1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/perf_event.h> 10 #include <linux/slab.h> 11 #include <asm/opal.h> 12 #include <asm/imc-pmu.h> 13 #include <asm/cputhreads.h> 14 #include <asm/smp.h> 15 #include <linux/string.h> 16 17 /* Nest IMC data structures and variables */ 18 19 /* 20 * Used to avoid races in counting the nest-pmu units during hotplug 21 * register and unregister 22 */ 23 static DEFINE_MUTEX(nest_init_lock); 24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 25 static struct imc_pmu **per_nest_pmu_arr; 26 static cpumask_t nest_imc_cpumask; 27 static struct imc_pmu_ref *nest_imc_refc; 28 static int nest_pmus; 29 30 /* Core IMC data structures and variables */ 31 32 static cpumask_t core_imc_cpumask; 33 static struct imc_pmu_ref *core_imc_refc; 34 static struct imc_pmu *core_imc_pmu; 35 36 /* Thread IMC data structures and variables */ 37 38 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 39 static struct imc_pmu *thread_imc_pmu; 40 static int thread_imc_mem_size; 41 42 /* Trace IMC data structures */ 43 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 44 static struct imc_pmu_ref *trace_imc_refc; 45 static int trace_imc_mem_size; 46 47 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 48 { 49 return container_of(event->pmu, struct imc_pmu, pmu); 50 } 51 52 PMU_FORMAT_ATTR(event, "config:0-61"); 53 PMU_FORMAT_ATTR(offset, "config:0-31"); 54 PMU_FORMAT_ATTR(rvalue, "config:32"); 55 PMU_FORMAT_ATTR(mode, "config:33-40"); 56 static struct attribute *imc_format_attrs[] = { 57 &format_attr_event.attr, 58 &format_attr_offset.attr, 59 &format_attr_rvalue.attr, 60 &format_attr_mode.attr, 61 NULL, 62 }; 63 64 static struct attribute_group imc_format_group = { 65 .name = "format", 66 .attrs = imc_format_attrs, 67 }; 68 69 /* Format attribute for imc trace-mode */ 70 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 71 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 72 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 73 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 74 static struct attribute *trace_imc_format_attrs[] = { 75 &format_attr_event.attr, 76 &format_attr_cpmc_reserved.attr, 77 &format_attr_cpmc_event.attr, 78 &format_attr_cpmc_samplesel.attr, 79 &format_attr_cpmc_load.attr, 80 NULL, 81 }; 82 83 static struct attribute_group trace_imc_format_group = { 84 .name = "format", 85 .attrs = trace_imc_format_attrs, 86 }; 87 88 /* Get the cpumask printed to a buffer "buf" */ 89 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 90 struct device_attribute *attr, 91 char *buf) 92 { 93 struct pmu *pmu = dev_get_drvdata(dev); 94 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 95 cpumask_t *active_mask; 96 97 switch(imc_pmu->domain){ 98 case IMC_DOMAIN_NEST: 99 active_mask = &nest_imc_cpumask; 100 break; 101 case IMC_DOMAIN_CORE: 102 active_mask = &core_imc_cpumask; 103 break; 104 default: 105 return 0; 106 } 107 108 return cpumap_print_to_pagebuf(true, buf, active_mask); 109 } 110 111 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 112 113 static struct attribute *imc_pmu_cpumask_attrs[] = { 114 &dev_attr_cpumask.attr, 115 NULL, 116 }; 117 118 static struct attribute_group imc_pmu_cpumask_attr_group = { 119 .attrs = imc_pmu_cpumask_attrs, 120 }; 121 122 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 123 static struct attribute *device_str_attr_create(const char *name, const char *str) 124 { 125 struct perf_pmu_events_attr *attr; 126 127 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 128 if (!attr) 129 return NULL; 130 sysfs_attr_init(&attr->attr.attr); 131 132 attr->event_str = str; 133 attr->attr.attr.name = name; 134 attr->attr.attr.mode = 0444; 135 attr->attr.show = perf_event_sysfs_show; 136 137 return &attr->attr.attr; 138 } 139 140 static int imc_parse_event(struct device_node *np, const char *scale, 141 const char *unit, const char *prefix, 142 u32 base, struct imc_events *event) 143 { 144 const char *s; 145 u32 reg; 146 147 if (of_property_read_u32(np, "reg", ®)) 148 goto error; 149 /* Add the base_reg value to the "reg" */ 150 event->value = base + reg; 151 152 if (of_property_read_string(np, "event-name", &s)) 153 goto error; 154 155 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 156 if (!event->name) 157 goto error; 158 159 if (of_property_read_string(np, "scale", &s)) 160 s = scale; 161 162 if (s) { 163 event->scale = kstrdup(s, GFP_KERNEL); 164 if (!event->scale) 165 goto error; 166 } 167 168 if (of_property_read_string(np, "unit", &s)) 169 s = unit; 170 171 if (s) { 172 event->unit = kstrdup(s, GFP_KERNEL); 173 if (!event->unit) 174 goto error; 175 } 176 177 return 0; 178 error: 179 kfree(event->unit); 180 kfree(event->scale); 181 kfree(event->name); 182 return -EINVAL; 183 } 184 185 /* 186 * imc_free_events: Function to cleanup the events list, having 187 * "nr_entries". 188 */ 189 static void imc_free_events(struct imc_events *events, int nr_entries) 190 { 191 int i; 192 193 /* Nothing to clean, return */ 194 if (!events) 195 return; 196 for (i = 0; i < nr_entries; i++) { 197 kfree(events[i].unit); 198 kfree(events[i].scale); 199 kfree(events[i].name); 200 } 201 202 kfree(events); 203 } 204 205 /* 206 * update_events_in_group: Update the "events" information in an attr_group 207 * and assign the attr_group to the pmu "pmu". 