1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/perf_event.h> 10 #include <linux/slab.h> 11 #include <asm/opal.h> 12 #include <asm/imc-pmu.h> 13 #include <asm/cputhreads.h> 14 #include <asm/smp.h> 15 #include <linux/string.h> 16 17 /* Nest IMC data structures and variables */ 18 19 /* 20 * Used to avoid races in counting the nest-pmu units during hotplug 21 * register and unregister 22 */ 23 static DEFINE_MUTEX(nest_init_lock); 24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 25 static struct imc_pmu **per_nest_pmu_arr; 26 static cpumask_t nest_imc_cpumask; 27 static struct imc_pmu_ref *nest_imc_refc; 28 static int nest_pmus; 29 30 /* Core IMC data structures and variables */ 31 32 static cpumask_t core_imc_cpumask; 33 static struct imc_pmu_ref *core_imc_refc; 34 static struct imc_pmu *core_imc_pmu; 35 36 /* Thread IMC data structures and variables */ 37 38 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 39 static struct imc_pmu *thread_imc_pmu; 40 static int thread_imc_mem_size; 41 42 /* Trace IMC data structures */ 43 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 44 static struct imc_pmu_ref *trace_imc_refc; 45 static int trace_imc_mem_size; 46 47 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 48 { 49 return container_of(event->pmu, struct imc_pmu, pmu); 50 } 51 52 PMU_FORMAT_ATTR(event, "config:0-61"); 53 PMU_FORMAT_ATTR(offset, "config:0-31"); 54 PMU_FORMAT_ATTR(rvalue, "config:32"); 55 PMU_FORMAT_ATTR(mode, "config:33-40"); 56 static struct attribute *imc_format_attrs[] = { 57 &format_attr_event.attr, 58 &format_attr_offset.attr, 59 &format_attr_rvalue.attr, 60 &format_attr_mode.attr, 61 NULL, 62 }; 63 64 static struct attribute_group imc_format_group = { 65 .name = "format", 66 .attrs = imc_format_attrs, 67 }; 68 69 /* Format attribute for imc trace-mode */ 70 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 71 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 72 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 73 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 74 static struct attribute *trace_imc_format_attrs[] = { 75 &format_attr_event.attr, 76 &format_attr_cpmc_reserved.attr, 77 &format_attr_cpmc_event.attr, 78 &format_attr_cpmc_samplesel.attr, 79 &format_attr_cpmc_load.attr, 80 NULL, 81 }; 82 83 static struct attribute_group trace_imc_format_group = { 84 .name = "format", 85 .attrs = trace_imc_format_attrs, 86 }; 87 88 /* Get the cpumask printed to a buffer "buf" */ 89 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 90 struct device_attribute *attr, 91 char *buf) 92 { 93 struct pmu *pmu = dev_get_drvdata(dev); 94 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 95 cpumask_t *active_mask; 96 97 switch(imc_pmu->domain){ 98 case IMC_DOMAIN_NEST: 99 active_mask = &nest_imc_cpumask; 100 break; 101 case IMC_DOMAIN_CORE: 102 active_mask = &core_imc_cpumask; 103 break; 104 default: 105 return 0; 106 } 107 108 return cpumap_print_to_pagebuf(true, buf, active_mask); 109 } 110 111 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 112 113 static struct attribute *imc_pmu_cpumask_attrs[] = { 114 &dev_attr_cpumask.attr, 115 NULL, 116 }; 117 118 static struct attribute_group imc_pmu_cpumask_attr_group = { 119 .attrs = imc_pmu_cpumask_attrs, 120 }; 121 122 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 123 static struct attribute *device_str_attr_create(const char *name, const char *str) 124 { 125 struct perf_pmu_events_attr *attr; 126 127 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 128 if (!attr) 129 return NULL; 130 sysfs_attr_init(&attr->attr.attr); 131 132 attr->event_str = str; 133 attr->attr.attr.name = name; 134 attr->attr.attr.mode = 0444; 135 attr->attr.show = perf_event_sysfs_show; 136 137 return &attr->attr.attr; 138 } 139 140 static int imc_parse_event(struct device_node *np, const char *scale, 141 const char *unit, const char *prefix, 142 u32 base, struct imc_events *event) 143 { 144 const char *s; 145 u32 reg; 146 147 if (of_property_read_u32(np, "reg", ®)) 148 goto error; 149 /* Add the base_reg value to the "reg" */ 150 event->value = base + reg; 151 152 if (of_property_read_string(np, "event-name", &s)) 153 goto error; 154 155 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 156 if (!event->name) 157 goto error; 158 159 if (of_property_read_string(np, "scale", &s)) 160 s = scale; 161 162 if (s) { 163 event->scale = kstrdup(s, GFP_KERNEL); 164 if (!event->scale) 165 goto error; 166 } 167 168 if (of_property_read_string(np, "unit", &s)) 169 s = unit; 170 171 if (s) { 172 event->unit = kstrdup(s, GFP_KERNEL); 173 if (!event->unit) 174 goto error; 175 } 176 177 return 0; 178 error: 179 kfree(event->unit); 180 kfree(event->scale); 181 kfree(event->name); 182 return -EINVAL; 183 } 184 185 /* 186 * imc_free_events: Function to cleanup the events list, having 187 * "nr_entries". 188 */ 189 static void imc_free_events(struct imc_events *events, int nr_entries) 190 { 191 int i; 192 193 /* Nothing to clean, return */ 194 if (!events) 195 return; 196 for (i = 0; i < nr_entries; i++) { 197 kfree(events[i].unit); 198 kfree(events[i].scale); 199 kfree(events[i].name); 200 } 201 202 kfree(events); 203 } 204 205 /* 206 * update_events_in_group: Update the "events" information in an attr_group 207 * and assign the attr_group to the pmu "pmu". 