutex_unlock(&ref->lock); 428 return; 429 } 430 ref->refc--; 431 if (ref->refc == 0) { 432 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 433 get_hard_smp_processor_id(event->cpu)); 434 if (rc) { 435 mutex_unlock(&ref->lock); 436 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 437 return; 438 } 439 } else if (ref->refc < 0) { 440 WARN(1, "nest-imc: Invalid event reference count\n"); 441 ref->refc = 0; 442 } 443 mutex_unlock(&ref->lock); 444 } 445 446 static int nest_imc_event_init(struct perf_event *event) 447 { 448 int chip_id, rc, node_id; 449 u32 l_config, config = event->attr.config; 450 struct imc_mem_info *pcni; 451 struct imc_pmu *pmu; 452 struct imc_pmu_ref *ref; 453 bool flag = false; 454 455 if (event->attr.type != event->pmu->type) 456 return -ENOENT; 457 458 /* Sampling not supported */ 459 if (event->hw.sample_period) 460 return -EINVAL; 461 462 /* unsupported modes and filters */ 463 if (event->attr.exclude_user || 464 event->attr.exclude_kernel || 465 event->attr.exclude_hv || 466 event->attr.exclude_idle || 467 event->attr.exclude_host || 468 event->attr.exclude_guest) 469 return -EINVAL; 470 471 if (event->cpu < 0) 472 return -EINVAL; 473 474 pmu = imc_event_to_pmu(event); 475 476 /* Sanity check for config (event offset) */ 477 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 478 return -EINVAL; 479 480 /* 481 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 482 * Get the base memory addresss for this cpu. 483 */ 484 chip_id = cpu_to_chip_id(event->cpu); 485 pcni = pmu->mem_info; 486 do { 487 if (pcni->id == chip_id) { 488 flag = true; 489 break; 490 } 491 pcni++; 492 } while (pcni); 493 494 if (!flag) 495 return -ENODEV; 496 497 /* 498 * Add the event offset to the base address. 499 */ 500 l_config = config & IMC_EVENT_OFFSET_MASK; 501 event->hw.event_base = (u64)pcni->vbase + l_config; 502 node_id = cpu_to_node(event->cpu); 503 504 /* 505 * Get the imc_pmu_ref struct for this node. 506 * Take the mutex lock and then increment the count of nest pmu events 507 * inited. 508 */ 509 ref = get_nest_pmu_ref(event->cpu); 510 if (!ref) 511 return -EINVAL; 512 513 mutex_lock(&ref->lock); 514 if (ref->refc == 0) { 515 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 516 get_hard_smp_processor_id(event->cpu)); 517 if (rc) { 518 mutex_unlock(&ref->lock); 519 pr_err("nest-imc: Unable to start the counters for node %d\n", 520 node_id); 521 return rc; 522 } 523 } 524 ++ref->refc; 525 mutex_unlock(&ref->lock); 526 527 event->destroy = nest_imc_counters_release; 528 return 0; 529 } 530 531 /* 532 * core_imc_mem_init : Initializes memory for the current core. 533 * 534 * Uses alloc_pages_node() and uses the returned address as an argument to 535 * an opal call to configure the pdbar. The address sent as an argument is 536 * converted to physical address before the opal call is made. This is the 537 * base address at which the core imc counters are populated. 538 */ 539 static int core_imc_mem_init(int cpu, int size) 540 { 541 int nid, rc = 0, core_id = (cpu / threads_per_core); 542 struct imc_mem_info *mem_info; 543 544 /* 545 * alloc_pages_node() will allocate memory for core in the 546 * local node only. 547 */ 548 nid = cpu_to_node(cpu); 549 mem_info = &core_imc_pmu->mem_info[core_id]; 550 mem_info->id = core_id; 551 552 /* We need only vbase for core counters */ 553 mem_info->vbase = page_address(alloc_pages_node(nid, 554 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 555 __GFP_NOWARN, get_order(size))); 556 if (!mem_info->vbase) 557 return -ENOMEM; 558 559 /* Init the mutex */ 560 core_imc_refc[core_id].id = core_id; 561 