208 */ 209 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 210 { 211 struct attribute_group *attr_group; 212 struct attribute **attrs, *dev_str; 213 struct device_node *np, *pmu_events; 214 u32 handle, base_reg; 215 int i = 0, j = 0, ct, ret; 216 const char *prefix, *g_scale, *g_unit; 217 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 218 219 if (!of_property_read_u32(node, "events", &handle)) 220 pmu_events = of_find_node_by_phandle(handle); 221 else 222 return 0; 223 224 /* Did not find any node with a given phandle */ 225 if (!pmu_events) 226 return 0; 227 228 /* Get a count of number of child nodes */ 229 ct = of_get_child_count(pmu_events); 230 231 /* Get the event prefix */ 232 if (of_property_read_string(node, "events-prefix", &prefix)) 233 return 0; 234 235 /* Get a global unit and scale data if available */ 236 if (of_property_read_string(node, "scale", &g_scale)) 237 g_scale = NULL; 238 239 if (of_property_read_string(node, "unit", &g_unit)) 240 g_unit = NULL; 241 242 /* "reg" property gives out the base offset of the counters data */ 243 of_property_read_u32(node, "reg", &base_reg); 244 245 /* Allocate memory for the events */ 246 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 247 if (!pmu->events) 248 return -ENOMEM; 249 250 ct = 0; 251 /* Parse the events and update the struct */ 252 for_each_child_of_node(pmu_events, np) { 253 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 254 if (!ret) 255 ct++; 256 } 257 258 /* Allocate memory for attribute group */ 259 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 260 if (!attr_group) { 261 imc_free_events(pmu->events, ct); 262 return -ENOMEM; 263 } 264 265 /* 266 * Allocate memory for attributes. 267 * Since we have count of events for this pmu, we also allocate 268 * memory for the scale and unit attribute for now. 269 * "ct" has the total event structs added from the events-parent node. 270 * So allocate three times the "ct" (this includes event, event_scale and 271 * event_unit). 272 */ 273 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 274 if (!attrs) { 275 kfree(attr_group); 276 imc_free_events(pmu->events, ct); 277 return -ENOMEM; 278 } 279 280 attr_group->name = "events"; 281 attr_group->attrs = attrs; 282 do { 283 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 284 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 285 if (!dev_str) 286 continue; 287 288 attrs[j++] = dev_str; 289 if (pmu->events[i].scale) { 290 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 291 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 292 if (!dev_str) 293 continue; 294 295 attrs[j++] = dev_str; 296 } 297 298 if (pmu->events[i].unit) { 299 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 300 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 301 if (!dev_str) 302 continue; 303 304 attrs[j++] = dev_str; 305 } 306 } while (++i < ct); 307 308 /* Save the event attribute */ 309 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 310 311 return 0; 312 } 313 314 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 315 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 316 { 317 return per_cpu(local_nest_imc_refc, cpu); 318 } 319 320 static void nest_change_cpu_context(int old_cpu, int new_cpu) 321 { 322 struct imc_pmu **pn = per_nest_pmu_arr; 323 324 if (old_cpu < 0 || new_cpu < 0) 325 return; 326 327 while (*pn) { 328 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 329 pn++; 330 } 331 } 332 333 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 334 { 335 int nid, target = -1; 336 const struct cpumask *l_cpumask; 337 struct imc_pmu_ref *ref; 338 339 /* 340 * Check in the designated list for this cpu. Dont bother 341 * if not one of them. 342 */ 343 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 344 return 0; 345 346 /* 347 * Check whether nest_imc is registered. We could end up here if the 348 * cpuhotplug callback registration fails. i.e, callback invokes the 349 * offline path for all successfully registered nodes. At this stage, 350 * nest_imc pmu will not be registered and we should return here. 351 * 352 * We return with a zero since this is not an offline failure. And 353 * cpuhp_setup_state() returns the actual failure reason to the caller, 354 * which in turn will call the cleanup routine. 355 */ 356 if (!nest_pmus) 357 return 0; 358 359 /* 360 * Now that this cpu is one of the designated, 361 * find a next cpu a) which is online and b) in same chip. 362 */ 363 nid = cpu_to_node(cpu); 364 l_cpumask = cpumask_of_node(nid); 365 target = cpumask_last(l_cpumask); 366 367 /* 368 * If this(target) is the last cpu in the cpumask for this chip, 369 * check for any possible online cpu in the chip. 370 */ 371 if (unlikely(target == cpu)) 372 target = cpumask_any_but(l_cpumask, cpu); 373 374 /* 375 * Update the cpumask with the target cpu and 376 * migrate the context if needed 377 */ 378 if (target >= 0 && target < nr_cpu_ids) { 379 cpumask_set_cpu(target, &nest_imc_cpumask); 380 nest_change_cpu_context(cpu, target); 381 } else { 382 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 383 get_hard_smp_processor_id(cpu)); 384 /* 385 * If this is the last cpu in this chip then, skip the reference 386 * count mutex lock and make the reference count on this chip zero. 387 */ 388 ref = get_nest_pmu_ref(cpu); 389 if (!ref) 390 return -EINVAL; 391 392 ref->refc = 0; 393 } 394 return 0; 395 } 396 397 static int ppc_nest_imc_cpu_online(unsigned int cpu) 398 { 399 const struct cpumask *l_cpumask; 400 static struct cpumask tmp_mask; 401 int res; 402 403 /* Get the cpumask of this node */ 404 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 405 406 /* 407 * If this is not the first online CPU on this node, then 408 * just return. 409 */ 410 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 411 return 0; 412 413 /* 414 * If this is the first online cpu on this node 415 * disable the nest counters by making an OPAL call. 416 */ 417 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 418 get_hard_smp_processor_id(cpu)); 419 if (res) 420 return res; 421 422 /* Make this CPU the designated target for counter collection */ 423 cpumask_set_cpu(cpu, &nest_imc_cpumask); 424 return 0; 425 } 426 427 static int nest_pmu_cpumask_init(void) 428 { 429 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 430 "perf/powerpc/imc:online", 431 ppc_nest_imc_cpu_online, 432 ppc_nest_imc_cpu_offline); 433 } 434 435 static void nest_imc_counters_release(struct perf_event *event) 436 { 437 int rc, node_id; 438 struct imc_pmu_ref *ref; 439 440 if (event->cpu < 0) 441 return; 442 443 node_id = cpu_to_node(event->cpu); 444 445 /* 446 * See if we need to disable the nest PMU. 447 * If no events are currently in use, then we have to take a 448 * mutex to ensure that we don't race with another task doing 449 * enable or disable the nest counters. 