208 */ 209 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 210 { 211 struct attribute_group *attr_group; 212 struct attribute **attrs, *dev_str; 213 struct device_node *np, *pmu_events; 214 u32 handle, base_reg; 215 int i = 0, j = 0, ct, ret; 216 const char *prefix, *g_scale, *g_unit; 217 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 218 219 if (!of_property_read_u32(node, "events", &handle)) 220 pmu_events = of_find_node_by_phandle(handle); 221 else 222 return 0; 223 224 /* Did not find any node with a given phandle */ 225 if (!pmu_events) 226 return 0; 227 228 /* Get a count of number of child nodes */ 229 ct = of_get_child_count(pmu_events); 230 231 /* Get the event prefix */ 232 if (of_property_read_string(node, "events-prefix", &prefix)) 233 return 0; 234 235 /* Get a global unit and scale data if available */ 236 if (of_property_read_string(node, "scale", &g_scale)) 237 g_scale = NULL; 238 239 if (of_property_read_string(node, "unit", &g_unit)) 240 g_unit = NULL; 241 242 /* "reg" property gives out the base offset of the counters data */ 243 of_property_read_u32(node, "reg", &base_reg); 244 245 /* Allocate memory for the events */ 246 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 247 if (!pmu->events) 248 return -ENOMEM; 249 250 ct = 0; 251 /* Parse the events and update the struct */ 252 for_each_child_of_node(pmu_events, np) { 253 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 254 if (!ret) 255 ct++; 256 } 257 258 /* Allocate memory for attribute group */ 259 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 260 if (!attr_group) { 261 imc_free_events(pmu->events, ct); 262 return -ENOMEM; 263 } 264 265 /* 266 * Allocate memory for attributes. 267 * Since we have count of events for this pmu, we also allocate 268 * memory for the scale and unit attribute for now. 269 * "ct" has the total event structs added from the events-parent node. 270 * So allocate three times the "ct" (this includes event, event_scale and 271 * event_unit). 272 */ 273 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 274 if (!attrs) { 275 kfree(attr_group); 276 imc_free_events(pmu->events, ct); 277 return -ENOMEM; 278 } 279 280 attr_group->name = "events"; 281 attr_group->attrs = attrs; 282 do { 283 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 284 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 285 if (!dev_str) 286 continue; 287 288 attrs[j++] = dev_str; 289 if (pmu->events[i].scale) { 290 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 291 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 292 if (!dev_str) 293 continue; 294 295 attrs[j++] = dev_str; 296 } 297 298 if (pmu->events[i].unit) { 299 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 300 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 301 if (!dev_str) 302 continue; 303 304 attrs[j++] = dev_str; 305 } 306 } while (++i < ct); 307 308 /* Save the event attribute */ 309 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 310 311 return 0; 312 } 313 314 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 315 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 316 { 317 return per_cpu(local_nest_imc_refc, cpu); 318 } 319 320 static void nest_change_cpu_context(int old_cpu, int new_cpu) 321 { 322 struct imc_pmu **pn = per_nest_pmu_arr; 323 324 if (old_cpu < 0 || new_cpu < 0) 325 return; 326 327 while (*pn) { 328 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 329 pn++; 330 } 331 } 332 333 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 334 { 335 int nid, target = -1; 336 const struct cpumask *l_cpumask; 337 struct imc_pmu_ref *ref; 338 339 /* 340 * Check in the designated list for this cpu. Dont bother 341 * if not one of them. 342 */ 343 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 344 return 0; 345 346 /* 347 * Check whether nest_imc is registered. We could end up here if the 348 * cpuhotplug callback registration fails. i.e, callback invokes the 349 * offline path for all successfully registered nodes. At this stage, 350 * nest_imc pmu will not be registered and we should return here. 351 * 352 * We return with a zero since this is not an offline failure. And 353 * cpuhp_setup_state() returns the actual failure reason to the caller, 354 * which in turn will call the cleanup routine. 355 */ 356 if (!nest_pmus) 357 return 0; 358 359 /* 360 * Now that this cpu is one of the designated, 361 * find a next cpu a) which is online and b) in same chip. 362 */ 363 nid = cpu_to_node(cpu); 364 l_cpumask = cpumask_of_node(nid); 365 target = cpumask_any_but(l_cpumask, cpu); 366 367 /* 368 * Update the cpumask with the target cpu and 369 * migrate the context if needed 370 */ 371 if (target >= 0 && target < nr_cpu_ids) { 372 cpumask_set_cpu(target, &nest_imc_cpumask); 373 nest_change_cpu_context(cpu, target); 374 } else { 375 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 376 get_hard_smp_processor_id(cpu)); 377 /* 378 * If this is the last cpu in this chip then, skip the reference 379 * count mutex lock and make the reference count on this chip zero. 380 */ 381 ref = get_nest_pmu_ref(cpu); 382 if (!ref) 383 return -EINVAL; 384 385 ref->refc = 0; 386 } 387 return 0; 388 } 389 390 static int ppc_nest_imc_cpu_online(unsigned int cpu) 391 { 392 const struct cpumask *l_cpumask; 393 static struct cpumask tmp_mask; 394 int res; 395 396 /* Get the cpumask of this node */ 397 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 398 399 /* 400 * If this is not the first online CPU on this node, then 401 * just return. 402 */ 403 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 404 return 0; 405 406 /* 407 * If this is the first online cpu on this node 408 * disable the nest counters by making an OPAL call. 409 */ 410 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 411 get_hard_smp_processor_id(cpu)); 412 if (res) 413 return res; 414 415 /* Make this CPU the designated target for counter collection */ 416 cpumask_set_cpu(cpu, &nest_imc_cpumask); 417 return 0; 418 } 419 420 static int nest_pmu_cpumask_init(void) 421 { 422 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 423 "perf/powerpc/imc:online", 424 ppc_nest_imc_cpu_online, 425 ppc_nest_imc_cpu_offline); 426 } 427 428 static void nest_imc_counters_release(struct perf_event *event) 429 { 430 int rc, node_id; 431 struct imc_pmu_ref *ref; 432 433 if (event->cpu < 0) 434 return; 435 436 node_id = cpu_to_node(event->cpu); 437 438 /* 439 * See if we need to disable the nest PMU. 440 * If no events are currently in use, then we have to take a 441 * mutex to ensure that we don't race with another task doing 442 * enable or disable the nest counters. 