xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20 
21 /* Nest IMC data structures and variables */
22 
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu **per_nest_pmu_arr;
30 static cpumask_t nest_imc_cpumask;
31 static struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33 
34 /* Core IMC data structures and variables */
35 
36 static cpumask_t core_imc_cpumask;
37 static struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39 
40 /* Thread IMC data structures and variables */
41 
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45 
46 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48 	return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50 
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56 	&format_attr_event.attr,
57 	&format_attr_offset.attr,
58 	&format_attr_rvalue.attr,
59 	&format_attr_mode.attr,
60 	NULL,
61 };
62 
63 static struct attribute_group imc_format_group = {
64 	.name = "format",
65 	.attrs = imc_format_attrs,
66 };
67 
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 					struct device_attribute *attr,
71 					char *buf)
72 {
73 	struct pmu *pmu = dev_get_drvdata(dev);
74 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 	cpumask_t *active_mask;
76 
77 	switch(imc_pmu->domain){
78 	case IMC_DOMAIN_NEST:
79 		active_mask = &nest_imc_cpumask;
80 		break;
81 	case IMC_DOMAIN_CORE:
82 		active_mask = &core_imc_cpumask;
83 		break;
84 	default:
85 		return 0;
86 	}
87 
88 	return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90 
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92 
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94 	&dev_attr_cpumask.attr,
95 	NULL,
96 };
97 
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99 	.attrs = imc_pmu_cpumask_attrs,
100 };
101 
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105 	struct perf_pmu_events_attr *attr;
106 
107 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 	if (!attr)
109 		return NULL;
110 	sysfs_attr_init(&attr->attr.attr);
111 
112 	attr->event_str = str;
113 	attr->attr.attr.name = name;
114 	attr->attr.attr.mode = 0444;
115 	attr->attr.show = perf_event_sysfs_show;
116 
117 	return &attr->attr.attr;
118 }
119 
120 static int imc_parse_event(struct device_node *np, const char *scale,
121 				  const char *unit, const char *prefix,
122 				  u32 base, struct imc_events *event)
123 {
124 	const char *s;
125 	u32 reg;
126 
127 	if (of_property_read_u32(np, "reg", &reg))
128 		goto error;
129 	/* Add the base_reg value to the "reg" */
130 	event->value = base + reg;
131 
132 	if (of_property_read_string(np, "event-name", &s))
133 		goto error;
134 
135 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
136 	if (!event->name)
137 		goto error;
138 
139 	if (of_property_read_string(np, "scale", &s))
140 		s = scale;
141 
142 	if (s) {
143 		event->scale = kstrdup(s, GFP_KERNEL);
144 		if (!event->scale)
145 			goto error;
146 	}
147 
148 	if (of_property_read_string(np, "unit", &s))
149 		s = unit;
150 
151 	if (s) {
152 		event->unit = kstrdup(s, GFP_KERNEL);
153 		if (!event->unit)
154 			goto error;
155 	}
156 
157 	return 0;
158 error:
159 	kfree(event->unit);
160 	kfree(event->scale);
161 	kfree(event->name);
162 	return -EINVAL;
163 }
164 
165 /*
166  * imc_free_events: Function to cleanup the events list, having
167  * 		    "nr_entries".
168  */
169 static void imc_free_events(struct imc_events *events, int nr_entries)
170 {
171 	int i;
172 
173 	/* Nothing to clean, return */
174 	if (!events)
175 		return;
176 	for (i = 0; i < nr_entries; i++) {
177 		kfree(events[i].unit);
178 		kfree(events[i].scale);
179 		kfree(events[i].name);
180 	}
181 
182 	kfree(events);
183 }
184 
185 /*
186  * update_events_in_group: Update the "events" information in an attr_group
187  *                         and assign the attr_group to the pmu "pmu".
188  */
189 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
190 {
191 	struct attribute_group *attr_group;
192 	struct attribute **attrs, *dev_str;
193 	struct device_node *np, *pmu_events;
194 	u32 handle, base_reg;
195 	int i = 0, j = 0, ct, ret;
196 	const char *prefix, *g_scale, *g_unit;
197 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
198 
199 	if (!of_property_read_u32(node, "events", &handle))
200 		pmu_events = of_find_node_by_phandle(handle);
201 	else
202 		return 0;
203 
204 	/* Did not find any node with a given phandle */
205 	if (!pmu_events)
206 		return 0;
207 
208 	/* Get a count of number of child nodes */
209 	ct = of_get_child_count(pmu_events);
210 
211 	/* Get the event prefix */
212 	if (of_property_read_string(node, "events-prefix", &prefix))
213 		return 0;
214 
215 	/* Get a global unit and scale data if available */
216 	if (of_property_read_string(node, "scale", &g_scale))
217 		g_scale = NULL;
218 
219 	if (of_property_read_string(node, "unit", &g_unit))
220 		g_unit = NULL;
221 
222 	/* "reg" property gives out the base offset of the counters data */
223 	of_property_read_u32(node, "reg", &base_reg);
224 
225 	/* Allocate memory for the events */
226 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
227 	if (!pmu->events)
228 		return -ENOMEM;
229 
230 	ct = 0;
231 	/* Parse the events and update the struct */
232 	for_each_child_of_node(pmu_events, np) {
233 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
234 		if (!ret)
235 			ct++;
236 	}
237 
238 	/* Allocate memory for attribute group */
239 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
240 	if (!attr_group) {
241 		imc_free_events(pmu->events, ct);
242 		return -ENOMEM;
243 	}
244 
245 	/*
246 	 * Allocate memory for attributes.