450 */ 451 ref = get_nest_pmu_ref(event->cpu); 452 if (!ref) 453 return; 454 455 /* Take the mutex lock for this node and then decrement the reference count */ 456 mutex_lock(&ref->lock); 457 if (ref->refc == 0) { 458 /* 459 * The scenario where this is true is, when perf session is 460 * started, followed by offlining of all cpus in a given node. 461 * 462 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 463 * function set the ref->count to zero, if the cpu which is 464 * about to offline is the last cpu in a given node and make 465 * an OPAL call to disable the engine in that node. 466 * 467 */ 468 mutex_unlock(&ref->lock); 469 return; 470 } 471 ref->refc--; 472 if (ref->refc == 0) { 473 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 474 get_hard_smp_processor_id(event->cpu)); 475 if (rc) { 476 mutex_unlock(&ref->lock); 477 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 478 return; 479 } 480 } else if (ref->refc < 0) { 481 WARN(1, "nest-imc: Invalid event reference count\n"); 482 ref->refc = 0; 483 } 484 mutex_unlock(&ref->lock); 485 } 486 487 static int nest_imc_event_init(struct perf_event *event) 488 { 489 int chip_id, rc, node_id; 490 u32 l_config, config = event->attr.config; 491 struct imc_mem_info *pcni; 492 struct imc_pmu *pmu; 493 struct imc_pmu_ref *ref; 494 bool flag = false; 495 496 if (event->attr.type != event->pmu->type) 497 return -ENOENT; 498 499 /* Sampling not supported */ 500 if (event->hw.sample_period) 501 return -EINVAL; 502 503 if (event->cpu < 0) 504 return -EINVAL; 505 506 pmu = imc_event_to_pmu(event); 507 508 /* Sanity check for config (event offset) */ 509 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 510 return -EINVAL; 511 512 /* 513 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 514 * Get the base memory addresss for this cpu. 515 */ 516 chip_id = cpu_to_chip_id(event->cpu); 517 518 /* Return, if chip_id is not valid */ 519 if (chip_id < 0) 520 return -ENODEV; 521 522 pcni = pmu->mem_info; 523 do { 524 if (pcni->id == chip_id) { 525 flag = true; 526 break; 527 } 528 pcni++; 529 } while (pcni->vbase != 0); 530 531 if (!flag) 532 return -ENODEV; 533 534 /* 535 * Add the event offset to the base address. 536 */ 537 l_config = config & IMC_EVENT_OFFSET_MASK; 538 event->hw.event_base = (u64)pcni->vbase + l_config; 539 node_id = cpu_to_node(event->cpu); 540 541 /* 542 * Get the imc_pmu_ref struct for this node. 543 * Take the mutex lock and then increment the count of nest pmu events 544 * inited. 545 */ 546 ref = get_nest_pmu_ref(event->cpu); 547 if (!ref) 548 return -EINVAL; 549 550 mutex_lock(&ref->lock); 551 if (ref->refc == 0) { 552 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 553 get_hard_smp_processor_id(event->cpu)); 554 if (rc) { 555 mutex_unlock(&ref->lock); 556 pr_err("nest-imc: Unable to start the counters for node %d\n", 557 node_id); 558 return rc; 559 } 560 } 561 ++ref->refc; 562 mutex_unlock(&ref->lock); 563 564 event->destroy = nest_imc_counters_release; 565 return 0; 566 } 567 568 /* 569 * core_imc_mem_init : Initializes memory for the current core. 570 * 571 * Uses alloc_pages_node() and uses the returned address as an argument to 572 * an opal call to configure the pdbar. The address sent as an argument is 573 * converted to physical address before the opal call is made. This is the 574 * base address at which the core imc counters are populated. 575 */ 576 static int core_imc_mem_init(int cpu, int size) 577 { 578 int nid, rc = 0, core_id = (cpu / threads_per_core); 579 struct imc_mem_info *mem_info; 580 struct page *page; 581 582 /* 583 * alloc_pages_node() will allocate memory for core in the 584 * local node only. 585 */ 586 nid = cpu_to_node(cpu); 587 mem_info = &core_imc_pmu->mem_info[core_id]; 588 mem_info->id = core_id; 589 590 /* We need only vbase for core counters */ 591 page = alloc_pages_node(nid, 592 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 593 __GFP_NOWARN, get_order(size)); 594 if (!page) 595 return -ENOMEM; 596 mem_info->vbase = page_address(page); 597 598 /* Init the mutex */ 599 core_imc_refc[core_id].id = core_id; 600 mutex_init(&core_imc_refc[core_id].lock); 601 602 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 603 __pa((void *)mem_info->vbase), 604 get_hard_smp_processor_id(cpu)); 605 if (rc) { 606 free_pages((u64)mem_info->vbase, get_order(size)); 607 mem_info->vbase = NULL; 608 } 609 610 return rc; 611 } 612 613 static bool is_core_imc_mem_inited(int cpu) 614 { 615 struct imc_mem_info *mem_info; 616 int core_id = (cpu / threads_per_core); 617 618 mem_info = &core_imc_pmu->mem_info[core_id]; 619 if (!mem_info->vbase) 620 return false; 621 622 return true; 623 } 624 625 static int ppc_core_imc_cpu_online(unsigned int cpu) 626 { 627 const struct cpumask *l_cpumask; 628 static struct cpumask tmp_mask; 629 int ret = 0; 630 631 /* Get the cpumask for this core */ 632 l_cpumask = cpu_sibling_mask(cpu); 633 634 /* If a cpu for this core is already set, then, don't do anything */ 635 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 636 return 0; 637 638 if (!is_core_imc_mem_inited(cpu)) { 639 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 640 if (ret) { 641 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 642 return ret; 643 } 644 } 645 646 /* set the cpu in the mask */ 647 cpumask_set_cpu(cpu, &core_imc_cpumask); 648 return 0; 649 } 650 651 static int ppc_core_imc_cpu_offline(unsigned int cpu) 652 { 653 unsigned int core_id; 654 int ncpu; 655 struct imc_pmu_ref *ref; 656 657 /* 658 * clear this cpu out of the mask, if not present in the mask, 659 * don't bother doing anything. 