443 */ 444 ref = get_nest_pmu_ref(event->cpu); 445 if (!ref) 446 return; 447 448 /* Take the mutex lock for this node and then decrement the reference count */ 449 mutex_lock(&ref->lock); 450 if (ref->refc == 0) { 451 /* 452 * The scenario where this is true is, when perf session is 453 * started, followed by offlining of all cpus in a given node. 454 * 455 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 456 * function set the ref->count to zero, if the cpu which is 457 * about to offline is the last cpu in a given node and make 458 * an OPAL call to disable the engine in that node. 459 * 460 */ 461 mutex_unlock(&ref->lock); 462 return; 463 } 464 ref->refc--; 465 if (ref->refc == 0) { 466 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 467 get_hard_smp_processor_id(event->cpu)); 468 if (rc) { 469 mutex_unlock(&ref->lock); 470 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 471 return; 472 } 473 } else if (ref->refc < 0) { 474 WARN(1, "nest-imc: Invalid event reference count\n"); 475 ref->refc = 0; 476 } 477 mutex_unlock(&ref->lock); 478 } 479 480 static int nest_imc_event_init(struct perf_event *event) 481 { 482 int chip_id, rc, node_id; 483 u32 l_config, config = event->attr.config; 484 struct imc_mem_info *pcni; 485 struct imc_pmu *pmu; 486 struct imc_pmu_ref *ref; 487 bool flag = false; 488 489 if (event->attr.type != event->pmu->type) 490 return -ENOENT; 491 492 /* Sampling not supported */ 493 if (event->hw.sample_period) 494 return -EINVAL; 495 496 if (event->cpu < 0) 497 return -EINVAL; 498 499 pmu = imc_event_to_pmu(event); 500 501 /* Sanity check for config (event offset) */ 502 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 503 return -EINVAL; 504 505 /* 506 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 507 * Get the base memory addresss for this cpu. 508 */ 509 chip_id = cpu_to_chip_id(event->cpu); 510 511 /* Return, if chip_id is not valid */ 512 if (chip_id < 0) 513 return -ENODEV; 514 515 pcni = pmu->mem_info; 516 do { 517 if (pcni->id == chip_id) { 518 flag = true; 519 break; 520 } 521 pcni++; 522 } while (pcni->vbase != 0); 523 524 if (!flag) 525 return -ENODEV; 526 527 /* 528 * Add the event offset to the base address. 529 */ 530 l_config = config & IMC_EVENT_OFFSET_MASK; 531 event->hw.event_base = (u64)pcni->vbase + l_config; 532 node_id = cpu_to_node(event->cpu); 533 534 /* 535 * Get the imc_pmu_ref struct for this node. 536 * Take the mutex lock and then increment the count of nest pmu events 537 * inited. 538 */ 539 ref = get_nest_pmu_ref(event->cpu); 540 if (!ref) 541 return -EINVAL; 542 543 mutex_lock(&ref->lock); 544 if (ref->refc == 0) { 545 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 546 get_hard_smp_processor_id(event->cpu)); 547 if (rc) { 548 mutex_unlock(&ref->lock); 549 pr_err("nest-imc: Unable to start the counters for node %d\n", 550 node_id); 551 return rc; 552 } 553 } 554 ++ref->refc; 555 mutex_unlock(&ref->lock); 556 557 event->destroy = nest_imc_counters_release; 558 return 0; 559 } 560 561 /* 562 * core_imc_mem_init : Initializes memory for the current core. 563 * 564 * Uses alloc_pages_node() and uses the returned address as an argument to 565 * an opal call to configure the pdbar. The address sent as an argument is 566 * converted to physical address before the opal call is made. This is the 567 * base address at which the core imc counters are populated. 568 */ 569 static int core_imc_mem_init(int cpu, int size) 570 { 571 int nid, rc = 0, core_id = (cpu / threads_per_core); 572 struct imc_mem_info *mem_info; 573 574 /* 575 * alloc_pages_node() will allocate memory for core in the 576 * local node only. 577 */ 578 nid = cpu_to_node(cpu); 579 mem_info = &core_imc_pmu->mem_info[core_id]; 580 mem_info->id = core_id; 581 582 /* We need only vbase for core counters */ 583 mem_info->vbase = page_address(alloc_pages_node(nid, 584 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 585 __GFP_NOWARN, get_order(size))); 586 if (!mem_info->vbase) 587 return -ENOMEM; 588 589 /* Init the mutex */ 590 core_imc_refc[core_id].id = core_id; 591 mutex_init(&core_imc_refc[core_id].lock); 592 593 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 594 __pa((void *)mem_info->vbase), 595 get_hard_smp_processor_id(cpu)); 596 if (rc) { 597 free_pages((u64)mem_info->vbase, get_order(size)); 598 mem_info->vbase = NULL; 599 } 600 601 return rc; 602 } 603 604 static bool is_core_imc_mem_inited(int cpu) 605 { 606 struct imc_mem_info *mem_info; 607 int core_id = (cpu / threads_per_core); 608 609 mem_info = &core_imc_pmu->mem_info[core_id]; 610 if (!mem_info->vbase) 611 return false; 612 613 return true; 614 } 615 616 static int ppc_core_imc_cpu_online(unsigned int cpu) 617 { 618 const struct cpumask *l_cpumask; 619 static struct cpumask tmp_mask; 620 int ret = 0; 621 622 /* Get the cpumask for this core */ 623 l_cpumask = cpu_sibling_mask(cpu); 624 625 /* If a cpu for this core is already set, then, don't do anything */ 626 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 627 return 0; 628 629 if (!is_core_imc_mem_inited(cpu)) { 630 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 631 if (ret) { 632 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 633 return ret; 634 } 635 } 636 637 /* set the cpu in the mask */ 638 cpumask_set_cpu(cpu, &core_imc_cpumask); 639 return 0; 640 } 641 642 static int ppc_core_imc_cpu_offline(unsigned int cpu) 643 { 644 unsigned int core_id; 645 int ncpu; 646 struct imc_pmu_ref *ref; 647 648 /* 649 * clear this cpu out of the mask, if not present in the mask, 650 * don't bother doing anything. 