mutex_init(&core_imc_refc[core_id].lock); 562 563 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 564 __pa((void *)mem_info->vbase), 565 get_hard_smp_processor_id(cpu)); 566 if (rc) { 567 free_pages((u64)mem_info->vbase, get_order(size)); 568 mem_info->vbase = NULL; 569 } 570 571 return rc; 572 } 573 574 static bool is_core_imc_mem_inited(int cpu) 575 { 576 struct imc_mem_info *mem_info; 577 int core_id = (cpu / threads_per_core); 578 579 mem_info = &core_imc_pmu->mem_info[core_id]; 580 if (!mem_info->vbase) 581 return false; 582 583 return true; 584 } 585 586 static int ppc_core_imc_cpu_online(unsigned int cpu) 587 { 588 const struct cpumask *l_cpumask; 589 static struct cpumask tmp_mask; 590 int ret = 0; 591 592 /* Get the cpumask for this core */ 593 l_cpumask = cpu_sibling_mask(cpu); 594 595 /* If a cpu for this core is already set, then, don't do anything */ 596 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 597 return 0; 598 599 if (!is_core_imc_mem_inited(cpu)) { 600 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 601 if (ret) { 602 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 603 return ret; 604 } 605 } 606 607 /* set the cpu in the mask */ 608 cpumask_set_cpu(cpu, &core_imc_cpumask); 609 return 0; 610 } 611 612 static int ppc_core_imc_cpu_offline(unsigned int cpu) 613 { 614 unsigned int ncpu, core_id; 615 struct imc_pmu_ref *ref; 616 617 /* 618 * clear this cpu out of the mask, if not present in the mask, 619 * don't bother doing anything. 620 */ 621 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 622 return 0; 623 624 /* 625 * Check whether core_imc is registered. We could end up here 626 * if the cpuhotplug callback registration fails. i.e, callback 627 * invokes the offline path for all sucessfully registered cpus. 628 * At this stage, core_imc pmu will not be registered and we 629 * should return here. 630 * 631 * We return with a zero since this is not an offline failure. 632 * And cpuhp_setup_state() returns the actual failure reason 633 * to the caller, which inturn will call the cleanup routine. 634 */ 635 if (!core_imc_pmu->pmu.event_init) 636 return 0; 637 638 /* Find any online cpu in that core except the current "cpu" */ 639 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 640 641 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 642 cpumask_set_cpu(ncpu, &core_imc_cpumask); 643 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 644 } else { 645 /* 646 * If this is the last cpu in this core then, skip taking refernce 647 * count mutex lock for this core and directly zero "refc" for 648 * this core. 649 */ 650 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 651 get_hard_smp_processor_id(cpu)); 652 core_id = cpu / threads_per_core; 653 ref = &core_imc_refc[core_id]; 654 if (!ref) 655 return -EINVAL; 656 657 ref->refc = 0; 658 } 659 return 0; 660 } 661 662 static int core_imc_pmu_cpumask_init(void) 663 { 664 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 665 "perf/powerpc/imc_core:online", 666 ppc_core_imc_cpu_online, 667 ppc_core_imc_cpu_offline); 668 } 669 670 static void core_imc_counters_release(struct perf_event *event) 671 { 672 int rc, core_id; 673 struct imc_pmu_ref *ref; 674 675 if (event->cpu < 0) 676 return; 677 /* 678 * See if we need to disable the IMC PMU. 679 * If no events are currently in use, then we have to take a 680 * mutex to ensure that we don't race with another task doing 681 * enable or disable the core counters. 