660 */ 661 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 662 return 0; 663 664 /* 665 * Check whether core_imc is registered. We could end up here 666 * if the cpuhotplug callback registration fails. i.e, callback 667 * invokes the offline path for all sucessfully registered cpus. 668 * At this stage, core_imc pmu will not be registered and we 669 * should return here. 670 * 671 * We return with a zero since this is not an offline failure. 672 * And cpuhp_setup_state() returns the actual failure reason 673 * to the caller, which inturn will call the cleanup routine. 674 */ 675 if (!core_imc_pmu->pmu.event_init) 676 return 0; 677 678 /* Find any online cpu in that core except the current "cpu" */ 679 ncpu = cpumask_last(cpu_sibling_mask(cpu)); 680 681 if (unlikely(ncpu == cpu)) 682 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 683 684 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 685 cpumask_set_cpu(ncpu, &core_imc_cpumask); 686 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 687 } else { 688 /* 689 * If this is the last cpu in this core then, skip taking refernce 690 * count mutex lock for this core and directly zero "refc" for 691 * this core. 692 */ 693 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 694 get_hard_smp_processor_id(cpu)); 695 core_id = cpu / threads_per_core; 696 ref = &core_imc_refc[core_id]; 697 if (!ref) 698 return -EINVAL; 699 700 ref->refc = 0; 701 } 702 return 0; 703 } 704 705 static int core_imc_pmu_cpumask_init(void) 706 { 707 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 708 "perf/powerpc/imc_core:online", 709 ppc_core_imc_cpu_online, 710 ppc_core_imc_cpu_offline); 711 } 712 713 static void core_imc_counters_release(struct perf_event *event) 714 { 715 int rc, core_id; 716 struct imc_pmu_ref *ref; 717 718 if (event->cpu < 0) 719 return; 720 /* 721 * See if we need to disable the IMC PMU. 722 * If no events are currently in use, then we have to take a 723 * mutex to ensure that we don't race with another task doing 724 * enable or disable the core counters. 725 */ 726 core_id = event->cpu / threads_per_core; 727 728 /* Take the mutex lock and decrement the refernce count for this core */ 729 ref = &core_imc_refc[core_id]; 730 if (!ref) 731 return; 732 733 mutex_lock(&ref->lock); 734 if (ref->refc == 0) { 735 /* 736 * The scenario where this is true is, when perf session is 737 * started, followed by offlining of all cpus in a given core. 738 * 739 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 740 * function set the ref->count to zero, if the cpu which is 741 * about to offline is the last cpu in a given core and make 742 * an OPAL call to disable the engine in that core. 743 * 744 */ 745 mutex_unlock(&ref->lock); 746 return; 747 } 748 ref->refc--; 749 if (ref->refc == 0) { 750 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 751 get_hard_smp_processor_id(event->cpu)); 752 if (rc) { 753 mutex_unlock(&ref->lock); 754 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 755 return; 756 } 757 } else if (ref->refc < 0) { 758 WARN(1, "core-imc: Invalid event reference count\n"); 759 ref->refc = 0; 760 } 761 mutex_unlock(&ref->lock); 762 } 763 764 static int core_imc_event_init(struct perf_event *event) 765 { 766 int core_id, rc; 767 u64 config = event->attr.config; 768 struct imc_mem_info *pcmi; 769 struct imc_pmu *pmu; 770 struct imc_pmu_ref *ref; 771 772 if (event->attr.type != event->pmu->type) 773 return -ENOENT; 774 775 /* Sampling not supported */ 776 if (event->hw.sample_period) 777 return -EINVAL; 778 779 if (event->cpu < 0) 780 return -EINVAL; 781 782 event->hw.idx = -1; 783 pmu = imc_event_to_pmu(event); 784 785 /* Sanity check for config (event offset) */ 786 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 787 return -EINVAL; 788 789 if (!is_core_imc_mem_inited(event->cpu)) 790 return -ENODEV; 791 792 core_id = event->cpu / threads_per_core; 793 pcmi = &core_imc_pmu->mem_info[core_id]; 794 if ((!pcmi->vbase)) 795 return -ENODEV; 796 797 /* Get the core_imc mutex for this core */ 798 ref = &core_imc_refc[core_id]; 799 if (!ref) 800 return -EINVAL; 801 802 /* 803 * Core pmu units are enabled only when it is used. 804 * See if this is triggered for the first time. 805 * If yes, take the mutex lock and enable the core counters. 806 * If not, just increment the count in core_imc_refc struct. 807 */ 808 mutex_lock(&ref->lock); 809 if (ref->refc == 0) { 810 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 811 get_hard_smp_processor_id(event->cpu)); 812 if (rc) { 813 mutex_unlock(&ref->lock); 814 pr_err("core-imc: Unable to start the counters for core %d\n", 815 core_id); 816 return rc; 817 } 818 } 819 ++ref->refc; 820 mutex_unlock(&ref->lock); 821 822 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 823 event->destroy = core_imc_counters_release; 824 return 0; 825 } 826 827 /* 828 * Allocates a page of memory for each of the online cpus, and load 829 * LDBAR with 0. 830 * The physical base address of the page allocated for a cpu will be 831 * written to the LDBAR for that cpu, when the thread-imc event 832 * is added. 