651 */ 652 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 653 return 0; 654 655 /* 656 * Check whether core_imc is registered. We could end up here 657 * if the cpuhotplug callback registration fails. i.e, callback 658 * invokes the offline path for all sucessfully registered cpus. 659 * At this stage, core_imc pmu will not be registered and we 660 * should return here. 661 * 662 * We return with a zero since this is not an offline failure. 663 * And cpuhp_setup_state() returns the actual failure reason 664 * to the caller, which inturn will call the cleanup routine. 665 */ 666 if (!core_imc_pmu->pmu.event_init) 667 return 0; 668 669 /* Find any online cpu in that core except the current "cpu" */ 670 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 671 672 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 673 cpumask_set_cpu(ncpu, &core_imc_cpumask); 674 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 675 } else { 676 /* 677 * If this is the last cpu in this core then, skip taking refernce 678 * count mutex lock for this core and directly zero "refc" for 679 * this core. 680 */ 681 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 682 get_hard_smp_processor_id(cpu)); 683 core_id = cpu / threads_per_core; 684 ref = &core_imc_refc[core_id]; 685 if (!ref) 686 return -EINVAL; 687 688 ref->refc = 0; 689 } 690 return 0; 691 } 692 693 static int core_imc_pmu_cpumask_init(void) 694 { 695 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 696 "perf/powerpc/imc_core:online", 697 ppc_core_imc_cpu_online, 698 ppc_core_imc_cpu_offline); 699 } 700 701 static void core_imc_counters_release(struct perf_event *event) 702 { 703 int rc, core_id; 704 struct imc_pmu_ref *ref; 705 706 if (event->cpu < 0) 707 return; 708 /* 709 * See if we need to disable the IMC PMU. 710 * If no events are currently in use, then we have to take a 711 * mutex to ensure that we don't race with another task doing 712 * enable or disable the core counters. 713 */ 714 core_id = event->cpu / threads_per_core; 715 716 /* Take the mutex lock and decrement the refernce count for this core */ 717 ref = &core_imc_refc[core_id]; 718 if (!ref) 719 return; 720 721 mutex_lock(&ref->lock); 722 if (ref->refc == 0) { 723 /* 724 * The scenario where this is true is, when perf session is 725 * started, followed by offlining of all cpus in a given core. 726 * 727 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 728 * function set the ref->count to zero, if the cpu which is 729 * about to offline is the last cpu in a given core and make 730 * an OPAL call to disable the engine in that core. 731 * 732 */ 733 mutex_unlock(&ref->lock); 734 return; 735 } 736 ref->refc--; 737 if (ref->refc == 0) { 738 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 739 get_hard_smp_processor_id(event->cpu)); 740 if (rc) { 741 mutex_unlock(&ref->lock); 742 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 743 return; 744 } 745 } else if (ref->refc < 0) { 746 WARN(1, "core-imc: Invalid event reference count\n"); 747 ref->refc = 0; 748 } 749 mutex_unlock(&ref->lock); 750 } 751 752 static int core_imc_event_init(struct perf_event *event) 753 { 754 int core_id, rc; 755 u64 config = event->attr.config; 756 struct imc_mem_info *pcmi; 757 struct imc_pmu *pmu; 758 struct imc_pmu_ref *ref; 759 760 if (event->attr.type != event->pmu->type) 761 return -ENOENT; 762 763 /* Sampling not supported */ 764 if (event->hw.sample_period) 765 return -EINVAL; 766 767 if (event->cpu < 0) 768 return -EINVAL; 769 770 event->hw.idx = -1; 771 pmu = imc_event_to_pmu(event); 772 773 /* Sanity check for config (event offset) */ 774 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 775 return -EINVAL; 776 777 if (!is_core_imc_mem_inited(event->cpu)) 778 return -ENODEV; 779 780 core_id = event->cpu / threads_per_core; 781 pcmi = &core_imc_pmu->mem_info[core_id]; 782 if ((!pcmi->vbase)) 783 return -ENODEV; 784 785 /* Get the core_imc mutex for this core */ 786 ref = &core_imc_refc[core_id]; 787 if (!ref) 788 return -EINVAL; 789 790 /* 791 * Core pmu units are enabled only when it is used. 792 * See if this is triggered for the first time. 793 * If yes, take the mutex lock and enable the core counters. 794 * If not, just increment the count in core_imc_refc struct. 795 */ 796 mutex_lock(&ref->lock); 797 if (ref->refc == 0) { 798 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 799 get_hard_smp_processor_id(event->cpu)); 800 if (rc) { 801 mutex_unlock(&ref->lock); 802 pr_err("core-imc: Unable to start the counters for core %d\n", 803 core_id); 804 return rc; 805 } 806 } 807 ++ref->refc; 808 mutex_unlock(&ref->lock); 809 810 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 811 event->destroy = core_imc_counters_release; 812 return 0; 813 } 814 815 /* 816 * Allocates a page of memory for each of the online cpus, and load 817 * LDBAR with 0. 818 * The physical base address of the page allocated for a cpu will be 819 * written to the LDBAR for that cpu, when the thread-imc event 820 * is added. 