682 */ 683 core_id = event->cpu / threads_per_core; 684 685 /* Take the mutex lock and decrement the refernce count for this core */ 686 ref = &core_imc_refc[core_id]; 687 if (!ref) 688 return; 689 690 mutex_lock(&ref->lock); 691 if (ref->refc == 0) { 692 /* 693 * The scenario where this is true is, when perf session is 694 * started, followed by offlining of all cpus in a given core. 695 * 696 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 697 * function set the ref->count to zero, if the cpu which is 698 * about to offline is the last cpu in a given core and make 699 * an OPAL call to disable the engine in that core. 700 * 701 */ 702 mutex_unlock(&ref->lock); 703 return; 704 } 705 ref->refc--; 706 if (ref->refc == 0) { 707 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 708 get_hard_smp_processor_id(event->cpu)); 709 if (rc) { 710 mutex_unlock(&ref->lock); 711 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 712 return; 713 } 714 } else if (ref->refc < 0) { 715 WARN(1, "core-imc: Invalid event reference count\n"); 716 ref->refc = 0; 717 } 718 mutex_unlock(&ref->lock); 719 } 720 721 static int core_imc_event_init(struct perf_event *event) 722 { 723 int core_id, rc; 724 u64 config = event->attr.config; 725 struct imc_mem_info *pcmi; 726 struct imc_pmu *pmu; 727 struct imc_pmu_ref *ref; 728 729 if (event->attr.type != event->pmu->type) 730 return -ENOENT; 731 732 /* Sampling not supported */ 733 if (event->hw.sample_period) 734 return -EINVAL; 735 736 /* unsupported modes and filters */ 737 if (event->attr.exclude_user || 738 event->attr.exclude_kernel || 739 event->attr.exclude_hv || 740 event->attr.exclude_idle || 741 event->attr.exclude_host || 742 event->attr.exclude_guest) 743 return -EINVAL; 744 745 if (event->cpu < 0) 746 return -EINVAL; 747 748 event->hw.idx = -1; 749 pmu = imc_event_to_pmu(event); 750 751 /* Sanity check for config (event offset) */ 752 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 753 return -EINVAL; 754 755 if (!is_core_imc_mem_inited(event->cpu)) 756 return -ENODEV; 757 758 core_id = event->cpu / threads_per_core; 759 pcmi = &core_imc_pmu->mem_info[core_id]; 760 if ((!pcmi->vbase)) 761 return -ENODEV; 762 763 /* Get the core_imc mutex for this core */ 764 ref = &core_imc_refc[core_id]; 765 if (!ref) 766 return -EINVAL; 767 768 /* 769 * Core pmu units are enabled only when it is used. 770 * See if this is triggered for the first time. 771 * If yes, take the mutex lock and enable the core counters. 772 * If not, just increment the count in core_imc_refc struct. 773 */ 774 mutex_lock(&ref->lock); 775 if (ref->refc == 0) { 776 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 777 get_hard_smp_processor_id(event->cpu)); 778 if (rc) { 779 mutex_unlock(&ref->lock); 780 pr_err("core-imc: Unable to start the counters for core %d\n", 781 core_id); 782 return rc; 783 } 784 } 785 ++ref->refc; 786 mutex_unlock(&ref->lock); 787 788 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 789 event->destroy = core_imc_counters_release; 790 return 0; 791 } 792 793 /* 794 * Allocates a page of memory for each of the online cpus, and write the 795 * physical base address of that page to the LDBAR for that cpu. 796 * 797 * LDBAR Register Layout: 798 * 799 * 0 4 8 12 16 20 24 28 800 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 801 * | | [ ] [ Counter Address [8:50] 802 * | * Mode | 803 * | * PB Scope 804 * * Enable/Disable 805 * 806 * 32 36 40 44 48 52 56 60 807 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 808 * Counter Address [8:50] ] 809 * 810 */ 811 static int thread_imc_mem_alloc(int cpu_id, int size) 812 { 813 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id); 814 int nid = cpu_to_node(cpu_id); 815 816 if (!local_mem) { 817 /* 818 * This case could happen only once at start, since we dont 819 * free the