833 * 834 * LDBAR Register Layout: 835 * 836 * 0 4 8 12 16 20 24 28 837 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 838 * | | [ ] [ Counter Address [8:50] 839 * | * Mode | 840 * | * PB Scope 841 * * Enable/Disable 842 * 843 * 32 36 40 44 48 52 56 60 844 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 845 * Counter Address [8:50] ] 846 * 847 */ 848 static int thread_imc_mem_alloc(int cpu_id, int size) 849 { 850 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 851 int nid = cpu_to_node(cpu_id); 852 853 if (!local_mem) { 854 struct page *page; 855 /* 856 * This case could happen only once at start, since we dont 857 * free the memory in cpu offline path. 858 */ 859 page = alloc_pages_node(nid, 860 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 861 __GFP_NOWARN, get_order(size)); 862 if (!page) 863 return -ENOMEM; 864 local_mem = page_address(page); 865 866 per_cpu(thread_imc_mem, cpu_id) = local_mem; 867 } 868 869 mtspr(SPRN_LDBAR, 0); 870 return 0; 871 } 872 873 static int ppc_thread_imc_cpu_online(unsigned int cpu) 874 { 875 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 876 } 877 878 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 879 { 880 mtspr(SPRN_LDBAR, 0); 881 return 0; 882 } 883 884 static int thread_imc_cpu_init(void) 885 { 886 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 887 "perf/powerpc/imc_thread:online", 888 ppc_thread_imc_cpu_online, 889 ppc_thread_imc_cpu_offline); 890 } 891 892 static int thread_imc_event_init(struct perf_event *event) 893 { 894 u32 config = event->attr.config; 895 struct task_struct *target; 896 struct imc_pmu *pmu; 897 898 if (event->attr.type != event->pmu->type) 899 return -ENOENT; 900 901 if (!capable(CAP_SYS_ADMIN)) 902 return -EACCES; 903 904 /* Sampling not supported */ 905 if (event->hw.sample_period) 906 return -EINVAL; 907 908 event->hw.idx = -1; 909 pmu = imc_event_to_pmu(event); 910 911 /* Sanity check for config offset */ 912 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 913 return -EINVAL; 914 915 target = event->hw.target; 916 if (!target) 917 return -EINVAL; 918 919 event->pmu->task_ctx_nr = perf_sw_context; 920 return 0; 921 } 922 923 static bool is_thread_imc_pmu(struct perf_event *event) 924 { 925 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 926 return true; 927 928 return false; 929 } 930 931 static u64 * get_event_base_addr(struct perf_event *event) 932 { 933 u64 addr; 934 935 if (is_thread_imc_pmu(event)) { 936 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 937 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 938 } 939 940 return (u64 *)event->hw.event_base; 941 } 942 943 static void thread_imc_pmu_start_txn(struct pmu *pmu, 944 unsigned int txn_flags) 945 { 946 if (txn_flags & ~PERF_PMU_TXN_ADD) 947 return; 948 perf_pmu_disable(pmu); 949 } 950 951 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 952 { 953 perf_pmu_enable(pmu); 954 } 955 956 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 957 { 958 perf_pmu_enable(pmu); 959 return 0; 960 } 961 962 static u64 imc_read_counter(struct perf_event *event) 963 { 964 u64 *addr, data; 965 966 /* 967 * In-Memory Collection (IMC) counters are free flowing counters. 968 * So we take a snapshot of the counter value on enable and save it 969 * to calculate the delta at later stage to present the event counter 970 * value. 971 */ 972 addr = get_event_base_addr(event); 973 data = be64_to_cpu(READ_ONCE(*addr)); 974 local64_set(&event->hw.prev_count, data); 975 976 return data; 977 } 978 979 static void imc_event_update(struct perf_event *event) 980 { 981 u64 counter_prev, counter_new, final_count; 982 983 counter_prev = local64_read(&event->hw.prev_count); 984 counter_new = imc_read_counter(event); 985 final_count = counter_new - counter_prev; 986 987 /* Update the delta to the event count */ 988 local64_add(final_count, &event->count); 989 } 990 991 static void imc_event_start(struct perf_event *event, int flags) 992 { 993 /* 994 * In Memory Counters are free flowing counters. HW or the microcode 995 * keeps adding to the counter offset in memory. To get event 996 * counter value, we snapshot the value here and we calculate 997 * delta at later point. 998 */ 999 imc_read_counter(event); 1000 } 1001 1002 static void imc_event_stop(struct perf_event *event, int flags) 1003 { 1004 /* 1005 * Take a snapshot and calculate the delta and update 1006 * the event counter values. 1007 */ 1008 imc_event_update(event); 1009 } 1010 1011 static int imc_event_add(struct perf_event *event, int flags) 1012 { 1013 if (flags & PERF_EF_START) 1014 imc_event_start(event, flags); 1015 1016 return 0; 1017 } 1018 1019 static int thread_imc_event_add(struct perf_event *event, int flags) 1020 { 1021 int core_id; 1022 struct imc_pmu_ref *ref; 1023 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1024 1025 if (flags & PERF_EF_START) 1026 imc_event_start(event, flags); 1027 1028 if (!is_core_imc_mem_inited(smp_processor_id())) 1029 return -EINVAL; 1030 1031 core_id = smp_processor_id() / threads_per_core; 1032 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1033 mtspr(SPRN_LDBAR, ldbar_value); 1034 1035 /* 1036 * imc pmus are enabled only when it is used. 1037 * See if this is triggered for the first time. 1038 * If yes, take the mutex lock and enable the counters. 1039 * If not, just increment the count in ref count struct. 1040 */ 1041 ref = &core_imc_refc[core_id]; 1042 if (!ref) 1043 return -EINVAL; 1044 1045 mutex_lock(&ref->lock); 1046 if (ref->refc == 0) { 1047 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1048 get_hard_smp_processor_id(smp_processor_id()))) { 1049 mutex_unlock(&ref->lock); 1050 pr_err("thread-imc: Unable to start the counter\ 1051 for core %d\n", core_id); 1052 return -EINVAL; 1053 } 1054 } 1055 ++ref->refc; 1056 mutex_unlock(&ref->lock); 1057 return 0; 1058 } 1059 1060 static void thread_imc_event_del(struct perf_event *event, int flags) 1061 { 1062 1063 int core_id; 1064 struct imc_pmu_ref *ref; 1065 1066 mtspr(SPRN_LDBAR, 0); 1067 1068 core_id = smp_processor_id() / threads_per_core; 1069 ref = &core_imc_refc[core_id]; 1070 1071 mutex_lock(&ref->lock); 1072 ref->refc--; 1073 if (ref->refc == 0) { 1074 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1075 get_hard_smp_processor_id(smp_processor_id()))) { 1076 mutex_unlock(&ref->lock); 1077 pr_err("thread-imc: Unable to stop the counters\ 1078 for core %d\n", core_id); 1079 return; 1080 } 1081 } else if (ref->refc < 0) { 1082 ref->refc = 0; 1083 } 1084 mutex_unlock(&ref->lock); 1085 /* 1086 * Take a snapshot and calculate the delta and update 1087 * the event counter values. 