821 * 822 * LDBAR Register Layout: 823 * 824 * 0 4 8 12 16 20 24 28 825 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 826 * | | [ ] [ Counter Address [8:50] 827 * | * Mode | 828 * | * PB Scope 829 * * Enable/Disable 830 * 831 * 32 36 40 44 48 52 56 60 832 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 833 * Counter Address [8:50] ] 834 * 835 */ 836 static int thread_imc_mem_alloc(int cpu_id, int size) 837 { 838 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 839 int nid = cpu_to_node(cpu_id); 840 841 if (!local_mem) { 842 /* 843 * This case could happen only once at start, since we dont 844 * free the memory in cpu offline path. 845 */ 846 local_mem = page_address(alloc_pages_node(nid, 847 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 848 __GFP_NOWARN, get_order(size))); 849 if (!local_mem) 850 return -ENOMEM; 851 852 per_cpu(thread_imc_mem, cpu_id) = local_mem; 853 } 854 855 mtspr(SPRN_LDBAR, 0); 856 return 0; 857 } 858 859 static int ppc_thread_imc_cpu_online(unsigned int cpu) 860 { 861 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 862 } 863 864 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 865 { 866 mtspr(SPRN_LDBAR, 0); 867 return 0; 868 } 869 870 static int thread_imc_cpu_init(void) 871 { 872 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 873 "perf/powerpc/imc_thread:online", 874 ppc_thread_imc_cpu_online, 875 ppc_thread_imc_cpu_offline); 876 } 877 878 static int thread_imc_event_init(struct perf_event *event) 879 { 880 u32 config = event->attr.config; 881 struct task_struct *target; 882 struct imc_pmu *pmu; 883 884 if (event->attr.type != event->pmu->type) 885 return -ENOENT; 886 887 if (!capable(CAP_SYS_ADMIN)) 888 return -EACCES; 889 890 /* Sampling not supported */ 891 if (event->hw.sample_period) 892 return -EINVAL; 893 894 event->hw.idx = -1; 895 pmu = imc_event_to_pmu(event); 896 897 /* Sanity check for config offset */ 898 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 899 return -EINVAL; 900 901 target = event->hw.target; 902 if (!target) 903 return -EINVAL; 904 905 event->pmu->task_ctx_nr = perf_sw_context; 906 return 0; 907 } 908 909 static bool is_thread_imc_pmu(struct perf_event *event) 910 { 911 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 912 return true; 913 914 return false; 915 } 916 917 static u64 * get_event_base_addr(struct perf_event *event) 918 { 919 u64 addr; 920 921 if (is_thread_imc_pmu(event)) { 922 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 923 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 924 } 925 926 return (u64 *)event->hw.event_base; 927 } 928 929 static void thread_imc_pmu_start_txn(struct pmu *pmu, 930 unsigned int txn_flags) 931 { 932 if (txn_flags & ~PERF_PMU_TXN_ADD) 933 return; 934 perf_pmu_disable(pmu); 935 } 936 937 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 938 { 939 perf_pmu_enable(pmu); 940 } 941 942 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 943 { 944 perf_pmu_enable(pmu); 945 return 0; 946 } 947 948 static u64 imc_read_counter(struct perf_event *event) 949 { 950 u64 *addr, data; 951 952 /* 953 * In-Memory Collection (IMC) counters are free flowing counters. 954 * So we take a snapshot of the counter value on enable and save it 955 * to calculate the delta at later stage to present the event counter 956 * value. 957 */ 958 addr = get_event_base_addr(event); 959 data = be64_to_cpu(READ_ONCE(*addr)); 960 local64_set(&event->hw.prev_count, data); 961 962 return data; 963 } 964 965 static void imc_event_update(struct perf_event *event) 966 { 967 u64 counter_prev, counter_new, final_count; 968 969 counter_prev = local64_read(&event->hw.prev_count); 970 counter_new = imc_read_counter(event); 971 final_count = counter_new - counter_prev; 972 973 /* Update the delta to the event count */ 974 local64_add(final_count, &event->count); 975 } 976 977 static void imc_event_start(struct perf_event *event, int flags) 978 { 979 /* 980 * In Memory Counters are free flowing counters. HW or the microcode 981 * keeps adding to the counter offset in memory. To get event 982 * counter value, we snapshot the value here and we calculate 983 * delta at later point. 984 */ 985 imc_read_counter(event); 986 } 987 988 static void imc_event_stop(struct perf_event *event, int flags) 989 { 990 /* 991 * Take a snapshot and calculate the delta and update 992 * the event counter values. 993 */ 994 imc_event_update(event); 995 } 996 997 static int imc_event_add(struct perf_event *event, int flags) 998 { 999 if (flags & PERF_EF_START) 1000 imc_event_start(event, flags); 1001 1002 return 0; 1003 } 1004 1005 static int thread_imc_event_add(struct perf_event *event, int flags) 1006 { 1007 int core_id; 1008 struct imc_pmu_ref *ref; 1009 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1010 1011 if (flags & PERF_EF_START) 1012 imc_event_start(event, flags); 1013 1014 if (!is_core_imc_mem_inited(smp_processor_id())) 1015 return -EINVAL; 1016 1017 core_id = smp_processor_id() / threads_per_core; 1018 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1019 mtspr(SPRN_LDBAR, ldbar_value); 1020 1021 /* 1022 * imc pmus are enabled only when it is used. 1023 * See if this is triggered for the first time. 1024 * If yes, take the mutex lock and enable the counters. 1025 * If not, just increment the count in ref count struct. 1026 */ 1027 ref = &core_imc_refc[core_id]; 1028 if (!ref) 1029 return -EINVAL; 1030 1031 mutex_lock(&ref->lock); 1032 if (ref->refc == 0) { 1033 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1034 get_hard_smp_processor_id(smp_processor_id()))) { 1035 mutex_unlock(&ref->lock); 1036 pr_err("thread-imc: Unable to start the counter\ 1037 for core %d\n", core_id); 1038 return -EINVAL; 1039 } 1040 } 1041 ++ref->refc; 1042 mutex_unlock(&ref->lock); 1043 return 0; 1044 } 1045 1046 static void thread_imc_event_del(struct perf_event *event, int flags) 1047 { 1048 1049 int core_id; 1050 struct imc_pmu_ref *ref; 1051 1052 mtspr(SPRN_LDBAR, 0); 1053 1054 core_id = smp_processor_id() / threads_per_core; 1055 ref = &core_imc_refc[core_id]; 1056 1057 mutex_lock(&ref->lock); 1058 ref->refc--; 1059 if (ref->refc == 0) { 1060 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1061 get_hard_smp_processor_id(smp_processor_id()))) { 1062 mutex_unlock(&ref->lock); 1063 pr_err("thread-imc: Unable to stop the counters\ 1064 for core %d\n", core_id); 1065 return; 1066 } 1067 } else if (ref->refc < 0) { 1068 ref->refc = 0; 1069 } 1070 mutex_unlock(&ref->lock); 1071 /* 1072 * Take a snapshot and calculate the delta and update 1073 * the event counter values. 