xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision 6aa7de05)
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20 
21 /* Nest IMC data structures and variables */
22 
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu *per_nest_pmu_arr[IMC_MAX_PMUS];
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33 
34 /* Core IMC data structures and variables */
35 
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39 
40 /* Thread IMC data structures and variables */
41 
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45 
46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48 	return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50 
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56 	&format_attr_event.attr,
57 	&format_attr_offset.attr,
58 	&format_attr_rvalue.attr,
59 	&format_attr_mode.attr,
60 	NULL,
61 };
62 
63 static struct attribute_group imc_format_group = {
64 	.name = "format",
65 	.attrs = imc_format_attrs,
66 };
67 
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 					struct device_attribute *attr,
71 					char *buf)
72 {
73 	struct pmu *pmu = dev_get_drvdata(dev);
74 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 	cpumask_t *active_mask;
76 
77 	switch(imc_pmu->domain){
78 	case IMC_DOMAIN_NEST:
79 		active_mask = &nest_imc_cpumask;
80 		break;
81 	case IMC_DOMAIN_CORE:
82 		active_mask = &core_imc_cpumask;
83 		break;
84 	default:
85 		return 0;
86 	}
87 
88 	return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90 
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92 
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94 	&dev_attr_cpumask.attr,
95 	NULL,
96 };
97 
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99 	.attrs = imc_pmu_cpumask_attrs,
100 };
101 
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105 	struct perf_pmu_events_attr *attr;
106 
107 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 	if (!attr)
109 		return NULL;
110 	sysfs_attr_init(&attr->attr.attr);
111 
112 	attr->event_str = str;
113 	attr->attr.attr.name = name;
114 	attr->attr.attr.mode = 0444;
115 	attr->attr.show = perf_event_sysfs_show;
116 
117 	return &attr->attr.attr;
118 }
119 
120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121 				  const char *unit, const char *prefix, u32 base)
122 {
123 	struct imc_events *event;
124 	const char *s;
125 	u32 reg;
126 
127 	event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
128 	if (!event)
129 		return NULL;
130 
131 	if (of_property_read_u32(np, "reg", &reg))
132 		goto error;
133 	/* Add the base_reg value to the "reg" */
134 	event->value = base + reg;
135 
136 	if (of_property_read_string(np, "event-name", &s))
137 		goto error;
138 
139 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
140 	if (!event->name)
141 		goto error;
142 
143 	if (of_property_read_string(np, "scale", &s))
144 		s = scale;
145 
146 	if (s) {
147 		event->scale = kstrdup(s, GFP_KERNEL);
148 		if (!event->scale)
149 			goto error;
150 	}
151 
152 	if (of_property_read_string(np, "unit", &s))
153 		s = unit;
154 
155 	if (s) {
156 		event->unit = kstrdup(s, GFP_KERNEL);
157 		if (!event->unit)
158 			goto error;
159 	}
160 
161 	return event;
162 error:
163 	kfree(event->unit);
164 	kfree(event->scale);
165 	kfree(event->name);
166 	kfree(event);
167 
168 	return NULL;
169 }
170 
171 /*
172  * update_events_in_group: Update the "events" information in an attr_group
173  *                         and assign the attr_group to the pmu "pmu".
174  */
175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
176 {
177 	struct attribute_group *attr_group;
178 	struct attribute **attrs, *dev_str;
179 	struct device_node *np, *pmu_events;
180 	struct imc_events *ev;
181 	u32 handle, base_reg;
182 	int i=0, j=0, ct;
183 	const char *prefix, *g_scale, *g_unit;
184 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
185 
186 	if (!of_property_read_u32(node, "events", &handle))
187 		pmu_events = of_find_node_by_phandle(handle);
188 	else
189 		return 0;
190 
191 	/* Did not find any node with a given phandle */
192 	if (!pmu_events)
193 		return 0;
194 
195 	/* Get a count of number of child nodes */
196 	ct = of_get_child_count(pmu_events);
197 
198 	/* Get the event prefix */
199 	if (of_property_read_string(node, "events-prefix", &prefix))
200 		return 0;
201 
202 	/* Get a global unit and scale data if available */
203 	if (of_property_read_string(node, "scale", &g_scale))
204 		g_scale = NULL;
205 
206 	if (of_property_read_string(node, "unit", &g_unit))
207 		g_unit = NULL;
208 
209 	/* "reg" property gives out the base offset of the counters data */
210 	of_property_read_u32(node, "reg", &base_reg);
211 
212 	/* Allocate memory for the events */
213 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
214 	if (!pmu->events)
215 		return -ENOMEM;
216 
217 	ct = 0;
218 	/* Parse the events and update the struct */
219 	for_each_child_of_node(pmu_events, np) {
220 		ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
221 		if (ev)
222 			pmu->events[ct++] = ev;
223 	}
224 
225 	/* Allocate memory for attribute group */
226 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
227 	if (!attr_group)
228 		return -ENOMEM;
229 
230 	/*
231 	 * Allocate memory for attributes.