1088 */ 1089 imc_event_update(event); 1090 } 1091 1092 /* 1093 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1094 */ 1095 static int trace_imc_mem_alloc(int cpu_id, int size) 1096 { 1097 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1098 int phys_id = cpu_to_node(cpu_id), rc = 0; 1099 int core_id = (cpu_id / threads_per_core); 1100 1101 if (!local_mem) { 1102 struct page *page; 1103 1104 page = alloc_pages_node(phys_id, 1105 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1106 __GFP_NOWARN, get_order(size)); 1107 if (!page) 1108 return -ENOMEM; 1109 local_mem = page_address(page); 1110 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1111 1112 /* Initialise the counters for trace mode */ 1113 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1114 get_hard_smp_processor_id(cpu_id)); 1115 if (rc) { 1116 pr_info("IMC:opal init failed for trace imc\n"); 1117 return rc; 1118 } 1119 } 1120 1121 /* Init the mutex, if not already */ 1122 trace_imc_refc[core_id].id = core_id; 1123 mutex_init(&trace_imc_refc[core_id].lock); 1124 1125 mtspr(SPRN_LDBAR, 0); 1126 return 0; 1127 } 1128 1129 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1130 { 1131 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1132 } 1133 1134 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1135 { 1136 mtspr(SPRN_LDBAR, 0); 1137 return 0; 1138 } 1139 1140 static int trace_imc_cpu_init(void) 1141 { 1142 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1143 "perf/powerpc/imc_trace:online", 1144 ppc_trace_imc_cpu_online, 1145 ppc_trace_imc_cpu_offline); 1146 } 1147 1148 static u64 get_trace_imc_event_base_addr(void) 1149 { 1150 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1151 } 1152 1153 /* 1154 * Function to parse trace-imc data obtained 1155 * and to prepare the perf sample. 1156 */ 1157 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1158 struct perf_sample_data *data, 1159 u64 *prev_tb, 1160 struct perf_event_header *header, 1161 struct perf_event *event) 1162 { 1163 /* Sanity checks for a valid record */ 1164 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1165 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1166 else 1167 return -EINVAL; 1168 1169 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1170 be64_to_cpu(READ_ONCE(mem->tb2))) 1171 return -EINVAL; 1172 1173 /* Prepare perf sample */ 1174 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1175 data->period = event->hw.last_period; 1176 1177 header->type = PERF_RECORD_SAMPLE; 1178 header->size = sizeof(*header) + event->header_size; 1179 header->misc = 0; 1180 1181 if (is_kernel_addr(data->ip)) 1182 header->misc |= PERF_RECORD_MISC_KERNEL; 1183 else 1184 header->misc |= PERF_RECORD_MISC_USER; 1185 1186 perf_event_header__init_id(header, data, event); 1187 1188 return 0; 1189 } 1190 1191 static void dump_trace_imc_data(struct perf_event *event) 1192 { 1193 struct trace_imc_data *mem; 1194 int i, ret; 1195 u64 prev_tb = 0; 1196 1197 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1198 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1199 i++, mem++) { 1200 struct perf_sample_data data; 1201 struct perf_event_header header; 1202 1203 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1204 if (ret) /* Exit, if not a valid record */ 1205 break; 1206 else { 1207 /* If this is a valid record, create the sample */ 1208 struct perf_output_handle handle; 1209 1210 if (perf_output_begin(&handle, event, header.size)) 1211 return; 1212 1213 perf_output_sample(&handle, &header, &data, event); 1214 perf_output_end(&handle); 1215 } 1216 } 1217 } 1218 1219 static int trace_imc_event_add(struct perf_event *event, int flags) 1220 { 1221 int core_id = smp_processor_id() / threads_per_core; 1222 struct imc_pmu_ref *ref = NULL; 1223 u64 local_mem, ldbar_value; 1224 1225 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1226 local_mem = get_trace_imc_event_base_addr(); 1227 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1228 1229 if (core_imc_refc) 1230 ref = &core_imc_refc[core_id]; 1231 if (!ref) { 1232 /* If core-imc is not enabled, use trace-imc reference count */ 1233 if (trace_imc_refc) 1234 ref = &trace_imc_refc[core_id]; 1235 if (!ref) 1236 return -EINVAL; 1237 } 1238 mtspr(SPRN_LDBAR, ldbar_value); 1239 mutex_lock(&ref->lock); 1240 if (ref->refc == 0) { 1241 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1242 get_hard_smp_processor_id(smp_processor_id()))) { 1243 mutex_unlock(&ref->lock); 1244 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1245 mtspr(SPRN_LDBAR, 0); 1246 return -EINVAL; 1247 } 1248 } 1249 ++ref->refc; 1250 mutex_unlock(&ref->lock); 1251 1252 return 0; 1253 } 1254 1255 static void trace_imc_event_read(struct perf_event *event) 1256 { 1257 return; 1258 } 1259 1260 static void trace_imc_event_stop(struct perf_event *event, int flags) 1261 { 1262 u64 local_mem = get_trace_imc_event_base_addr(); 1263 dump_trace_imc_data(event); 1264 memset((void *)local_mem, 0, sizeof(u64)); 1265 } 1266 1267 static void trace_imc_event_start(struct perf_event *event, int flags) 1268 { 1269 return; 1270 } 1271 1272 static void trace_imc_event_del(struct perf_event *event, int flags) 1273 { 1274 int core_id = smp_processor_id() / threads_per_core; 1275 struct imc_pmu_ref *ref = NULL; 1276 1277 if (core_imc_refc) 1278 ref = &core_imc_refc[core_id]; 1279 if (!ref) { 1280 /* If core-imc is not enabled, use trace-imc reference count */ 1281 if (trace_imc_refc) 1282 ref = &trace_imc_refc[core_id]; 1283 if (!ref) 1284 return; 1285 } 1286 mtspr(SPRN_LDBAR, 0); 1287 mutex_lock(&ref->lock); 1288 ref->refc--; 1289 if (ref->refc == 0) { 1290 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1291 