247 	 * Since we have count of events for this pmu, we also allocate
248 	 * memory for the scale and unit attribute for now.
249 	 * "ct" has the total event structs added from the events-parent node.
250 	 * So allocate three times the "ct" (this includes event, event_scale and
251 	 * event_unit).
252 	 */
253 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
254 	if (!attrs) {
255 		kfree(attr_group);
256 		imc_free_events(pmu->events, ct);
257 		return -ENOMEM;
258 	}
259 
260 	attr_group->name = "events";
261 	attr_group->attrs = attrs;
262 	do {
263 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
264 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
265 		if (!dev_str)
266 			continue;
267 
268 		attrs[j++] = dev_str;
269 		if (pmu->events[i].scale) {
270 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
271 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
272 			if (!dev_str)
273 				continue;
274 
275 			attrs[j++] = dev_str;
276 		}
277 
278 		if (pmu->events[i].unit) {
279 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
280 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
281 			if (!dev_str)
282 				continue;
283 
284 			attrs[j++] = dev_str;
285 		}
286 	} while (++i < ct);
287 
288 	/* Save the event attribute */
289 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
290 
291 	return 0;
292 }
293 
294 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
295 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
296 {
297 	return per_cpu(local_nest_imc_refc, cpu);
298 }
299 
300 static void nest_change_cpu_context(int old_cpu, int new_cpu)
301 {
302 	struct imc_pmu **pn = per_nest_pmu_arr;
303 
304 	if (old_cpu < 0 || new_cpu < 0)
305 		return;
306 
307 	while (*pn) {
308 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
309 		pn++;
310 	}
311 }
312 
313 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
314 {
315 	int nid, target = -1;
316 	const struct cpumask *l_cpumask;
317 	struct imc_pmu_ref *ref;
318 
319 	/*
320 	 * Check in the designated list for this cpu. Dont bother
321 	 * if not one of them.
322 	 */
323 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
324 		return 0;
325 
326 	/*
327 	 * Check whether nest_imc is registered. We could end up here if the
328 	 * cpuhotplug callback registration fails. i.e, callback invokes the
329 	 * offline path for all successfully registered nodes. At this stage,
330 	 * nest_imc pmu will not be registered and we should return here.
331 	 *
332 	 * We return with a zero since this is not an offline failure. And
333 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
334 	 * which in turn will call the cleanup routine.
335 	 */
336 	if (!nest_pmus)
337 		return 0;
338 
339 	/*
340 	 * Now that this cpu is one of the designated,
341 	 * find a next cpu a) which is online and b) in same chip.
342 	 */
343 	nid = cpu_to_node(cpu);
344 	l_cpumask = cpumask_of_node(nid);
345 	target = cpumask_any_but(l_cpumask, cpu);
346 
347 	/*
348 	 * Update the cpumask with the target cpu and
349 	 * migrate the context if needed
350 	 */
351 	if (target >= 0 && target < nr_cpu_ids) {
352 		cpumask_set_cpu(target, &nest_imc_cpumask);
353 		nest_change_cpu_context(cpu, target);
354 	} else {
355 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
356 				       get_hard_smp_processor_id(cpu));
357 		/*
358 		 * If this is the last cpu in this chip then, skip the reference
359 		 * count mutex lock and make the reference count on this chip zero.
360 		 */
361 		ref = get_nest_pmu_ref(cpu);
362 		if (!ref)
363 			return -EINVAL;
364 
365 		ref->refc = 0;
366 	}
367 	return 0;
368 }
369 
370 static int ppc_nest_imc_cpu_online(unsigned int cpu)
371 {
372 	const struct cpumask *l_cpumask;
373 	static struct cpumask tmp_mask;
374 	int res;
375 
376 	/* Get the cpumask of this node */
377 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
378 
379 	/*
380 	 * If this is not the first online CPU on this node, then
381 	 * just return.
382 	 */
383 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
384 		return 0;
385 
386 	/*
387 	 * If this is the first online cpu on this node
388 	 * disable the nest counters by making an OPAL call.
389 	 */
390 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
391 				     get_hard_smp_processor_id(cpu));
392 	if (res)
393 		return res;
394 
395 	/* Make this CPU the designated target for counter collection */
396 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
397 	return 0;
398 }
399 
400 static int nest_pmu_cpumask_init(void)
401 {
402 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
403 				 "perf/powerpc/imc:online",
404 				 ppc_nest_imc_cpu_online,
405 				 ppc_nest_imc_cpu_offline);
406 }
407 
408 static void nest_imc_counters_release(struct perf_event *event)
409 {
410 	int rc, node_id;
411 	struct imc_pmu_ref *ref;
412 
413 	if (event->cpu < 0)
414 		return;
415 
416 	node_id = cpu_to_node(event->cpu);
417 
418 	/*
419 	 * See if we need to disable the nest PMU.