memory in cpu offline path. 820 */ 821 local_mem = page_address(alloc_pages_node(nid, 822 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 823 __GFP_NOWARN, get_order(size))); 824 if (!local_mem) 825 return -ENOMEM; 826 827 per_cpu(thread_imc_mem, cpu_id) = local_mem; 828 } 829 830 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 831 832 mtspr(SPRN_LDBAR, ldbar_value); 833 return 0; 834 } 835 836 static int ppc_thread_imc_cpu_online(unsigned int cpu) 837 { 838 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 839 } 840 841 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 842 { 843 mtspr(SPRN_LDBAR, 0); 844 return 0; 845 } 846 847 static int thread_imc_cpu_init(void) 848 { 849 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 850 "perf/powerpc/imc_thread:online", 851 ppc_thread_imc_cpu_online, 852 ppc_thread_imc_cpu_offline); 853 } 854 855 void thread_imc_pmu_sched_task(struct perf_event_context *ctx, 856 bool sched_in) 857 { 858 int core_id; 859 struct imc_pmu_ref *ref; 860 861 if (!is_core_imc_mem_inited(smp_processor_id())) 862 return; 863 864 core_id = smp_processor_id() / threads_per_core; 865 /* 866 * imc pmus are enabled only when it is used. 867 * See if this is triggered for the first time. 868 * If yes, take the mutex lock and enable the counters. 869 * If not, just increment the count in ref count struct. 870 */ 871 ref = &core_imc_refc[core_id]; 872 if (!ref) 873 return; 874 875 if (sched_in) { 876 mutex_lock(&ref->lock); 877 if (ref->refc == 0) { 878 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 879 get_hard_smp_processor_id(smp_processor_id()))) { 880 mutex_unlock(&ref->lock); 881 pr_err("thread-imc: Unable to start the counter\ 882 for core %d\n", core_id); 883 return; 884 } 885 } 886 ++ref->refc; 887 mutex_unlock(&ref->lock); 888 } else { 889 mutex_lock(&ref->lock); 890 ref->refc--; 891 if (ref->refc == 0) { 892 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 893 get_hard_smp_processor_id(smp_processor_id()))) { 894 mutex_unlock(&ref->lock); 895 pr_err("thread-imc: Unable to stop the counters\ 896 for core %d\n", core_id); 897 return; 898 } 899 } else if (ref->refc < 0) { 900 ref->refc = 0; 901 } 902 mutex_unlock(&ref->lock); 903 } 904 905 return; 906 } 907 908 static int thread_imc_event_init(struct perf_event *event) 909 { 910 u32 config = event->attr.config; 911 struct task_struct *target; 912 struct imc_pmu *pmu; 913 914 if (event->attr.type != event->pmu->type) 915 return -ENOENT; 916 917 /* Sampling not supported */ 918 if (event->hw.sample_period) 919 return -EINVAL; 920 921 event->hw.idx = -1; 922 pmu = imc_event_to_pmu(event); 923 924 /* Sanity check for config offset */ 925 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 926 return -EINVAL; 927 928 target = event->hw.target; 929 if (!target) 930 return -EINVAL; 931 932 event->pmu->task_ctx_nr = perf_sw_context; 933 return 0; 934 } 935 936 static bool is_thread_imc_pmu(struct perf_event *event) 937 { 938 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 939 return true; 940 941 return false; 942 } 943 944 static u64 * get_event_base_addr(struct perf_event *event) 945 { 946 u64 addr; 947 948 if (is_thread_imc_pmu(event)) { 949 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 950 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 951 } 952 953 return (u64 *)event->hw.event_base; 954 } 955 956 static void thread_imc_pmu_start_txn(struct pmu *pmu, 957 unsigned int txn_flags) 958 { 959 if (txn_flags & ~PERF_PMU_TXN_ADD) 960 return; 961 perf_pmu_disable(pmu); 962 } 963 964 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 965 { 966 perf_pmu_enable(pmu); 967 } 968 969 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 970 { 971 perf_pmu_enable(pmu); 972 return 0; 973 } 974 975 static u64 imc_read_counter(struct perf_event *event) 976 { 977 u64 *addr, data; 978 979 /* 980 * In-Memory Collection (IMC) counters are free flowing counters. 