get_hard_smp_processor_id(smp_processor_id()))) { 1292 mutex_unlock(&ref->lock); 1293 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1294 return; 1295 } 1296 } else if (ref->refc < 0) { 1297 ref->refc = 0; 1298 } 1299 mutex_unlock(&ref->lock); 1300 trace_imc_event_stop(event, flags); 1301 } 1302 1303 static int trace_imc_event_init(struct perf_event *event) 1304 { 1305 struct task_struct *target; 1306 1307 if (event->attr.type != event->pmu->type) 1308 return -ENOENT; 1309 1310 if (!capable(CAP_SYS_ADMIN)) 1311 return -EACCES; 1312 1313 /* Return if this is a couting event */ 1314 if (event->attr.sample_period == 0) 1315 return -ENOENT; 1316 1317 event->hw.idx = -1; 1318 target = event->hw.target; 1319 1320 event->pmu->task_ctx_nr = perf_hw_context; 1321 return 0; 1322 } 1323 1324 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1325 static int update_pmu_ops(struct imc_pmu *pmu) 1326 { 1327 pmu->pmu.task_ctx_nr = perf_invalid_context; 1328 pmu->pmu.add = imc_event_add; 1329 pmu->pmu.del = imc_event_stop; 1330 pmu->pmu.start = imc_event_start; 1331 pmu->pmu.stop = imc_event_stop; 1332 pmu->pmu.read = imc_event_update; 1333 pmu->pmu.attr_groups = pmu->attr_groups; 1334 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1335 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1336 1337 switch (pmu->domain) { 1338 case IMC_DOMAIN_NEST: 1339 pmu->pmu.event_init = nest_imc_event_init; 1340 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1341 break; 1342 case IMC_DOMAIN_CORE: 1343 pmu->pmu.event_init = core_imc_event_init; 1344 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1345 break; 1346 case IMC_DOMAIN_THREAD: 1347 pmu->pmu.event_init = thread_imc_event_init; 1348 pmu->pmu.add = thread_imc_event_add; 1349 pmu->pmu.del = thread_imc_event_del; 1350 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1351 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1352 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1353 break; 1354 case IMC_DOMAIN_TRACE: 1355 pmu->pmu.event_init = trace_imc_event_init; 1356 pmu->pmu.add = trace_imc_event_add; 1357 pmu->pmu.del = trace_imc_event_del; 1358 pmu->pmu.start = trace_imc_event_start; 1359 pmu->pmu.stop = trace_imc_event_stop; 1360 pmu->pmu.read = trace_imc_event_read; 1361 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1362 default: 1363 break; 1364 } 1365 1366 return 0; 1367 } 1368 1369 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1370 static int init_nest_pmu_ref(void) 1371 { 1372 int nid, i, cpu; 1373 1374 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1375 GFP_KERNEL); 1376 1377 if (!nest_imc_refc) 1378 return -ENOMEM; 1379 1380 i = 0; 1381 for_each_node(nid) { 1382 /* 1383 * Mutex lock to avoid races while tracking the number of 1384 * sessions using the chip's nest pmu units. 1385 */ 1386 mutex_init(&nest_imc_refc[i].lock); 1387 1388 /* 1389 * Loop to init the "id" with the node_id. Variable "i" initialized to 1390 * 0 and will be used as index to the array. "i" will not go off the 1391 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1392 * nodes only. 1393 */ 1394 nest_imc_refc[i++].id = nid; 1395 } 1396 1397 /* 1398 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1399 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1400 */ 1401 for_each_possible_cpu(cpu) { 1402 nid = cpu_to_node(cpu); 1403 for (i = 0; i < num_possible_nodes(); i++) { 1404 if (nest_imc_refc[i].id == nid) { 1405 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1406 break; 1407 } 1408 } 1409 } 1410 return 0; 1411 } 1412 1413 static void cleanup_all_core_imc_memory(void) 1414 { 1415 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1416 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1417 int size = core_imc_pmu->counter_mem_size; 1418 1419 /* mem_info will never be NULL */ 1420 for (i = 0; i < nr_cores; i++) { 1421 if (ptr[i].vbase) 1422 free_pages((u64)ptr[i].vbase, get_order(size)); 1423 } 1424 1425 kfree(ptr); 1426 kfree(core_imc_refc); 1427 } 1428 1429 static void thread_imc_ldbar_disable(void *dummy) 1430 { 1431 /* 1432 * By Zeroing LDBAR, we disable thread-imc 1433 * updates. 1434 */ 1435 mtspr(SPRN_LDBAR, 0); 1436 } 1437 1438 void thread_imc_disable(void) 1439 { 1440 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1441 } 1442 1443 static void cleanup_all_thread_imc_memory(void) 1444 { 1445 int i, order = get_order(thread_imc_mem_size); 1446 1447 for_each_online_cpu(i) { 1448 if (per_cpu(thread_imc_mem, i)) 1449 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1450 1451 } 1452 } 1453 1454 static void cleanup_all_trace_imc_memory(void) 1455 { 1456 int i, order = get_order(trace_imc_mem_size); 1457 1458 for_each_online_cpu(i) { 1459 if (per_cpu(trace_imc_mem, i)) 1460 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1461 1462 } 1463 kfree(trace_imc_refc); 1464 } 1465 1466 /* Function to free the attr_groups which are dynamically allocated */ 1467 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1468 { 1469 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1470 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1471 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1472 } 1473 1474 /* 1475 * Common function to unregister cpu hotplug callback and 1476 * free the memory. 1477 * TODO: Need to handle pmu unregistering, which will be 1478 * done in followup series. 