232 	 * Since we have count of events for this pmu, we also allocate
233 	 * memory for the scale and unit attribute for now.
234 	 * "ct" has the total event structs added from the events-parent node.
235 	 * So allocate three times the "ct" (this includes event, event_scale and
236 	 * event_unit).
237 	 */
238 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
239 	if (!attrs) {
240 		kfree(attr_group);
241 		kfree(pmu->events);
242 		return -ENOMEM;
243 	}
244 
245 	attr_group->name = "events";
246 	attr_group->attrs = attrs;
247 	do {
248 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249 		dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
250 		if (!dev_str)
251 			continue;
252 
253 		attrs[j++] = dev_str;
254 		if (pmu->events[i]->scale) {
255 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
257 			if (!dev_str)
258 				continue;
259 
260 			attrs[j++] = dev_str;
261 		}
262 
263 		if (pmu->events[i]->unit) {
264 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
266 			if (!dev_str)
267 				continue;
268 
269 			attrs[j++] = dev_str;
270 		}
271 	} while (++i < ct);
272 
273 	/* Save the event attribute */
274 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
275 
276 	kfree(pmu->events);
277 	return 0;
278 }
279 
280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
282 {
283 	return per_cpu(local_nest_imc_refc, cpu);
284 }
285 
286 static void nest_change_cpu_context(int old_cpu, int new_cpu)
287 {
288 	struct imc_pmu **pn = per_nest_pmu_arr;
289 	int i;
290 
291 	if (old_cpu < 0 || new_cpu < 0)
292 		return;
293 
294 	for (i = 0; *pn && i < IMC_MAX_PMUS; i++, pn++)
295 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
296 }
297 
298 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
299 {
300 	int nid, target = -1;
301 	const struct cpumask *l_cpumask;
302 	struct imc_pmu_ref *ref;
303 
304 	/*
305 	 * Check in the designated list for this cpu. Dont bother
306 	 * if not one of them.
307 	 */
308 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
309 		return 0;
310 
311 	/*
312 	 * Now that this cpu is one of the designated,
313 	 * find a next cpu a) which is online and b) in same chip.
314 	 */
315 	nid = cpu_to_node(cpu);
316 	l_cpumask = cpumask_of_node(nid);
317 	target = cpumask_any_but(l_cpumask, cpu);
318 
319 	/*
320 	 * Update the cpumask with the target cpu and
321 	 * migrate the context if needed
322 	 */
323 	if (target >= 0 && target < nr_cpu_ids) {
324 		cpumask_set_cpu(target, &nest_imc_cpumask);
325 		nest_change_cpu_context(cpu, target);
326 	} else {
327 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
328 				       get_hard_smp_processor_id(cpu));
329 		/*
330 		 * If this is the last cpu in this chip then, skip the reference
331 		 * count mutex lock and make the reference count on this chip zero.
332 		 */
333 		ref = get_nest_pmu_ref(cpu);
334 		if (!ref)
335 			return -EINVAL;
336 
337 		ref->refc = 0;
338 	}
339 	return 0;
340 }
341 
342 static int ppc_nest_imc_cpu_online(unsigned int cpu)
343 {
344 	const struct cpumask *l_cpumask;
345 	static struct cpumask tmp_mask;
346 	int res;
347 
348 	/* Get the cpumask of this node */
349 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
350 
351 	/*
352 	 * If this is not the first online CPU on this node, then
353 	 * just return.
354 	 */
355 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
356 		return 0;
357 
358 	/*
359 	 * If this is the first online cpu on this node
360 	 * disable the nest counters by making an OPAL call.
361 	 */
362 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
363 				     get_hard_smp_processor_id(cpu));
364 	if (res)
365 		return res;
366 
367 	/* Make this CPU the designated target for counter collection */
368 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
369 	return 0;
370 }
371 
372 static int nest_pmu_cpumask_init(void)
373 {
374 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
375 				 "perf/powerpc/imc:online",
376 				 ppc_nest_imc_cpu_online,
377 				 ppc_nest_imc_cpu_offline);
378 }
379 
380 static void nest_imc_counters_release(struct perf_event *event)
381 {
382 	int rc, node_id;
383 	struct imc_pmu_ref *ref;
384 
385 	if (event->cpu < 0)
386 		return;
387 
388 	node_id = cpu_to_node(event->cpu);
389 
390 	/*
391 	 * See if we need to disable the nest PMU.
392 	 * If no events are currently in use, then we have to take a
393 	 * mutex to ensure that we don't race with another task doing
394 	 * enable or disable the nest counters.