1074 */ 1075 imc_event_update(event); 1076 } 1077 1078 /* 1079 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1080 */ 1081 static int trace_imc_mem_alloc(int cpu_id, int size) 1082 { 1083 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1084 int phys_id = cpu_to_node(cpu_id), rc = 0; 1085 int core_id = (cpu_id / threads_per_core); 1086 1087 if (!local_mem) { 1088 local_mem = page_address(alloc_pages_node(phys_id, 1089 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1090 __GFP_NOWARN, get_order(size))); 1091 if (!local_mem) 1092 return -ENOMEM; 1093 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1094 1095 /* Initialise the counters for trace mode */ 1096 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1097 get_hard_smp_processor_id(cpu_id)); 1098 if (rc) { 1099 pr_info("IMC:opal init failed for trace imc\n"); 1100 return rc; 1101 } 1102 } 1103 1104 /* Init the mutex, if not already */ 1105 trace_imc_refc[core_id].id = core_id; 1106 mutex_init(&trace_imc_refc[core_id].lock); 1107 1108 mtspr(SPRN_LDBAR, 0); 1109 return 0; 1110 } 1111 1112 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1113 { 1114 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1115 } 1116 1117 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1118 { 1119 mtspr(SPRN_LDBAR, 0); 1120 return 0; 1121 } 1122 1123 static int trace_imc_cpu_init(void) 1124 { 1125 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1126 "perf/powerpc/imc_trace:online", 1127 ppc_trace_imc_cpu_online, 1128 ppc_trace_imc_cpu_offline); 1129 } 1130 1131 static u64 get_trace_imc_event_base_addr(void) 1132 { 1133 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1134 } 1135 1136 /* 1137 * Function to parse trace-imc data obtained 1138 * and to prepare the perf sample. 1139 */ 1140 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1141 struct perf_sample_data *data, 1142 u64 *prev_tb, 1143 struct perf_event_header *header, 1144 struct perf_event *event) 1145 { 1146 /* Sanity checks for a valid record */ 1147 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1148 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1149 else 1150 return -EINVAL; 1151 1152 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1153 be64_to_cpu(READ_ONCE(mem->tb2))) 1154 return -EINVAL; 1155 1156 /* Prepare perf sample */ 1157 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1158 data->period = event->hw.last_period; 1159 1160 header->type = PERF_RECORD_SAMPLE; 1161 header->size = sizeof(*header) + event->header_size; 1162 header->misc = 0; 1163 1164 if (is_kernel_addr(data->ip)) 1165 header->misc |= PERF_RECORD_MISC_KERNEL; 1166 else 1167 header->misc |= PERF_RECORD_MISC_USER; 1168 1169 perf_event_header__init_id(header, data, event); 1170 1171 return 0; 1172 } 1173 1174 static void dump_trace_imc_data(struct perf_event *event) 1175 { 1176 struct trace_imc_data *mem; 1177 int i, ret; 1178 u64 prev_tb = 0; 1179 1180 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1181 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1182 i++, mem++) { 1183 struct perf_sample_data data; 1184 struct perf_event_header header; 1185 1186 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1187 if (ret) /* Exit, if not a valid record */ 1188 break; 1189 else { 1190 /* If this is a valid record, create the sample */ 1191 struct perf_output_handle handle; 1192 1193 if (perf_output_begin(&handle, event, header.size)) 1194 return; 1195 1196 perf_output_sample(&handle, &header, &data, event); 1197 perf_output_end(&handle); 1198 } 1199 } 1200 } 1201 1202 static int trace_imc_event_add(struct perf_event *event, int flags) 1203 { 1204 int core_id = smp_processor_id() / threads_per_core; 1205 struct imc_pmu_ref *ref = NULL; 1206 u64 local_mem, ldbar_value; 1207 1208 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1209 local_mem = get_trace_imc_event_base_addr(); 1210 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1211 1212 if (core_imc_refc) 1213 ref = &core_imc_refc[core_id]; 1214 if (!ref) { 1215 /* If core-imc is not enabled, use trace-imc reference count */ 1216 if (trace_imc_refc) 1217 ref = &trace_imc_refc[core_id]; 1218 if (!ref) 1219 return -EINVAL; 1220 } 1221 mtspr(SPRN_LDBAR, ldbar_value); 1222 mutex_lock(&ref->lock); 1223 if (ref->refc == 0) { 1224 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1225 get_hard_smp_processor_id(smp_processor_id()))) { 1226 mutex_unlock(&ref->lock); 1227 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1228 mtspr(SPRN_LDBAR, 0); 1229 return -EINVAL; 1230 } 1231 } 1232 ++ref->refc; 1233 mutex_unlock(&ref->lock); 1234 1235 return 0; 1236 } 1237 1238 static void trace_imc_event_read(struct perf_event *event) 1239 { 1240 return; 1241 } 1242 1243 static void trace_imc_event_stop(struct perf_event *event, int flags) 1244 { 1245 u64 local_mem = get_trace_imc_event_base_addr(); 1246 dump_trace_imc_data(event); 1247 memset((void *)local_mem, 0, sizeof(u64)); 1248 } 1249 1250 static void trace_imc_event_start(struct perf_event *event, int flags) 1251 { 1252 return; 1253 } 1254 1255 static void trace_imc_event_del(struct perf_event *event, int flags) 1256 { 1257 int core_id = smp_processor_id() / threads_per_core; 1258 struct imc_pmu_ref *ref = NULL; 1259 1260 if (core_imc_refc) 1261 ref = &core_imc_refc[core_id]; 1262 if (!ref) { 1263 /* If core-imc is not enabled, use trace-imc reference count */ 1264 if (trace_imc_refc) 1265 ref = &trace_imc_refc[core_id]; 1266 if (!ref) 1267 return; 1268 } 1269 mtspr(SPRN_LDBAR, 0); 1270 mutex_lock(&ref->lock); 1271 ref->refc--; 1272 if (ref->refc == 0) { 1273 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1274 get_hard_smp_processor_id(smp_processor_id()))) { 1275 mutex_unlock(&ref->lock); 