981 * So we take a snapshot of the counter value on enable and save it 982 * to calculate the delta at later stage to present the event counter 983 * value. 984 */ 985 addr = get_event_base_addr(event); 986 data = be64_to_cpu(READ_ONCE(*addr)); 987 local64_set(&event->hw.prev_count, data); 988 989 return data; 990 } 991 992 static void imc_event_update(struct perf_event *event) 993 { 994 u64 counter_prev, counter_new, final_count; 995 996 counter_prev = local64_read(&event->hw.prev_count); 997 counter_new = imc_read_counter(event); 998 final_count = counter_new - counter_prev; 999 1000 /* Update the delta to the event count */ 1001 local64_add(final_count, &event->count); 1002 } 1003 1004 static void imc_event_start(struct perf_event *event, int flags) 1005 { 1006 /* 1007 * In Memory Counters are free flowing counters. HW or the microcode 1008 * keeps adding to the counter offset in memory. To get event 1009 * counter value, we snapshot the value here and we calculate 1010 * delta at later point. 1011 */ 1012 imc_read_counter(event); 1013 } 1014 1015 static void imc_event_stop(struct perf_event *event, int flags) 1016 { 1017 /* 1018 * Take a snapshot and calculate the delta and update 1019 * the event counter values. 1020 */ 1021 imc_event_update(event); 1022 } 1023 1024 static int imc_event_add(struct perf_event *event, int flags) 1025 { 1026 if (flags & PERF_EF_START) 1027 imc_event_start(event, flags); 1028 1029 return 0; 1030 } 1031 1032 static int thread_imc_event_add(struct perf_event *event, int flags) 1033 { 1034 if (flags & PERF_EF_START) 1035 imc_event_start(event, flags); 1036 1037 /* Enable the sched_task to start the engine */ 1038 perf_sched_cb_inc(event->ctx->pmu); 1039 return 0; 1040 } 1041 1042 static void thread_imc_event_del(struct perf_event *event, int flags) 1043 { 1044 /* 1045 * Take a snapshot and calculate the delta and update 1046 * the event counter values. 1047 */ 1048 imc_event_update(event); 1049 perf_sched_cb_dec(event->ctx->pmu); 1050 } 1051 1052 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1053 static int update_pmu_ops(struct imc_pmu *pmu) 1054 { 1055 pmu->pmu.task_ctx_nr = perf_invalid_context; 1056 pmu->pmu.add = imc_event_add; 1057 pmu->pmu.del = imc_event_stop; 1058 pmu->pmu.start = imc_event_start; 1059 pmu->pmu.stop = imc_event_stop; 1060 pmu->pmu.read = imc_event_update; 1061 pmu->pmu.attr_groups = pmu->attr_groups; 1062 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1063 1064 switch (pmu->domain) { 1065 case IMC_DOMAIN_NEST: 1066 pmu->pmu.event_init = nest_imc_event_init; 1067 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1068 break; 1069 case IMC_DOMAIN_CORE: 1070 pmu->pmu.event_init = core_imc_event_init; 1071 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1072 break; 1073 case IMC_DOMAIN_THREAD: 1074 pmu->pmu.event_init = thread_imc_event_init; 1075 pmu->pmu.sched_task = thread_imc_pmu_sched_task; 1076 pmu->pmu.add = thread_imc_event_add; 1077 pmu->pmu.del = thread_imc_event_del; 1078 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1079 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1080 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1081 break; 1082 default: 1083 break; 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1090 static int init_nest_pmu_ref(void) 1091 { 1092 int nid, i, cpu; 1093 1094 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1095 GFP_KERNEL); 1096 1097 if (!nest_imc_refc) 1098 return -ENOMEM; 1099 1100 i = 0; 1101 for_each_node(nid) { 1102 /* 1103 * Mutex lock to avoid races while tracking the number of 1104 * sessions using the chip's nest pmu units. 