395 	 */
396 	ref = get_nest_pmu_ref(event->cpu);
397 	if (!ref)
398 		return;
399 
400 	/* Take the mutex lock for this node and then decrement the reference count */
401 	mutex_lock(&ref->lock);
402 	if (ref->refc == 0) {
403 		/*
404 		 * The scenario where this is true is, when perf session is
405 		 * started, followed by offlining of all cpus in a given node.
406 		 *
407 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
408 		 * function set the ref->count to zero, if the cpu which is
409 		 * about to offline is the last cpu in a given node and make
410 		 * an OPAL call to disable the engine in that node.
411 		 *
412 		 */
413 		mutex_unlock(&ref->lock);
414 		return;
415 	}
416 	ref->refc--;
417 	if (ref->refc == 0) {
418 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
419 					    get_hard_smp_processor_id(event->cpu));
420 		if (rc) {
421 			mutex_unlock(&ref->lock);
422 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
423 			return;
424 		}
425 	} else if (ref->refc < 0) {
426 		WARN(1, "nest-imc: Invalid event reference count\n");
427 		ref->refc = 0;
428 	}
429 	mutex_unlock(&ref->lock);
430 }
431 
432 static int nest_imc_event_init(struct perf_event *event)
433 {
434 	int chip_id, rc, node_id;
435 	u32 l_config, config = event->attr.config;
436 	struct imc_mem_info *pcni;
437 	struct imc_pmu *pmu;
438 	struct imc_pmu_ref *ref;
439 	bool flag = false;
440 
441 	if (event->attr.type != event->pmu->type)
442 		return -ENOENT;
443 
444 	/* Sampling not supported */
445 	if (event->hw.sample_period)
446 		return -EINVAL;
447 
448 	/* unsupported modes and filters */
449 	if (event->attr.exclude_user   ||
450 	    event->attr.exclude_kernel ||
451 	    event->attr.exclude_hv     ||
452 	    event->attr.exclude_idle   ||
453 	    event->attr.exclude_host   ||
454 	    event->attr.exclude_guest)
455 		return -EINVAL;
456 
457 	if (event->cpu < 0)
458 		return -EINVAL;
459 
460 	pmu = imc_event_to_pmu(event);
461 
462 	/* Sanity check for config (event offset) */
463 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
464 		return -EINVAL;
465 
466 	/*
467 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
468 	 * Get the base memory addresss for this cpu.
469 	 */
470 	chip_id = topology_physical_package_id(event->cpu);
471 	pcni = pmu->mem_info;
472 	do {
473 		if (pcni->id == chip_id) {
474 			flag = true;
475 			break;
476 		}
477 		pcni++;
478 	} while (pcni);
479 
480 	if (!flag)
481 		return -ENODEV;
482 
483 	/*
484 	 * Add the event offset to the base address.
485 	 */
486 	l_config = config & IMC_EVENT_OFFSET_MASK;
487 	event->hw.event_base = (u64)pcni->vbase + l_config;
488 	node_id = cpu_to_node(event->cpu);
489 
490 	/*
491 	 * Get the imc_pmu_ref struct for this node.
492 	 * Take the mutex lock and then increment the count of nest pmu events
493 	 * inited.
494 	 */
495 	ref = get_nest_pmu_ref(event->cpu);
496 	if (!ref)
497 		return -EINVAL;
498 
499 	mutex_lock(&ref->lock);
500 	if (ref->refc == 0) {
501 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
502 					     get_hard_smp_processor_id(event->cpu));
503 		if (rc) {
504 			mutex_unlock(&ref->lock);
505 			pr_err("nest-imc: Unable to start the counters for node %d\n",
506 									node_id);
507 			return rc;
508 		}
509 	}
510 	++ref->refc;
511 	mutex_unlock(&ref->lock);
512 
513 	event->destroy = nest_imc_counters_release;
514 	return 0;
515 }
516 
517 /*
518  * core_imc_mem_init : Initializes memory for the current core.
519  *
520  * Uses alloc_pages_node() and uses the returned address as an argument to
521  * an opal call to configure the pdbar. The address sent as an argument is
522  * converted to physical address before the opal call is made. This is the
523  * base address at which the core imc counters are populated.
524  */
525 static int core_imc_mem_init(int cpu, int size)
526 {
527 	int phys_id, rc = 0, core_id = (cpu / threads_per_core);
528 	struct imc_mem_info *mem_info;
529 
530 	/*
531 	 * alloc_pages_node() will allocate memory for core in the
532 	 * local node only.