420 	 * If no events are currently in use, then we have to take a
421 	 * mutex to ensure that we don't race with another task doing
422 	 * enable or disable the nest counters.
423 	 */
424 	ref = get_nest_pmu_ref(event->cpu);
425 	if (!ref)
426 		return;
427 
428 	/* Take the mutex lock for this node and then decrement the reference count */
429 	mutex_lock(&ref->lock);
430 	if (ref->refc == 0) {
431 		/*
432 		 * The scenario where this is true is, when perf session is
433 		 * started, followed by offlining of all cpus in a given node.
434 		 *
435 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
436 		 * function set the ref->count to zero, if the cpu which is
437 		 * about to offline is the last cpu in a given node and make
438 		 * an OPAL call to disable the engine in that node.
439 		 *
440 		 */
441 		mutex_unlock(&ref->lock);
442 		return;
443 	}
444 	ref->refc--;
445 	if (ref->refc == 0) {
446 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
447 					    get_hard_smp_processor_id(event->cpu));
448 		if (rc) {
449 			mutex_unlock(&ref->lock);
450 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
451 			return;
452 		}
453 	} else if (ref->refc < 0) {
454 		WARN(1, "nest-imc: Invalid event reference count\n");
455 		ref->refc = 0;
456 	}
457 	mutex_unlock(&ref->lock);
458 }
459 
460 static int nest_imc_event_init(struct perf_event *event)
461 {
462 	int chip_id, rc, node_id;
463 	u32 l_config, config = event->attr.config;
464 	struct imc_mem_info *pcni;
465 	struct imc_pmu *pmu;
466 	struct imc_pmu_ref *ref;
467 	bool flag = false;
468 
469 	if (event->attr.type != event->pmu->type)
470 		return -ENOENT;
471 
472 	/* Sampling not supported */
473 	if (event->hw.sample_period)
474 		return -EINVAL;
475 
476 	/* unsupported modes and filters */
477 	if (event->attr.exclude_user   ||
478 	    event->attr.exclude_kernel ||
479 	    event->attr.exclude_hv     ||
480 	    event->attr.exclude_idle   ||
481 	    event->attr.exclude_host   ||
482 	    event->attr.exclude_guest)
483 		return -EINVAL;
484 
485 	if (event->cpu < 0)
486 		return -EINVAL;
487 
488 	pmu = imc_event_to_pmu(event);
489 
490 	/* Sanity check for config (event offset) */
491 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
492 		return -EINVAL;
493 
494 	/*
495 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
496 	 * Get the base memory addresss for this cpu.
497 	 */
498 	chip_id = cpu_to_chip_id(event->cpu);
499 	pcni = pmu->mem_info;
500 	do {
501 		if (pcni->id == chip_id) {
502 			flag = true;
503 			break;
504 		}
505 		pcni++;
506 	} while (pcni);
507 
508 	if (!flag)
509 		return -ENODEV;
510 
511 	/*
512 	 * Add the event offset to the base address.
513 	 */
514 	l_config = config & IMC_EVENT_OFFSET_MASK;
515 	event->hw.event_base = (u64)pcni->vbase + l_config;
516 	node_id = cpu_to_node(event->cpu);
517 
518 	/*
519 	 * Get the imc_pmu_ref struct for this node.
520 	 * Take the mutex lock and then increment the count of nest pmu events
521 	 * inited.
522 	 */
523 	ref = get_nest_pmu_ref(event->cpu);
524 	if (!ref)
525 		return -EINVAL;
526 
527 	mutex_lock(&ref->lock);
528 	if (ref->refc == 0) {
529 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
530 					     get_hard_smp_processor_id(event->cpu));
531 		if (rc) {
532 			mutex_unlock(&ref->lock);
533 			pr_err("nest-imc: Unable to start the counters for node %d\n",
534 									node_id);
535 			return rc;
536 		}
537 	}
538 	++ref->refc;
539 	mutex_unlock(&ref->lock);
540 
541 	event->destroy = nest_imc_counters_release;
542 	return 0;
543 }
544 
545 /*
546  * core_imc_mem_init : Initializes memory for the current core.
547  *
548  * Uses alloc_pages_node() and uses the returned address as an argument to
549  * an opal call to configure the pdbar. The address sent as an argument is
550  * converted to physical address before the opal call is made. This is the
551  * base address at which the core imc counters are populated.
552  */
553 static int core_imc_mem_init(int cpu, int size)
554 {
555 	int nid, rc = 0, core_id = (cpu / threads_per_core);
556 	struct imc_mem_info *mem_info;
557 
558 	/*
559 	 * alloc_pages_node() will allocate memory for core in the
560 	 * local node only.