1105 */ 1106 mutex_init(&nest_imc_refc[i].lock); 1107 1108 /* 1109 * Loop to init the "id" with the node_id. Variable "i" initialized to 1110 * 0 and will be used as index to the array. "i" will not go off the 1111 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1112 * nodes only. 1113 */ 1114 nest_imc_refc[i++].id = nid; 1115 } 1116 1117 /* 1118 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1119 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1120 */ 1121 for_each_possible_cpu(cpu) { 1122 nid = cpu_to_node(cpu); 1123 for (i = 0; i < num_possible_nodes(); i++) { 1124 if (nest_imc_refc[i].id == nid) { 1125 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1126 break; 1127 } 1128 } 1129 } 1130 return 0; 1131 } 1132 1133 static void cleanup_all_core_imc_memory(void) 1134 { 1135 int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1136 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1137 int size = core_imc_pmu->counter_mem_size; 1138 1139 /* mem_info will never be NULL */ 1140 for (i = 0; i < nr_cores; i++) { 1141 if (ptr[i].vbase) 1142 free_pages((u64)ptr->vbase, get_order(size)); 1143 } 1144 1145 kfree(ptr); 1146 kfree(core_imc_refc); 1147 } 1148 1149 static void thread_imc_ldbar_disable(void *dummy) 1150 { 1151 /* 1152 * By Zeroing LDBAR, we disable thread-imc 1153 * updates. 1154 */ 1155 mtspr(SPRN_LDBAR, 0); 1156 } 1157 1158 void thread_imc_disable(void) 1159 { 1160 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1161 } 1162 1163 static void cleanup_all_thread_imc_memory(void) 1164 { 1165 int i, order = get_order(thread_imc_mem_size); 1166 1167 for_each_online_cpu(i) { 1168 if (per_cpu(thread_imc_mem, i)) 1169 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1170 1171 } 1172 } 1173 1174 /* 1175 * Common function to unregister cpu hotplug callback and 1176 * free the memory. 1177 * TODO: Need to handle pmu unregistering, which will be 1178 * done in followup series. 1179 */ 1180 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1181 { 1182 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1183 mutex_lock(&nest_init_lock); 1184 if (nest_pmus == 1) { 1185 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1186 kfree(nest_imc_refc); 1187 kfree(per_nest_pmu_arr); 1188 } 1189 1190 if (nest_pmus > 0) 1191 nest_pmus--; 1192 mutex_unlock(&nest_init_lock); 1193 } 1194 1195 /* Free core_imc memory */ 1196 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1197 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1198 cleanup_all_core_imc_memory(); 1199 } 1200 1201 /* Free thread_imc memory */ 1202 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1203 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1204 cleanup_all_thread_imc_memory(); 1205 } 1206 1207 /* Only free the attr_groups which are dynamically allocated */ 1208 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1209 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1210 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1211 kfree(pmu_ptr); 1212 return; 1213 } 1214 1215 1216 /* 1217 * imc_mem_init : Function to support memory allocation for core imc. 1218 */ 1219 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1220 int pmu_index) 1221 { 1222 const char *s; 1223 int nr_cores, cpu, res; 1224 1225 if (of_property_read_string(parent, "name", &s)) 1226 return -ENODEV; 1227 1228 switch (pmu_ptr->domain) { 