533 	 */
534 	phys_id = topology_physical_package_id(cpu);
535 	mem_info = &core_imc_pmu->mem_info[core_id];
536 	mem_info->id = core_id;
537 
538 	/* We need only vbase for core counters */
539 	mem_info->vbase = page_address(alloc_pages_node(phys_id,
540 					  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
541 					  __GFP_NOWARN, get_order(size)));
542 	if (!mem_info->vbase)
543 		return -ENOMEM;
544 
545 	/* Init the mutex */
546 	core_imc_refc[core_id].id = core_id;
547 	mutex_init(&core_imc_refc[core_id].lock);
548 
549 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
550 				__pa((void *)mem_info->vbase),
551 				get_hard_smp_processor_id(cpu));
552 	if (rc) {
553 		free_pages((u64)mem_info->vbase, get_order(size));
554 		mem_info->vbase = NULL;
555 	}
556 
557 	return rc;
558 }
559 
560 static bool is_core_imc_mem_inited(int cpu)
561 {
562 	struct imc_mem_info *mem_info;
563 	int core_id = (cpu / threads_per_core);
564 
565 	mem_info = &core_imc_pmu->mem_info[core_id];
566 	if (!mem_info->vbase)
567 		return false;
568 
569 	return true;
570 }
571 
572 static int ppc_core_imc_cpu_online(unsigned int cpu)
573 {
574 	const struct cpumask *l_cpumask;
575 	static struct cpumask tmp_mask;
576 	int ret = 0;
577 
578 	/* Get the cpumask for this core */
579 	l_cpumask = cpu_sibling_mask(cpu);
580 
581 	/* If a cpu for this core is already set, then, don't do anything */
582 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
583 		return 0;
584 
585 	if (!is_core_imc_mem_inited(cpu)) {
586 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
587 		if (ret) {
588 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
589 			return ret;
590 		}
591 	}
592 
593 	/* set the cpu in the mask */
594 	cpumask_set_cpu(cpu, &core_imc_cpumask);
595 	return 0;
596 }
597 
598 static int ppc_core_imc_cpu_offline(unsigned int cpu)
599 {
600 	unsigned int ncpu, core_id;
601 	struct imc_pmu_ref *ref;
602 
603 	/*
604 	 * clear this cpu out of the mask, if not present in the mask,
605 	 * don't bother doing anything.
606 	 */
607 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
608 		return 0;
609 
610 	/* Find any online cpu in that core except the current "cpu" */
611 	ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
612 
613 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
614 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
615 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
616 	} else {
617 		/*
618 		 * If this is the last cpu in this core then, skip taking refernce
619 		 * count mutex lock for this core and directly zero "refc" for
620 		 * this core.
621 		 */
622 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
623 				       get_hard_smp_processor_id(cpu));
624 		core_id = cpu / threads_per_core;
625 		ref = &core_imc_refc[core_id];
626 		if (!ref)
627 			return -EINVAL;
628 
629 		ref->refc = 0;
630 	}
631 	return 0;
632 }
633 
634 static int core_imc_pmu_cpumask_init(void)
635 {
636 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
637 				 "perf/powerpc/imc_core:online",
638 				 ppc_core_imc_cpu_online,
639 				 ppc_core_imc_cpu_offline);
640 }
641 
642 static void core_imc_counters_release(struct perf_event *event)
643 {
644 	int rc, core_id;
645 	struct imc_pmu_ref *ref;
646 
647 	if (event->cpu < 0)
648 		return;
649 	/*
650 	 * See if we need to disable the IMC PMU.
651 	 * If no events are currently in use, then we have to take a
652 	 * mutex to ensure that we don't race with another task doing
653 	 * enable or disable the core counters.
654 	 */
655 	core_id = event->cpu / threads_per_core;
656 
657 	/* Take the mutex lock and decrement the refernce count for this core */
658 	ref = &core_imc_refc[core_id];
659 	if (!ref)
660 		return;
661 
662 	mutex_lock(&ref->lock);
663 	if (ref->refc == 0) {
664 		/*
665 		 * The scenario where this is true is, when perf session is
666 		 * started, followed by offlining of all cpus in a given core.
667 		 *
668 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
669 		 * function set the ref->count to zero, if the cpu which is
670 		 * about to offline is the last cpu in a given core and make
671 		 * an OPAL call to disable the engine in that core.