561 	 */
562 	nid = cpu_to_node(cpu);
563 	mem_info = &core_imc_pmu->mem_info[core_id];
564 	mem_info->id = core_id;
565 
566 	/* We need only vbase for core counters */
567 	mem_info->vbase = page_address(alloc_pages_node(nid,
568 					  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
569 					  __GFP_NOWARN, get_order(size)));
570 	if (!mem_info->vbase)
571 		return -ENOMEM;
572 
573 	/* Init the mutex */
574 	core_imc_refc[core_id].id = core_id;
575 	mutex_init(&core_imc_refc[core_id].lock);
576 
577 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
578 				__pa((void *)mem_info->vbase),
579 				get_hard_smp_processor_id(cpu));
580 	if (rc) {
581 		free_pages((u64)mem_info->vbase, get_order(size));
582 		mem_info->vbase = NULL;
583 	}
584 
585 	return rc;
586 }
587 
588 static bool is_core_imc_mem_inited(int cpu)
589 {
590 	struct imc_mem_info *mem_info;
591 	int core_id = (cpu / threads_per_core);
592 
593 	mem_info = &core_imc_pmu->mem_info[core_id];
594 	if (!mem_info->vbase)
595 		return false;
596 
597 	return true;
598 }
599 
600 static int ppc_core_imc_cpu_online(unsigned int cpu)
601 {
602 	const struct cpumask *l_cpumask;
603 	static struct cpumask tmp_mask;
604 	int ret = 0;
605 
606 	/* Get the cpumask for this core */
607 	l_cpumask = cpu_sibling_mask(cpu);
608 
609 	/* If a cpu for this core is already set, then, don't do anything */
610 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
611 		return 0;
612 
613 	if (!is_core_imc_mem_inited(cpu)) {
614 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
615 		if (ret) {
616 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
617 			return ret;
618 		}
619 	}
620 
621 	/* set the cpu in the mask */
622 	cpumask_set_cpu(cpu, &core_imc_cpumask);
623 	return 0;
624 }
625 
626 static int ppc_core_imc_cpu_offline(unsigned int cpu)
627 {
628 	unsigned int core_id;
629 	int ncpu;
630 	struct imc_pmu_ref *ref;
631 
632 	/*
633 	 * clear this cpu out of the mask, if not present in the mask,
634 	 * don't bother doing anything.
635 	 */
636 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
637 		return 0;
638 
639 	/*
640 	 * Check whether core_imc is registered. We could end up here
641 	 * if the cpuhotplug callback registration fails. i.e, callback
642 	 * invokes the offline path for all sucessfully registered cpus.
643 	 * At this stage, core_imc pmu will not be registered and we
644 	 * should return here.
645 	 *
646 	 * We return with a zero since this is not an offline failure.
647 	 * And cpuhp_setup_state() returns the actual failure reason
648 	 * to the caller, which inturn will call the cleanup routine.
649 	 */
650 	if (!core_imc_pmu->pmu.event_init)
651 		return 0;
652 
653 	/* Find any online cpu in that core except the current "cpu" */
654 	ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
655 
656 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
657 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
658 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
659 	} else {
660 		/*
661 		 * If this is the last cpu in this core then, skip taking refernce
662 		 * count mutex lock for this core and directly zero "refc" for
663 		 * this core.
664 		 */
665 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
666 				       get_hard_smp_processor_id(cpu));
667 		core_id = cpu / threads_per_core;
668 		ref = &core_imc_refc[core_id];
669 		if (!ref)
670 			return -EINVAL;
671 
672 		ref->refc = 0;
673 	}
674 	return 0;
675 }
676 
677 static int core_imc_pmu_cpumask_init(void)
678 {
679 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
680 				 "perf/powerpc/imc_core:online",
681 				 ppc_core_imc_cpu_online,
682 				 ppc_core_imc_cpu_offline);
683 }
684 
685 static void core_imc_counters_release(struct perf_event *event)
686 {
687 	int rc, core_id;
688 	struct imc_pmu_ref *ref;
689 
690 	if (event->cpu < 0)
691 		return;
692 	/*
693 	 * See if we need to disable the IMC PMU.
694 	 * If no events are currently in use, then we have to take a
695 	 * mutex to ensure that we don't race with another task doing
696 	 * enable or disable the core counters.
697 	 */
698 	core_id = event->cpu / threads_per_core;
699 
700 	/* Take the mutex lock and decrement the refernce count for this core */
701 	ref = &core_imc_refc[core_id];
702 	if (!ref)
703 		return;
704 
705 	mutex_lock(&ref->lock);
706 	if (ref->refc == 0) {
707 		/*
708 		 * The scenario where this is true is, when perf session is
709 		 * started, followed by offlining of all cpus in a given core.
710 		 *
711 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
712 		 * function set the ref->count to zero, if the cpu which is
713 		 * about to offline is the last cpu in a given core and make
714 		 * an OPAL call to disable the engine in that core.