1229 case IMC_DOMAIN_NEST: 1230 /* Update the pmu name */ 1231 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1232 if (!pmu_ptr->pmu.name) 1233 return -ENOMEM; 1234 1235 /* Needed for hotplug/migration */ 1236 if (!per_nest_pmu_arr) { 1237 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1238 sizeof(struct imc_pmu *), 1239 GFP_KERNEL); 1240 if (!per_nest_pmu_arr) 1241 return -ENOMEM; 1242 } 1243 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1244 break; 1245 case IMC_DOMAIN_CORE: 1246 /* Update the pmu name */ 1247 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1248 if (!pmu_ptr->pmu.name) 1249 return -ENOMEM; 1250 1251 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1252 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1253 GFP_KERNEL); 1254 1255 if (!pmu_ptr->mem_info) 1256 return -ENOMEM; 1257 1258 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1259 GFP_KERNEL); 1260 1261 if (!core_imc_refc) 1262 return -ENOMEM; 1263 1264 core_imc_pmu = pmu_ptr; 1265 break; 1266 case IMC_DOMAIN_THREAD: 1267 /* Update the pmu name */ 1268 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1269 if (!pmu_ptr->pmu.name) 1270 return -ENOMEM; 1271 1272 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1273 for_each_online_cpu(cpu) { 1274 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1275 if (res) 1276 return res; 1277 } 1278 1279 thread_imc_pmu = pmu_ptr; 1280 break; 1281 default: 1282 return -EINVAL; 1283 } 1284 1285 return 0; 1286 } 1287 1288 /* 1289 * init_imc_pmu : Setup and register the IMC pmu device. 1290 * 1291 * @parent: Device tree unit node 1292 * @pmu_ptr: memory allocated for this pmu 1293 * @pmu_idx: Count of nest pmc registered 1294 * 1295 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1296 * Handles failure cases and accordingly frees memory. 1297 */ 1298 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1299 { 1300 int ret; 1301 1302 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1303 if (ret) 1304 goto err_free; 1305 1306 switch (pmu_ptr->domain) { 1307 case IMC_DOMAIN_NEST: 1308 /* 1309 * Nest imc pmu need only one cpu per chip, we initialize the 1310 * cpumask for the first nest imc pmu and use the same for the 1311 * rest. To handle the cpuhotplug callback unregister, we track 1312 * the number of nest pmus in "nest_pmus". 1313 */ 1314 mutex_lock(&nest_init_lock); 1315 if (nest_pmus == 0) { 1316 ret = init_nest_pmu_ref(); 1317 if (ret) { 1318 mutex_unlock(&nest_init_lock); 1319 goto err_free; 1320 } 1321 /* Register for cpu hotplug notification. */ 1322 ret = nest_pmu_cpumask_init(); 1323 if (ret) { 1324 mutex_unlock(&nest_init_lock); 1325 kfree(nest_imc_refc); 1326 kfree(per_nest_pmu_arr); 1327 goto err_free; 1328 } 1329 } 1330 nest_pmus++; 1331 mutex_unlock(&nest_init_lock); 1332 break; 1333 case IMC_DOMAIN_CORE: 1334 ret = core_imc_pmu_cpumask_init(); 1335 if (ret) { 1336 cleanup_all_core_imc_memory(); 1337 return ret; 1338 } 1339 1340 break; 1341 case IMC_DOMAIN_THREAD: 1342 ret = thread_imc_cpu_init(); 1343 if (ret) { 1344 cleanup_all_thread_imc_memory(); 1345 return ret; 1346 } 1347 1348 break; 1349 default: 1350 return -1; /* Unknown domain */ 1351 } 1352 1353 ret = update_events_in_group(parent, pmu_ptr); 1354 if (ret) 1355 goto err_free; 1356 1357 ret = update_pmu_ops(pmu_ptr); 1358 if (ret) 1359 goto err_free; 1360 1361 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1362 if (ret) 1363 goto err_free; 1364 1365 pr_info("%s performance monitor hardware support registered\n", 1366 pmu_ptr->pmu.name); 1367 1368 return 0; 1369 1370 err_free: 1371 imc_common_cpuhp_mem_free(pmu_ptr); 1372 return ret; 1373 } 1374