672 		 *
673 		 */
674 		mutex_unlock(&ref->lock);
675 		return;
676 	}
677 	ref->refc--;
678 	if (ref->refc == 0) {
679 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
680 					    get_hard_smp_processor_id(event->cpu));
681 		if (rc) {
682 			mutex_unlock(&ref->lock);
683 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
684 			return;
685 		}
686 	} else if (ref->refc < 0) {
687 		WARN(1, "core-imc: Invalid event reference count\n");
688 		ref->refc = 0;
689 	}
690 	mutex_unlock(&ref->lock);
691 }
692 
693 static int core_imc_event_init(struct perf_event *event)
694 {
695 	int core_id, rc;
696 	u64 config = event->attr.config;
697 	struct imc_mem_info *pcmi;
698 	struct imc_pmu *pmu;
699 	struct imc_pmu_ref *ref;
700 
701 	if (event->attr.type != event->pmu->type)
702 		return -ENOENT;
703 
704 	/* Sampling not supported */
705 	if (event->hw.sample_period)
706 		return -EINVAL;
707 
708 	/* unsupported modes and filters */
709 	if (event->attr.exclude_user   ||
710 	    event->attr.exclude_kernel ||
711 	    event->attr.exclude_hv     ||
712 	    event->attr.exclude_idle   ||
713 	    event->attr.exclude_host   ||
714 	    event->attr.exclude_guest)
715 		return -EINVAL;
716 
717 	if (event->cpu < 0)
718 		return -EINVAL;
719 
720 	event->hw.idx = -1;
721 	pmu = imc_event_to_pmu(event);
722 
723 	/* Sanity check for config (event offset) */
724 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
725 		return -EINVAL;
726 
727 	if (!is_core_imc_mem_inited(event->cpu))
728 		return -ENODEV;
729 
730 	core_id = event->cpu / threads_per_core;
731 	pcmi = &core_imc_pmu->mem_info[core_id];
732 	if ((!pcmi->vbase))
733 		return -ENODEV;
734 
735 	/* Get the core_imc mutex for this core */
736 	ref = &core_imc_refc[core_id];
737 	if (!ref)
738 		return -EINVAL;
739 
740 	/*
741 	 * Core pmu units are enabled only when it is used.
742 	 * See if this is triggered for the first time.
743 	 * If yes, take the mutex lock and enable the core counters.
744 	 * If not, just increment the count in core_imc_refc struct.
745 	 */
746 	mutex_lock(&ref->lock);
747 	if (ref->refc == 0) {
748 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
749 					     get_hard_smp_processor_id(event->cpu));
750 		if (rc) {
751 			mutex_unlock(&ref->lock);
752 			pr_err("core-imc: Unable to start the counters for core %d\n",
753 									core_id);
754 			return rc;
755 		}
756 	}
757 	++ref->refc;
758 	mutex_unlock(&ref->lock);
759 
760 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
761 	event->destroy = core_imc_counters_release;
762 	return 0;
763 }
764 
765 /*
766  * Allocates a page of memory for each of the online cpus, and write the
767  * physical base address of that page to the LDBAR for that cpu.
768  *
769  * LDBAR Register Layout:
770  *
771  *  0          4         8         12        16        20        24        28
772  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
773  *   | |       [   ]    [                   Counter Address [8:50]
774  *   | * Mode    |
775  *   |           * PB Scope
776  *   * Enable/Disable
777  *
778  *  32        36        40        44        48        52        56        60
779  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
780  *           Counter Address [8:50]              ]
781  *
782  */
783 static int thread_imc_mem_alloc(int cpu_id, int size)
784 {
785 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
786 	int phys_id = topology_physical_package_id(cpu_id);
787 
788 	if (!local_mem) {
789 		/*
790 		 * This case could happen only once at start, since we dont
791 		 * free the memory in cpu offline path.
792 		 */
793 		local_mem = page_address(alloc_pages_node(phys_id,
794 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
795 				  __GFP_NOWARN, get_order(size)));
796 		if (!local_mem)
797 			return -ENOMEM;
798 
799 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
800 	}
801 
802 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
803 
804 	mtspr(SPRN_LDBAR, ldbar_value);
805 	return 0;
806 }
807 
808 static int ppc_thread_imc_cpu_online(unsigned int cpu)
809 {
810 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
811 }
812 
813 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
814 {
815 	mtspr(SPRN_LDBAR, 0);
816 	return 0;
817 }
818 
819 static int thread_imc_cpu_init(void)
820 {
821 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
822 			  "perf/powerpc/imc_thread:online",
823 			  ppc_thread_imc_cpu_online,
824 			  ppc_thread_imc_cpu_offline);
825 }
826 
827 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
828 				      bool sched_in)
829 {
830 	int core_id;
831 	struct imc_pmu_ref *ref;
832 
833 	if (!is_core_imc_mem_inited(smp_processor_id()))
834 		return;
835 
836 	core_id = smp_processor_id() / threads_per_core;
837 	/*
838 	 * imc pmus are enabled only when it is used.
839 	 * See if this is triggered for the first time.
840 	 * If yes, take the mutex lock and enable the counters.
841 	 * If not, just increment the count in ref count struct.