715 		 *
716 		 */
717 		mutex_unlock(&ref->lock);
718 		return;
719 	}
720 	ref->refc--;
721 	if (ref->refc == 0) {
722 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
723 					    get_hard_smp_processor_id(event->cpu));
724 		if (rc) {
725 			mutex_unlock(&ref->lock);
726 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
727 			return;
728 		}
729 	} else if (ref->refc < 0) {
730 		WARN(1, "core-imc: Invalid event reference count\n");
731 		ref->refc = 0;
732 	}
733 	mutex_unlock(&ref->lock);
734 }
735 
736 static int core_imc_event_init(struct perf_event *event)
737 {
738 	int core_id, rc;
739 	u64 config = event->attr.config;
740 	struct imc_mem_info *pcmi;
741 	struct imc_pmu *pmu;
742 	struct imc_pmu_ref *ref;
743 
744 	if (event->attr.type != event->pmu->type)
745 		return -ENOENT;
746 
747 	/* Sampling not supported */
748 	if (event->hw.sample_period)
749 		return -EINVAL;
750 
751 	/* unsupported modes and filters */
752 	if (event->attr.exclude_user   ||
753 	    event->attr.exclude_kernel ||
754 	    event->attr.exclude_hv     ||
755 	    event->attr.exclude_idle   ||
756 	    event->attr.exclude_host   ||
757 	    event->attr.exclude_guest)
758 		return -EINVAL;
759 
760 	if (event->cpu < 0)
761 		return -EINVAL;
762 
763 	event->hw.idx = -1;
764 	pmu = imc_event_to_pmu(event);
765 
766 	/* Sanity check for config (event offset) */
767 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
768 		return -EINVAL;
769 
770 	if (!is_core_imc_mem_inited(event->cpu))
771 		return -ENODEV;
772 
773 	core_id = event->cpu / threads_per_core;
774 	pcmi = &core_imc_pmu->mem_info[core_id];
775 	if ((!pcmi->vbase))
776 		return -ENODEV;
777 
778 	/* Get the core_imc mutex for this core */
779 	ref = &core_imc_refc[core_id];
780 	if (!ref)
781 		return -EINVAL;
782 
783 	/*
784 	 * Core pmu units are enabled only when it is used.
785 	 * See if this is triggered for the first time.
786 	 * If yes, take the mutex lock and enable the core counters.
787 	 * If not, just increment the count in core_imc_refc struct.
788 	 */
789 	mutex_lock(&ref->lock);
790 	if (ref->refc == 0) {
791 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
792 					     get_hard_smp_processor_id(event->cpu));
793 		if (rc) {
794 			mutex_unlock(&ref->lock);
795 			pr_err("core-imc: Unable to start the counters for core %d\n",
796 									core_id);
797 			return rc;
798 		}
799 	}
800 	++ref->refc;
801 	mutex_unlock(&ref->lock);
802 
803 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
804 	event->destroy = core_imc_counters_release;
805 	return 0;
806 }
807 
808 /*
809  * Allocates a page of memory for each of the online cpus, and write the
810  * physical base address of that page to the LDBAR for that cpu.
811  *
812  * LDBAR Register Layout:
813  *
814  *  0          4         8         12        16        20        24        28
815  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
816  *   | |       [   ]    [                   Counter Address [8:50]
817  *   | * Mode    |
818  *   |           * PB Scope
819  *   * Enable/Disable
820  *
821  *  32        36        40        44        48        52        56        60
822  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
823  *           Counter Address [8:50]              ]
824  *
825  */
826 static int thread_imc_mem_alloc(int cpu_id, int size)
827 {
828 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
829 	int nid = cpu_to_node(cpu_id);
830 
831 	if (!local_mem) {
832 		/*
833 		 * This case could happen only once at start, since we dont
834 		 * free the memory in cpu offline path.
835 		 */
836 		local_mem = page_address(alloc_pages_node(nid,
837 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
838 				  __GFP_NOWARN, get_order(size)));
839 		if (!local_mem)
840 			return -ENOMEM;
841 
842 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
843 	}
844 
845 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
846 
847 	mtspr(SPRN_LDBAR, ldbar_value);
848 	return 0;
849 }
850 
851 static int ppc_thread_imc_cpu_online(unsigned int cpu)
852 {
853 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
854 }
855 
856 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
857 {
858 	mtspr(SPRN_LDBAR, 0);
859 	return 0;
860 }
861 
862 static int thread_imc_cpu_init(void)
863 {
864 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
865 			  "perf/powerpc/imc_thread:online",
866 			  ppc_thread_imc_cpu_online,
867 			  ppc_thread_imc_cpu_offline);
868 }
869 
870 static int thread_imc_event_init(struct perf_event *event)
871 {
872 	u32 config = event->attr.config;
873 	struct task_struct *target;
874 	struct imc_pmu *pmu;
875 
876 	if (event->attr.type != event->pmu->type)
877 		return -ENOENT;
878 
879 	/* Sampling not supported */
880 	if (event->hw.sample_period)
881 		return -EINVAL;
882 
883 	event->hw.idx = -1;
884 	pmu = imc_event_to_pmu(event);
885 
886 	/* Sanity check for config offset */
887 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
888 		return -EINVAL;
889 
890 	target = event->hw.target;
891 	if (!target)
892 		return -EINVAL;
893 
894 	event->pmu->task_ctx_nr = perf_sw_context;
895 	return 0;
896 }
897 
898 static bool is_thread_imc_pmu(struct perf_event *event)
899 {
900 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
901 		return true;
902 
903 	return false;
904 }
905 
906 static u64 * get_event_base_addr(struct perf_event *event)
907 {
908 	u64 addr;
909 
910 	if (is_thread_imc_pmu(event)) {
911 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
912 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
913 	}
914 
915 	return (u64 *)event->hw.event_base;
916 }
917 
918 static void thread_imc_pmu_start_txn(struct pmu *pmu,
919 				     unsigned int txn_flags)
920 {
921 	if (txn_flags & ~PERF_PMU_TXN_ADD)
922 		return;
923 	perf_pmu_disable(pmu);
924 }
925 
926 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
927 {
928 	perf_pmu_enable(pmu);
929 }
930 
931 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
932 {
933 	perf_pmu_enable(pmu);
934 	return 0;
935 }
936 
937 static u64 imc_read_counter(struct perf_event *event)
938 {
939 	u64 *addr, data;
940 
941 	/*
942 	 * In-Memory Collection (IMC) counters are free flowing counters.