1479 */ 1480 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1481 { 1482 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1483 mutex_lock(&nest_init_lock); 1484 if (nest_pmus == 1) { 1485 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1486 kfree(nest_imc_refc); 1487 kfree(per_nest_pmu_arr); 1488 per_nest_pmu_arr = NULL; 1489 } 1490 1491 if (nest_pmus > 0) 1492 nest_pmus--; 1493 mutex_unlock(&nest_init_lock); 1494 } 1495 1496 /* Free core_imc memory */ 1497 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1498 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1499 cleanup_all_core_imc_memory(); 1500 } 1501 1502 /* Free thread_imc memory */ 1503 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1504 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1505 cleanup_all_thread_imc_memory(); 1506 } 1507 1508 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1509 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1510 cleanup_all_trace_imc_memory(); 1511 } 1512 } 1513 1514 /* 1515 * Function to unregister thread-imc if core-imc 1516 * is not registered. 1517 */ 1518 void unregister_thread_imc(void) 1519 { 1520 imc_common_cpuhp_mem_free(thread_imc_pmu); 1521 imc_common_mem_free(thread_imc_pmu); 1522 perf_pmu_unregister(&thread_imc_pmu->pmu); 1523 } 1524 1525 /* 1526 * imc_mem_init : Function to support memory allocation for core imc. 1527 */ 1528 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1529 int pmu_index) 1530 { 1531 const char *s; 1532 int nr_cores, cpu, res = -ENOMEM; 1533 1534 if (of_property_read_string(parent, "name", &s)) 1535 return -ENODEV; 1536 1537 switch (pmu_ptr->domain) { 1538 case IMC_DOMAIN_NEST: 1539 /* Update the pmu name */ 1540 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1541 if (!pmu_ptr->pmu.name) 1542 goto err; 1543 1544 /* Needed for hotplug/migration */ 1545 if (!per_nest_pmu_arr) { 1546 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1547 sizeof(struct imc_pmu *), 1548 GFP_KERNEL); 1549 if (!per_nest_pmu_arr) 1550 goto err; 1551 } 1552 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1553 break; 1554 case IMC_DOMAIN_CORE: 1555 /* Update the pmu name */ 1556 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1557 if (!pmu_ptr->pmu.name) 1558 goto err; 1559 1560 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1561 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1562 GFP_KERNEL); 1563 1564 if (!pmu_ptr->mem_info) 1565 goto err; 1566 1567 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1568 GFP_KERNEL); 1569 1570 if (!core_imc_refc) { 1571 kfree(pmu_ptr->mem_info); 1572 goto err; 1573 } 1574 1575 core_imc_pmu = pmu_ptr; 1576 break; 1577 case IMC_DOMAIN_THREAD: 1578 /* Update the pmu name */ 1579 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1580 if (!pmu_ptr->pmu.name) 1581 goto err; 1582 1583 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1584 for_each_online_cpu(cpu) { 1585 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1586 if (res) { 1587 cleanup_all_thread_imc_memory(); 1588 goto err; 1589 } 1590 } 1591 1592 thread_imc_pmu = pmu_ptr; 1593 break; 1594 case IMC_DOMAIN_TRACE: 1595 /* Update the pmu name */ 1596 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1597 if (!pmu_ptr->pmu.name) 1598 return -ENOMEM; 1599 1600 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1601 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1602 GFP_KERNEL); 1603 if (!trace_imc_refc) 1604 return -ENOMEM; 1605 1606 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1607 for_each_online_cpu(cpu) { 1608 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1609 if (res) { 1610 cleanup_all_trace_imc_memory(); 1611 goto err; 1612 } 1613 } 1614 break; 1615 default: 1616 return -EINVAL; 1617 } 1618 1619 return 0; 1620 err: 1621 return res; 1622 } 1623 1624 /* 1625 * init_imc_pmu : Setup and register the IMC pmu device. 1626 * 1627 * @parent: Device tree unit node 1628 * @pmu_ptr: memory allocated for this pmu 1629 * @pmu_idx: Count of nest pmc registered 1630 * 1631 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1632 * Handles failure cases and accordingly frees memory. 1633 */ 1634 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1635 { 1636 int ret; 1637 1638 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1639 if (ret) 1640 goto err_free_mem; 1641 1642 switch (pmu_ptr->domain) { 1643 case IMC_DOMAIN_NEST: 1644 /* 1645 * Nest imc pmu need only one cpu per chip, we initialize the 1646 * cpumask for the first nest imc pmu and use the same for the 1647 * rest. To handle the cpuhotplug callback unregister, we track 1648 * the number of nest pmus in "nest_pmus". 1649 */ 1650 mutex_lock(&nest_init_lock); 1651 if (nest_pmus == 0) { 1652 ret = init_nest_pmu_ref(); 1653 if (ret) { 1654 mutex_unlock(&nest_init_lock); 1655 kfree(per_nest_pmu_arr); 1656 per_nest_pmu_arr = NULL; 1657 goto err_free_mem; 1658 } 1659 /* Register for cpu hotplug notification. */ 1660 ret = nest_pmu_cpumask_init(); 1661 if (ret) { 1662 mutex_unlock(&nest_init_lock); 1663 kfree(nest_imc_refc); 1664 kfree(per_nest_pmu_arr); 1665 per_nest_pmu_arr = NULL; 1666 goto err_free_mem; 1667 } 1668 } 1669 nest_pmus++; 1670 mutex_unlock(&nest_init_lock); 1671 break; 1672 case IMC_DOMAIN_CORE: 1673 ret = core_imc_pmu_cpumask_init(); 1674 if (ret) { 1675 cleanup_all_core_imc_memory(); 1676 goto err_free_mem; 1677 } 1678 1679 break; 1680 case IMC_DOMAIN_THREAD: 1681 ret = thread_imc_cpu_init(); 1682 if (ret) { 1683 cleanup_all_thread_imc_memory(); 1684 goto err_free_mem; 1685 } 1686 1687 break; 1688 case IMC_DOMAIN_TRACE: 1689 ret = trace_imc_cpu_init(); 1690 if (ret) { 1691 cleanup_all_trace_imc_memory(); 1692 goto err_free_mem; 1693 } 1694 1695 break; 1696 default: 1697 return -EINVAL; /* Unknown domain */ 1698 } 1699 1700 ret = update_events_in_group(parent, pmu_ptr); 1701 if (ret) 1702 goto err_free_cpuhp_mem; 1703 1704 ret = update_pmu_ops(pmu_ptr); 1705 if (ret) 1706 goto err_free_cpuhp_mem; 1707 1708 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1709 if (ret) 1710 goto err_free_cpuhp_mem; 1711 1712 pr_debug("%s performance monitor hardware support registered\n", 1713 pmu_ptr->pmu.name); 1714 1715 return 0; 1716 1717 err_free_cpuhp_mem: 1718 imc_common_cpuhp_mem_free(pmu_ptr); 1719 err_free_mem: 1720 imc_common_mem_free(pmu_ptr); 1721 return ret; 1722 } 1723