842 	 */
843 	ref = &core_imc_refc[core_id];
844 	if (!ref)
845 		return;
846 
847 	if (sched_in) {
848 		mutex_lock(&ref->lock);
849 		if (ref->refc == 0) {
850 			if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
851 			     get_hard_smp_processor_id(smp_processor_id()))) {
852 				mutex_unlock(&ref->lock);
853 				pr_err("thread-imc: Unable to start the counter\
854 							for core %d\n", core_id);
855 				return;
856 			}
857 		}
858 		++ref->refc;
859 		mutex_unlock(&ref->lock);
860 	} else {
861 		mutex_lock(&ref->lock);
862 		ref->refc--;
863 		if (ref->refc == 0) {
864 			if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
865 			    get_hard_smp_processor_id(smp_processor_id()))) {
866 				mutex_unlock(&ref->lock);
867 				pr_err("thread-imc: Unable to stop the counters\
868 							for core %d\n", core_id);
869 				return;
870 			}
871 		} else if (ref->refc < 0) {
872 			ref->refc = 0;
873 		}
874 		mutex_unlock(&ref->lock);
875 	}
876 
877 	return;
878 }
879 
880 static int thread_imc_event_init(struct perf_event *event)
881 {
882 	u32 config = event->attr.config;
883 	struct task_struct *target;
884 	struct imc_pmu *pmu;
885 
886 	if (event->attr.type != event->pmu->type)
887 		return -ENOENT;
888 
889 	/* Sampling not supported */
890 	if (event->hw.sample_period)
891 		return -EINVAL;
892 
893 	event->hw.idx = -1;
894 	pmu = imc_event_to_pmu(event);
895 
896 	/* Sanity check for config offset */
897 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
898 		return -EINVAL;
899 
900 	target = event->hw.target;
901 	if (!target)
902 		return -EINVAL;
903 
904 	event->pmu->task_ctx_nr = perf_sw_context;
905 	return 0;
906 }
907 
908 static bool is_thread_imc_pmu(struct perf_event *event)
909 {
910 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
911 		return true;
912 
913 	return false;
914 }
915 
916 static u64 * get_event_base_addr(struct perf_event *event)
917 {
918 	u64 addr;
919 
920 	if (is_thread_imc_pmu(event)) {
921 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
922 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
923 	}
924 
925 	return (u64 *)event->hw.event_base;
926 }
927 
928 static void thread_imc_pmu_start_txn(struct pmu *pmu,
929 				     unsigned int txn_flags)
930 {
931 	if (txn_flags & ~PERF_PMU_TXN_ADD)
932 		return;
933 	perf_pmu_disable(pmu);
934 }
935 
936 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
937 {
938 	perf_pmu_enable(pmu);
939 }
940 
941 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
942 {
943 	perf_pmu_enable(pmu);
944 	return 0;
945 }
946 
947 static u64 imc_read_counter(struct perf_event *event)
948 {
949 	u64 *addr, data;
950 
951 	/*
952 	 * In-Memory Collection (IMC) counters are free flowing counters.
953 	 * So we take a snapshot of the counter value on enable and save it
954 	 * to calculate the delta at later stage to present the event counter
955 	 * value.
956 	 */
957 	addr = get_event_base_addr(event);
958 	data = be64_to_cpu(READ_ONCE(*addr));
959 	local64_set(&event->hw.prev_count, data);
960 
961 	return data;
962 }
963 
964 static void imc_event_update(struct perf_event *event)
965 {
966 	u64 counter_prev, counter_new, final_count;
967 
968 	counter_prev = local64_read(&event->hw.prev_count);
969 	counter_new = imc_read_counter(event);
970 	final_count = counter_new - counter_prev;
971 
972 	/* Update the delta to the event count */
973 	local64_add(final_count, &event->count);
974 }
975 
976 static void imc_event_start(struct perf_event *event, int flags)
977 {
978 	/*
979 	 * In Memory Counters are free flowing counters. HW or the microcode
980 	 * keeps adding to the counter offset in memory. To get event
981 	 * counter value, we snapshot the value here and we calculate
982 	 * delta at later point.
983 	 */
984 	imc_read_counter(event);
985 }
986 
987 static void imc_event_stop(struct perf_event *event, int flags)
988 {
989 	/*
990 	 * Take a snapshot and calculate the delta and update
991 	 * the event counter values.
992 	 */
993 	imc_event_update(event);
994 }
995 
996 static int imc_event_add(struct perf_event *event, int flags)
997 {
998 	if (flags & PERF_EF_START)
999 		imc_event_start(event, flags);
1000 
1001 	return 0;
1002 }
1003 
1004 static int thread_imc_event_add(struct perf_event *event, int flags)
1005 {
1006 	if (flags & PERF_EF_START)
1007 		imc_event_start(event, flags);
1008 
1009 	/* Enable the sched_task to start the engine */
1010 	perf_sched_cb_inc(event->ctx->pmu);
1011 	return 0;
1012 }
1013 
1014 static void thread_imc_event_del(struct perf_event *event, int flags)
1015 {
1016 	/*
1017 	 * Take a snapshot and calculate the delta and update
1018 	 * the event counter values.