943 	 * So we take a snapshot of the counter value on enable and save it
944 	 * to calculate the delta at later stage to present the event counter
945 	 * value.
946 	 */
947 	addr = get_event_base_addr(event);
948 	data = be64_to_cpu(READ_ONCE(*addr));
949 	local64_set(&event->hw.prev_count, data);
950 
951 	return data;
952 }
953 
954 static void imc_event_update(struct perf_event *event)
955 {
956 	u64 counter_prev, counter_new, final_count;
957 
958 	counter_prev = local64_read(&event->hw.prev_count);
959 	counter_new = imc_read_counter(event);
960 	final_count = counter_new - counter_prev;
961 
962 	/* Update the delta to the event count */
963 	local64_add(final_count, &event->count);
964 }
965 
966 static void imc_event_start(struct perf_event *event, int flags)
967 {
968 	/*
969 	 * In Memory Counters are free flowing counters. HW or the microcode
970 	 * keeps adding to the counter offset in memory. To get event
971 	 * counter value, we snapshot the value here and we calculate
972 	 * delta at later point.
973 	 */
974 	imc_read_counter(event);
975 }
976 
977 static void imc_event_stop(struct perf_event *event, int flags)
978 {
979 	/*
980 	 * Take a snapshot and calculate the delta and update
981 	 * the event counter values.
982 	 */
983 	imc_event_update(event);
984 }
985 
986 static int imc_event_add(struct perf_event *event, int flags)
987 {
988 	if (flags & PERF_EF_START)
989 		imc_event_start(event, flags);
990 
991 	return 0;
992 }
993 
994 static int thread_imc_event_add(struct perf_event *event, int flags)
995 {
996 	int core_id;
997 	struct imc_pmu_ref *ref;
998 
999 	if (flags & PERF_EF_START)
1000 		imc_event_start(event, flags);
1001 
1002 	if (!is_core_imc_mem_inited(smp_processor_id()))
1003 		return -EINVAL;
1004 
1005 	core_id = smp_processor_id() / threads_per_core;
1006 	/*
1007 	 * imc pmus are enabled only when it is used.
1008 	 * See if this is triggered for the first time.
1009 	 * If yes, take the mutex lock and enable the counters.
1010 	 * If not, just increment the count in ref count struct.
1011 	 */
1012 	ref = &core_imc_refc[core_id];
1013 	if (!ref)
1014 		return -EINVAL;
1015 
1016 	mutex_lock(&ref->lock);
1017 	if (ref->refc == 0) {
1018 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1019 		    get_hard_smp_processor_id(smp_processor_id()))) {
1020 			mutex_unlock(&ref->lock);
1021 			pr_err("thread-imc: Unable to start the counter\
1022 				for core %d\n", core_id);
1023 			return -EINVAL;
1024 		}
1025 	}
1026 	++ref->refc;
1027 	mutex_unlock(&ref->lock);
1028 	return 0;
1029 }
1030 
1031 static void thread_imc_event_del(struct perf_event *event, int flags)
1032 {
1033 
1034 	int core_id;
1035 	struct imc_pmu_ref *ref;
1036 
1037 	/*
1038 	 * Take a snapshot and calculate the delta and update
1039 	 * the event counter values.