1276 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1277 return; 1278 } 1279 } else if (ref->refc < 0) { 1280 ref->refc = 0; 1281 } 1282 mutex_unlock(&ref->lock); 1283 trace_imc_event_stop(event, flags); 1284 } 1285 1286 static int trace_imc_event_init(struct perf_event *event) 1287 { 1288 struct task_struct *target; 1289 1290 if (event->attr.type != event->pmu->type) 1291 return -ENOENT; 1292 1293 if (!capable(CAP_SYS_ADMIN)) 1294 return -EACCES; 1295 1296 /* Return if this is a couting event */ 1297 if (event->attr.sample_period == 0) 1298 return -ENOENT; 1299 1300 event->hw.idx = -1; 1301 target = event->hw.target; 1302 1303 event->pmu->task_ctx_nr = perf_hw_context; 1304 return 0; 1305 } 1306 1307 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1308 static int update_pmu_ops(struct imc_pmu *pmu) 1309 { 1310 pmu->pmu.task_ctx_nr = perf_invalid_context; 1311 pmu->pmu.add = imc_event_add; 1312 pmu->pmu.del = imc_event_stop; 1313 pmu->pmu.start = imc_event_start; 1314 pmu->pmu.stop = imc_event_stop; 1315 pmu->pmu.read = imc_event_update; 1316 pmu->pmu.attr_groups = pmu->attr_groups; 1317 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1318 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1319 1320 switch (pmu->domain) { 1321 case IMC_DOMAIN_NEST: 1322 pmu->pmu.event_init = nest_imc_event_init; 1323 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1324 break; 1325 case IMC_DOMAIN_CORE: 1326 pmu->pmu.event_init = core_imc_event_init; 1327 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1328 break; 1329 case IMC_DOMAIN_THREAD: 1330 pmu->pmu.event_init = thread_imc_event_init; 1331 pmu->pmu.add = thread_imc_event_add; 1332 pmu->pmu.del = thread_imc_event_del; 1333 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1334 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1335 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1336 break; 1337 case IMC_DOMAIN_TRACE: 1338 pmu->pmu.event_init = trace_imc_event_init; 1339 pmu->pmu.add = trace_imc_event_add; 1340 pmu->pmu.del = trace_imc_event_del; 1341 pmu->pmu.start = trace_imc_event_start; 1342 pmu->pmu.stop = trace_imc_event_stop; 1343 pmu->pmu.read = trace_imc_event_read; 1344 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1345 default: 1346 break; 1347 } 1348 1349 return 0; 1350 } 1351 1352 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1353 static int init_nest_pmu_ref(void) 1354 { 1355 int nid, i, cpu; 1356 1357 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1358 GFP_KERNEL); 1359 1360 if (!nest_imc_refc) 1361 return -ENOMEM; 1362 1363 i = 0; 1364 for_each_node(nid) { 1365 /* 1366 * Mutex lock to avoid races while tracking the number of 1367 * sessions using the chip's nest pmu units. 1368 */ 1369 mutex_init(&nest_imc_refc[i].lock); 1370 1371 /* 1372 * Loop to init the "id" with the node_id. Variable "i" initialized to 1373 * 0 and will be used as index to the array. "i" will not go off the 1374 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1375 * nodes only. 1376 */ 1377 nest_imc_refc[i++].id = nid; 1378 } 1379 1380 /* 1381 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1382 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1383 */ 1384 for_each_possible_cpu(cpu) { 1385 nid = cpu_to_node(cpu); 1386 for (i = 0; i < num_possible_nodes(); i++) { 1387 if (nest_imc_refc[i].id == nid) { 1388 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1389 break; 1390 } 1391 } 1392 } 1393 return 0; 1394 } 1395 1396 static void cleanup_all_core_imc_memory(void) 1397 { 1398 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1399 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1400 int size = core_imc_pmu->counter_mem_size; 1401 1402 /* mem_info will never be NULL */ 1403 for (i = 0; i < nr_cores; i++) { 1404 if (ptr[i].vbase) 1405 free_pages((u64)ptr[i].vbase, get_order(size)); 1406 } 1407 1408 kfree(ptr); 1409 kfree(core_imc_refc); 1410 } 1411 1412 static void thread_imc_ldbar_disable(void *dummy) 1413 { 1414 /* 1415 * By Zeroing LDBAR, we disable thread-imc 1416 * updates. 1417 */ 1418 mtspr(SPRN_LDBAR, 0); 1419 } 1420 1421 void thread_imc_disable(void) 1422 { 1423 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1424 } 1425 1426 static void cleanup_all_thread_imc_memory(void) 1427 { 1428 int i, order = get_order(thread_imc_mem_size); 1429 1430 for_each_online_cpu(i) { 1431 if (per_cpu(thread_imc_mem, i)) 1432 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1433 1434 } 1435 } 1436 1437 static void cleanup_all_trace_imc_memory(void) 1438 { 1439 int i, order = get_order(trace_imc_mem_size); 1440 1441 for_each_online_cpu(i) { 1442 if (per_cpu(trace_imc_mem, i)) 1443 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1444 1445 } 1446 kfree(trace_imc_refc); 1447 } 1448 1449 /* Function to free the attr_groups which are dynamically allocated */ 1450 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1451 { 1452 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1453 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1454 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1455 } 1456 1457 /* 1458 * Common function to unregister cpu hotplug callback and 1459 * free the memory. 1460 * TODO: Need to handle pmu unregistering, which will be 1461 * done in followup series. 