1019 	 */
1020 	imc_event_update(event);
1021 	perf_sched_cb_dec(event->ctx->pmu);
1022 }
1023 
1024 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1025 static int update_pmu_ops(struct imc_pmu *pmu)
1026 {
1027 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1028 	pmu->pmu.add = imc_event_add;
1029 	pmu->pmu.del = imc_event_stop;
1030 	pmu->pmu.start = imc_event_start;
1031 	pmu->pmu.stop = imc_event_stop;
1032 	pmu->pmu.read = imc_event_update;
1033 	pmu->pmu.attr_groups = pmu->attr_groups;
1034 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1035 
1036 	switch (pmu->domain) {
1037 	case IMC_DOMAIN_NEST:
1038 		pmu->pmu.event_init = nest_imc_event_init;
1039 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1040 		break;
1041 	case IMC_DOMAIN_CORE:
1042 		pmu->pmu.event_init = core_imc_event_init;
1043 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1044 		break;
1045 	case IMC_DOMAIN_THREAD:
1046 		pmu->pmu.event_init = thread_imc_event_init;
1047 		pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1048 		pmu->pmu.add = thread_imc_event_add;
1049 		pmu->pmu.del = thread_imc_event_del;
1050 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1051 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1052 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1062 static int init_nest_pmu_ref(void)
1063 {
1064 	int nid, i, cpu;
1065 
1066 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1067 								GFP_KERNEL);
1068 
1069 	if (!nest_imc_refc)
1070 		return -ENOMEM;
1071 
1072 	i = 0;
1073 	for_each_node(nid) {
1074 		/*
1075 		 * Mutex lock to avoid races while tracking the number of
1076 		 * sessions using the chip's nest pmu units.
1077 		 */
1078 		mutex_init(&nest_imc_refc[i].lock);
1079 
1080 		/*
1081 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1082 		 * 0 and will be used as index to the array. "i" will not go off the
1083 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1084 		 * nodes only.
1085 		 */
1086 		nest_imc_refc[i++].id = nid;
1087 	}
1088 
1089 	/*
1090 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1091 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1092 	 */
1093 	for_each_possible_cpu(cpu) {
1094 		nid = cpu_to_node(cpu);
1095 		for (i = 0; i < num_possible_nodes(); i++) {
1096 			if (nest_imc_refc[i].id == nid) {
1097 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1098 				break;
1099 			}
1100 		}
1101 	}
1102 	return 0;
1103 }
1104 
1105 static void cleanup_all_core_imc_memory(void)
1106 {
1107 	int i, nr_cores = num_present_cpus() / threads_per_core;
1108 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1109 	int size = core_imc_pmu->counter_mem_size;
1110 
1111 	/* mem_info will never be NULL */
1112 	for (i = 0; i < nr_cores; i++) {
1113 		if (ptr[i].vbase)
1114 			free_pages((u64)ptr->vbase, get_order(size));
1115 	}
1116 
1117 	kfree(ptr);
1118 	kfree(core_imc_refc);
1119 }
1120 
1121 static void thread_imc_ldbar_disable(void *dummy)
1122 {
1123 	/*
1124 	 * By Zeroing LDBAR, we disable thread-imc
1125 	 * updates.
1126 	 */
1127 	mtspr(SPRN_LDBAR, 0);
1128 }
1129 
1130 void thread_imc_disable(void)
1131 {
1132 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1133 }
1134 
1135 static void cleanup_all_thread_imc_memory(void)
1136 {
1137 	int i, order = get_order(thread_imc_mem_size);
1138 
1139 	for_each_online_cpu(i) {
1140 		if (per_cpu(thread_imc_mem, i))
1141 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1142 
1143 	}
1144 }
1145 
1146 /*
1147  * Common function to unregister cpu hotplug callback and
1148  * free the memory.
1149  * TODO: Need to handle pmu unregistering, which will be
1150  * done in followup series.
1151  */
1152 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1153 {
1154 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1155 		mutex_lock(&nest_init_lock);
1156 		if (nest_pmus == 1) {
1157 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1158 			kfree(nest_imc_refc);
1159 		}
1160 
1161 		if (nest_pmus > 0)
1162 			nest_pmus--;
1163 		mutex_unlock(&nest_init_lock);
1164 	}
1165 
1166 	/* Free core_imc memory */
1167 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1168 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1169 		cleanup_all_core_imc_memory();
1170 	}
1171 
1172 	/* Free thread_imc memory */
1173 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1174 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1175 		cleanup_all_thread_imc_memory();
1176 	}
1177 
1178 	/* Only free the attr_groups which are dynamically allocated  */
1179 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1180 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1181 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1182 	kfree(pmu_ptr);
1183 	return;
1184 }
1185 
1186 
1187 /*
1188  * imc_mem_init : Function to support memory allocation for core imc.