1040 	 */
1041 	imc_event_update(event);
1042 
1043 	core_id = smp_processor_id() / threads_per_core;
1044 	ref = &core_imc_refc[core_id];
1045 
1046 	mutex_lock(&ref->lock);
1047 	ref->refc--;
1048 	if (ref->refc == 0) {
1049 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1050 		    get_hard_smp_processor_id(smp_processor_id()))) {
1051 			mutex_unlock(&ref->lock);
1052 			pr_err("thread-imc: Unable to stop the counters\
1053 				for core %d\n", core_id);
1054 			return;
1055 		}
1056 	} else if (ref->refc < 0) {
1057 		ref->refc = 0;
1058 	}
1059 	mutex_unlock(&ref->lock);
1060 }
1061 
1062 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1063 static int update_pmu_ops(struct imc_pmu *pmu)
1064 {
1065 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1066 	pmu->pmu.add = imc_event_add;
1067 	pmu->pmu.del = imc_event_stop;
1068 	pmu->pmu.start = imc_event_start;
1069 	pmu->pmu.stop = imc_event_stop;
1070 	pmu->pmu.read = imc_event_update;
1071 	pmu->pmu.attr_groups = pmu->attr_groups;
1072 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1073 
1074 	switch (pmu->domain) {
1075 	case IMC_DOMAIN_NEST:
1076 		pmu->pmu.event_init = nest_imc_event_init;
1077 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1078 		break;
1079 	case IMC_DOMAIN_CORE:
1080 		pmu->pmu.event_init = core_imc_event_init;
1081 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1082 		break;
1083 	case IMC_DOMAIN_THREAD:
1084 		pmu->pmu.event_init = thread_imc_event_init;
1085 		pmu->pmu.add = thread_imc_event_add;
1086 		pmu->pmu.del = thread_imc_event_del;
1087 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1088 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1089 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1090 		break;
1091 	default:
1092 		break;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1099 static int init_nest_pmu_ref(void)
1100 {
1101 	int nid, i, cpu;
1102 
1103 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1104 								GFP_KERNEL);
1105 
1106 	if (!nest_imc_refc)
1107 		return -ENOMEM;
1108 
1109 	i = 0;
1110 	for_each_node(nid) {
1111 		/*
1112 		 * Mutex lock to avoid races while tracking the number of
1113 		 * sessions using the chip's nest pmu units.
1114 		 */
1115 		mutex_init(&nest_imc_refc[i].lock);
1116 
1117 		/*
1118 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1119 		 * 0 and will be used as index to the array. "i" will not go off the
1120 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1121 		 * nodes only.
1122 		 */
1123 		nest_imc_refc[i++].id = nid;
1124 	}
1125 
1126 	/*
1127 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1128 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1129 	 */
1130 	for_each_possible_cpu(cpu) {
1131 		nid = cpu_to_node(cpu);
1132 		for (i = 0; i < num_possible_nodes(); i++) {
1133 			if (nest_imc_refc[i].id == nid) {
1134 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1135 				break;
1136 			}
1137 		}
1138 	}
1139 	return 0;
1140 }
1141 
1142 static void cleanup_all_core_imc_memory(void)
1143 {
1144 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1145 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1146 	int size = core_imc_pmu->counter_mem_size;
1147 
1148 	/* mem_info will never be NULL */
1149 	for (i = 0; i < nr_cores; i++) {
1150 		if (ptr[i].vbase)
1151 			free_pages((u64)ptr[i].vbase, get_order(size));
1152 	}
1153 
1154 	kfree(ptr);
1155 	kfree(core_imc_refc);
1156 }
1157 
1158 static void thread_imc_ldbar_disable(void *dummy)
1159 {
1160 	/*
1161 	 * By Zeroing LDBAR, we disable thread-imc
1162 	 * updates.
1163 	 */
1164 	mtspr(SPRN_LDBAR, 0);
1165 }
1166 
1167 void thread_imc_disable(void)
1168 {
1169 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1170 }
1171 
1172 static void cleanup_all_thread_imc_memory(void)
1173 {
1174 	int i, order = get_order(thread_imc_mem_size);
1175 
1176 	for_each_online_cpu(i) {
1177 		if (per_cpu(thread_imc_mem, i))
1178 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1179 
1180 	}
1181 }
1182 
1183 /* Function to free the attr_groups which are dynamically allocated */
1184 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1185 {
1186 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1187 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1188 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1189 }
1190 
1191 /*
1192  * Common function to unregister cpu hotplug callback and
1193  * free the memory.
1194  * TODO: Need to handle pmu unregistering, which will be
1195  * done in followup series.
1196  */
1197 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1198 {
1199 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1200 		mutex_lock(&nest_init_lock);
1201 		if (nest_pmus == 1) {
1202 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1203 			kfree(nest_imc_refc);
1204 			kfree(per_nest_pmu_arr);
1205 			per_nest_pmu_arr = NULL;
1206 		}
1207 
1208 		if (nest_pmus > 0)
1209 			nest_pmus--;
1210 		mutex_unlock(&nest_init_lock);
1211 	}
1212 
1213 	/* Free core_imc memory */
1214 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1215 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1216 		cleanup_all_core_imc_memory();
1217 	}
1218 
1219 	/* Free thread_imc memory */
1220 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1221 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1222 		cleanup_all_thread_imc_memory();
1223 	}
1224 }
1225 
1226 /*
1227  * Function to unregister thread-imc if core-imc
1228  * is not registered.
1229  */
1230 void unregister_thread_imc(void)
1231 {
1232 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1233 	imc_common_mem_free(thread_imc_pmu);
1234 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1235 }
1236 
1237 /*
1238  * imc_mem_init : Function to support memory allocation for core imc.