1462 */ 1463 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1464 { 1465 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1466 mutex_lock(&nest_init_lock); 1467 if (nest_pmus == 1) { 1468 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1469 kfree(nest_imc_refc); 1470 kfree(per_nest_pmu_arr); 1471 per_nest_pmu_arr = NULL; 1472 } 1473 1474 if (nest_pmus > 0) 1475 nest_pmus--; 1476 mutex_unlock(&nest_init_lock); 1477 } 1478 1479 /* Free core_imc memory */ 1480 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1481 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1482 cleanup_all_core_imc_memory(); 1483 } 1484 1485 /* Free thread_imc memory */ 1486 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1487 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1488 cleanup_all_thread_imc_memory(); 1489 } 1490 1491 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1492 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1493 cleanup_all_trace_imc_memory(); 1494 } 1495 } 1496 1497 /* 1498 * Function to unregister thread-imc if core-imc 1499 * is not registered. 1500 */ 1501 void unregister_thread_imc(void) 1502 { 1503 imc_common_cpuhp_mem_free(thread_imc_pmu); 1504 imc_common_mem_free(thread_imc_pmu); 1505 perf_pmu_unregister(&thread_imc_pmu->pmu); 1506 } 1507 1508 /* 1509 * imc_mem_init : Function to support memory allocation for core imc. 1510 */ 1511 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1512 int pmu_index) 1513 { 1514 const char *s; 1515 int nr_cores, cpu, res = -ENOMEM; 1516 1517 if (of_property_read_string(parent, "name", &s)) 1518 return -ENODEV; 1519 1520 switch (pmu_ptr->domain) { 1521 case IMC_DOMAIN_NEST: 1522 /* Update the pmu name */ 1523 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1524 if (!pmu_ptr->pmu.name) 1525 goto err; 1526 1527 /* Needed for hotplug/migration */ 1528 if (!per_nest_pmu_arr) { 1529 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1530 sizeof(struct imc_pmu *), 1531 GFP_KERNEL); 1532 if (!per_nest_pmu_arr) 1533 goto err; 1534 } 1535 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1536 break; 1537 case IMC_DOMAIN_CORE: 1538 /* Update the pmu name */ 1539 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1540 if (!pmu_ptr->pmu.name) 1541 goto err; 1542 1543 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1544 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1545 GFP_KERNEL); 1546 1547 if (!pmu_ptr->mem_info) 1548 goto err; 1549 1550 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1551 GFP_KERNEL); 1552 1553 if (!core_imc_refc) { 1554 kfree(pmu_ptr->mem_info); 1555 goto err; 1556 } 1557 1558 core_imc_pmu = pmu_ptr; 1559 break; 1560 case IMC_DOMAIN_THREAD: 1561 /* Update the pmu name */ 1562 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1563 if (!pmu_ptr->pmu.name) 1564 goto err; 1565 1566 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1567 for_each_online_cpu(cpu) { 1568 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1569 if (res) { 1570 cleanup_all_thread_imc_memory(); 1571 goto err; 1572 } 1573 } 1574 1575 thread_imc_pmu = pmu_ptr; 1576 break; 1577 case IMC_DOMAIN_TRACE: 1578 /* Update the pmu name */ 1579 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1580 if (!pmu_ptr->pmu.name) 1581 return -ENOMEM; 1582 1583 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1584 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1585 GFP_KERNEL); 1586 if (!trace_imc_refc) 1587 return -ENOMEM; 1588 1589 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1590 for_each_online_cpu(cpu) { 1591 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1592 if (res) { 1593 cleanup_all_trace_imc_memory(); 1594 goto err; 1595 } 1596 } 1597 break; 1598 default: 1599 return -EINVAL; 1600 } 1601 1602 return 0; 1603 err: 1604 return res; 1605 } 1606 1607 /* 1608 * init_imc_pmu : Setup and register the IMC pmu device. 1609 * 1610 * @parent: Device tree unit node 1611 * @pmu_ptr: memory allocated for this pmu 1612 * @pmu_idx: Count of nest pmc registered 1613 * 1614 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1615 * Handles failure cases and accordingly frees memory. 1616 */ 1617 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1618 { 1619 int ret; 1620 1621 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1622 if (ret) 1623 goto err_free_mem; 1624 1625 switch (pmu_ptr->domain) { 1626 case IMC_DOMAIN_NEST: 1627 /* 1628 * Nest imc pmu need only one cpu per chip, we initialize the 1629 * cpumask for the first nest imc pmu and use the same for the 1630 * rest. To handle the cpuhotplug callback unregister, we track 1631 * the number of nest pmus in "nest_pmus". 1632 */ 1633 mutex_lock(&nest_init_lock); 1634 if (nest_pmus == 0) { 1635 ret = init_nest_pmu_ref(); 1636 if (ret) { 1637 mutex_unlock(&nest_init_lock); 1638 kfree(per_nest_pmu_arr); 1639 per_nest_pmu_arr = NULL; 1640 goto err_free_mem; 1641 } 1642 /* Register for cpu hotplug notification. */ 1643 ret = nest_pmu_cpumask_init(); 1644 if (ret) { 1645 mutex_unlock(&nest_init_lock); 1646 kfree(nest_imc_refc); 1647 kfree(per_nest_pmu_arr); 1648 per_nest_pmu_arr = NULL; 1649 goto err_free_mem; 1650 } 1651 } 1652 nest_pmus++; 1653 mutex_unlock(&nest_init_lock); 1654 break; 1655 case IMC_DOMAIN_CORE: 1656 ret = core_imc_pmu_cpumask_init(); 1657 if (ret) { 1658 cleanup_all_core_imc_memory(); 1659 goto err_free_mem; 1660 } 1661 1662 break; 1663 case IMC_DOMAIN_THREAD: 1664 ret = thread_imc_cpu_init(); 1665 if (ret) { 1666 cleanup_all_thread_imc_memory(); 1667 goto err_free_mem; 1668 } 1669 1670 break; 1671 case IMC_DOMAIN_TRACE: 1672 ret = trace_imc_cpu_init(); 1673 if (ret) { 1674 cleanup_all_trace_imc_memory(); 1675 goto err_free_mem; 1676 } 1677 1678 break; 1679 default: 1680 return -EINVAL; /* Unknown domain */ 1681 } 1682 1683 ret = update_events_in_group(parent, pmu_ptr); 1684 if (ret) 1685 goto err_free_cpuhp_mem; 1686 1687 ret = update_pmu_ops(pmu_ptr); 1688 if (ret) 1689 goto err_free_cpuhp_mem; 1690 1691 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1692 if (ret) 1693 goto err_free_cpuhp_mem; 1694 1695 pr_debug("%s performance monitor hardware support registered\n", 1696 pmu_ptr->pmu.name); 1697 1698 return 0; 1699 1700 err_free_cpuhp_mem: 1701 imc_common_cpuhp_mem_free(pmu_ptr); 1702 err_free_mem: 1703 imc_common_mem_free(pmu_ptr); 1704 return ret; 1705 } 1706