1189  */
1190 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1191 								int pmu_index)
1192 {
1193 	const char *s;
1194 	int nr_cores, cpu, res;
1195 
1196 	if (of_property_read_string(parent, "name", &s))
1197 		return -ENODEV;
1198 
1199 	switch (pmu_ptr->domain) {
1200 	case IMC_DOMAIN_NEST:
1201 		/* Update the pmu name */
1202 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1203 		if (!pmu_ptr->pmu.name)
1204 			return -ENOMEM;
1205 
1206 		/* Needed for hotplug/migration */
1207 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1208 		break;
1209 	case IMC_DOMAIN_CORE:
1210 		/* Update the pmu name */
1211 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1212 		if (!pmu_ptr->pmu.name)
1213 			return -ENOMEM;
1214 
1215 		nr_cores = num_present_cpus() / threads_per_core;
1216 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1217 								GFP_KERNEL);
1218 
1219 		if (!pmu_ptr->mem_info)
1220 			return -ENOMEM;
1221 
1222 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1223 								GFP_KERNEL);
1224 
1225 		if (!core_imc_refc)
1226 			return -ENOMEM;
1227 
1228 		core_imc_pmu = pmu_ptr;
1229 		break;
1230 	case IMC_DOMAIN_THREAD:
1231 		/* Update the pmu name */
1232 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1233 		if (!pmu_ptr->pmu.name)
1234 			return -ENOMEM;
1235 
1236 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1237 		for_each_online_cpu(cpu) {
1238 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1239 			if (res)
1240 				return res;
1241 		}
1242 
1243 		thread_imc_pmu = pmu_ptr;
1244 		break;
1245 	default:
1246 		return -EINVAL;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 /*
1253  * init_imc_pmu : Setup and register the IMC pmu device.
1254  *
1255  * @parent:	Device tree unit node
1256  * @pmu_ptr:	memory allocated for this pmu
1257  * @pmu_idx:	Count of nest pmc registered
1258  *
1259  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1260  * Handles failure cases and accordingly frees memory.
1261  */
1262 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1263 {
1264 	int ret;
1265 
1266 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1267 	if (ret)
1268 		goto err_free;
1269 
1270 	switch (pmu_ptr->domain) {
1271 	case IMC_DOMAIN_NEST:
1272 		/*
1273 		* Nest imc pmu need only one cpu per chip, we initialize the
1274 		* cpumask for the first nest imc pmu and use the same for the
1275 		* rest. To handle the cpuhotplug callback unregister, we track
1276 		* the number of nest pmus in "nest_pmus".
1277 		*/
1278 		mutex_lock(&nest_init_lock);
1279 		if (nest_pmus == 0) {
1280 			ret = init_nest_pmu_ref();
1281 			if (ret) {
1282 				mutex_unlock(&nest_init_lock);
1283 				goto err_free;
1284 			}
1285 			/* Register for cpu hotplug notification. */
1286 			ret = nest_pmu_cpumask_init();
1287 			if (ret) {
1288 				mutex_unlock(&nest_init_lock);
1289 				goto err_free;
1290 			}
1291 		}
1292 		nest_pmus++;
1293 		mutex_unlock(&nest_init_lock);
1294 		break;
1295 	case IMC_DOMAIN_CORE:
1296 		ret = core_imc_pmu_cpumask_init();
1297 		if (ret) {
1298 			cleanup_all_core_imc_memory();
1299 			return ret;
1300 		}
1301 
1302 		break;
1303 	case IMC_DOMAIN_THREAD:
1304 		ret = thread_imc_cpu_init();
1305 		if (ret) {
1306 			cleanup_all_thread_imc_memory();
1307 			return ret;
1308 		}
1309 
1310 		break;
1311 	default:
1312 		return  -1;	/* Unknown domain */
1313 	}
1314 
1315 	ret = update_events_in_group(parent, pmu_ptr);
1316 	if (ret)
1317 		goto err_free;
1318 
1319 	ret = update_pmu_ops(pmu_ptr);
1320 	if (ret)
1321 		goto err_free;
1322 
1323 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1324 	if (ret)
1325 		goto err_free;
1326 
1327 	pr_info("%s performance monitor hardware support registered\n",
1328 							pmu_ptr->pmu.name);
1329 
1330 	return 0;
1331 
1332 err_free:
1333 	imc_common_cpuhp_mem_free(pmu_ptr);
1334 	return ret;
1335 }
1336