1239  */
1240 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1241 								int pmu_index)
1242 {
1243 	const char *s;
1244 	int nr_cores, cpu, res = -ENOMEM;
1245 
1246 	if (of_property_read_string(parent, "name", &s))
1247 		return -ENODEV;
1248 
1249 	switch (pmu_ptr->domain) {
1250 	case IMC_DOMAIN_NEST:
1251 		/* Update the pmu name */
1252 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1253 		if (!pmu_ptr->pmu.name)
1254 			goto err;
1255 
1256 		/* Needed for hotplug/migration */
1257 		if (!per_nest_pmu_arr) {
1258 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1259 						sizeof(struct imc_pmu *),
1260 						GFP_KERNEL);
1261 			if (!per_nest_pmu_arr)
1262 				goto err;
1263 		}
1264 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1265 		break;
1266 	case IMC_DOMAIN_CORE:
1267 		/* Update the pmu name */
1268 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1269 		if (!pmu_ptr->pmu.name)
1270 			goto err;
1271 
1272 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1273 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1274 								GFP_KERNEL);
1275 
1276 		if (!pmu_ptr->mem_info)
1277 			goto err;
1278 
1279 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1280 								GFP_KERNEL);
1281 
1282 		if (!core_imc_refc) {
1283 			kfree(pmu_ptr->mem_info);
1284 			goto err;
1285 		}
1286 
1287 		core_imc_pmu = pmu_ptr;
1288 		break;
1289 	case IMC_DOMAIN_THREAD:
1290 		/* Update the pmu name */
1291 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1292 		if (!pmu_ptr->pmu.name)
1293 			goto err;
1294 
1295 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1296 		for_each_online_cpu(cpu) {
1297 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1298 			if (res) {
1299 				cleanup_all_thread_imc_memory();
1300 				goto err;
1301 			}
1302 		}
1303 
1304 		thread_imc_pmu = pmu_ptr;
1305 		break;
1306 	default:
1307 		return -EINVAL;
1308 	}
1309 
1310 	return 0;
1311 err:
1312 	return res;
1313 }
1314 
1315 /*
1316  * init_imc_pmu : Setup and register the IMC pmu device.
1317  *
1318  * @parent:	Device tree unit node
1319  * @pmu_ptr:	memory allocated for this pmu
1320  * @pmu_idx:	Count of nest pmc registered
1321  *
1322  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1323  * Handles failure cases and accordingly frees memory.
1324  */
1325 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1326 {
1327 	int ret;
1328 
1329 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1330 	if (ret)
1331 		goto err_free_mem;
1332 
1333 	switch (pmu_ptr->domain) {
1334 	case IMC_DOMAIN_NEST:
1335 		/*
1336 		* Nest imc pmu need only one cpu per chip, we initialize the
1337 		* cpumask for the first nest imc pmu and use the same for the
1338 		* rest. To handle the cpuhotplug callback unregister, we track
1339 		* the number of nest pmus in "nest_pmus".
1340 		*/
1341 		mutex_lock(&nest_init_lock);
1342 		if (nest_pmus == 0) {
1343 			ret = init_nest_pmu_ref();
1344 			if (ret) {
1345 				mutex_unlock(&nest_init_lock);
1346 				kfree(per_nest_pmu_arr);
1347 				per_nest_pmu_arr = NULL;
1348 				goto err_free_mem;
1349 			}
1350 			/* Register for cpu hotplug notification. */
1351 			ret = nest_pmu_cpumask_init();
1352 			if (ret) {
1353 				mutex_unlock(&nest_init_lock);
1354 				kfree(nest_imc_refc);
1355 				kfree(per_nest_pmu_arr);
1356 				per_nest_pmu_arr = NULL;
1357 				goto err_free_mem;
1358 			}
1359 		}
1360 		nest_pmus++;
1361 		mutex_unlock(&nest_init_lock);
1362 		break;
1363 	case IMC_DOMAIN_CORE:
1364 		ret = core_imc_pmu_cpumask_init();
1365 		if (ret) {
1366 			cleanup_all_core_imc_memory();
1367 			goto err_free_mem;
1368 		}
1369 
1370 		break;
1371 	case IMC_DOMAIN_THREAD:
1372 		ret = thread_imc_cpu_init();
1373 		if (ret) {
1374 			cleanup_all_thread_imc_memory();
1375 			goto err_free_mem;
1376 		}
1377 
1378 		break;
1379 	default:
1380 		return  -EINVAL;	/* Unknown domain */
1381 	}
1382 
1383 	ret = update_events_in_group(parent, pmu_ptr);
1384 	if (ret)
1385 		goto err_free_cpuhp_mem;
1386 
1387 	ret = update_pmu_ops(pmu_ptr);
1388 	if (ret)
1389 		goto err_free_cpuhp_mem;
1390 
1391 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1392 	if (ret)
1393 		goto err_free_cpuhp_mem;
1394 
1395 	pr_debug("%s performance monitor hardware support registered\n",
1396 							pmu_ptr->pmu.name);
1397 
1398 	return 0;
1399 
1400 err_free_cpuhp_mem:
1401 	imc_common_cpuhp_mem_free(pmu_ptr);
1402 err_free_mem:
1403 	imc_common_mem_free(pmu_ptr);
1404 	return ret;
1405 }
1406