xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16 
17 /* Nest IMC data structures and variables */
18 
19 /*
20  * Used to avoid races in counting the nest-pmu units during hotplug
21  * register and unregister
22  */
23 static DEFINE_MUTEX(nest_init_lock);
24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
25 static struct imc_pmu **per_nest_pmu_arr;
26 static cpumask_t nest_imc_cpumask;
27 static struct imc_pmu_ref *nest_imc_refc;
28 static int nest_pmus;
29 
30 /* Core IMC data structures and variables */
31 
32 static cpumask_t core_imc_cpumask;
33 static struct imc_pmu_ref *core_imc_refc;
34 static struct imc_pmu *core_imc_pmu;
35 
36 /* Thread IMC data structures and variables */
37 
38 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
39 static struct imc_pmu *thread_imc_pmu;
40 static int thread_imc_mem_size;
41 
42 /* Trace IMC data structures */
43 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
44 static struct imc_pmu_ref *trace_imc_refc;
45 static int trace_imc_mem_size;
46 
47 /*
48  * Global data structure used to avoid races between thread,
49  * core and trace-imc
50  */
51 static struct imc_pmu_ref imc_global_refc = {
52 	.lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
53 	.id = 0,
54 	.refc = 0,
55 };
56 
57 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
58 {
59 	return container_of(event->pmu, struct imc_pmu, pmu);
60 }
61 
62 PMU_FORMAT_ATTR(event, "config:0-61");
63 PMU_FORMAT_ATTR(offset, "config:0-31");
64 PMU_FORMAT_ATTR(rvalue, "config:32");
65 PMU_FORMAT_ATTR(mode, "config:33-40");
66 static struct attribute *imc_format_attrs[] = {
67 	&format_attr_event.attr,
68 	&format_attr_offset.attr,
69 	&format_attr_rvalue.attr,
70 	&format_attr_mode.attr,
71 	NULL,
72 };
73 
74 static const struct attribute_group imc_format_group = {
75 	.name = "format",
76 	.attrs = imc_format_attrs,
77 };
78 
79 /* Format attribute for imc trace-mode */
80 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
81 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
82 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
83 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
84 static struct attribute *trace_imc_format_attrs[] = {
85 	&format_attr_event.attr,
86 	&format_attr_cpmc_reserved.attr,
87 	&format_attr_cpmc_event.attr,
88 	&format_attr_cpmc_samplesel.attr,
89 	&format_attr_cpmc_load.attr,
90 	NULL,
91 };
92 
93 static const struct attribute_group trace_imc_format_group = {
94 .name = "format",
95 .attrs = trace_imc_format_attrs,
96 };
97 
98 /* Get the cpumask printed to a buffer "buf" */
99 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
100 					struct device_attribute *attr,
101 					char *buf)
102 {
103 	struct pmu *pmu = dev_get_drvdata(dev);
104 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
105 	cpumask_t *active_mask;
106 
107 	switch(imc_pmu->domain){
108 	case IMC_DOMAIN_NEST:
109 		active_mask = &nest_imc_cpumask;
110 		break;
111 	case IMC_DOMAIN_CORE:
112 		active_mask = &core_imc_cpumask;
113 		break;
114 	default:
115 		return 0;
116 	}
117 
118 	return cpumap_print_to_pagebuf(true, buf, active_mask);
119 }
120 
121 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
122 
123 static struct attribute *imc_pmu_cpumask_attrs[] = {
124 	&dev_attr_cpumask.attr,
125 	NULL,
126 };
127 
128 static const struct attribute_group imc_pmu_cpumask_attr_group = {
129 	.attrs = imc_pmu_cpumask_attrs,
130 };
131 
132 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
133 static struct attribute *device_str_attr_create(const char *name, const char *str)
134 {
135 	struct perf_pmu_events_attr *attr;
136 
137 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
138 	if (!attr)
139 		return NULL;
140 	sysfs_attr_init(&attr->attr.attr);
141 
142 	attr->event_str = str;
143 	attr->attr.attr.name = name;
144 	attr->attr.attr.mode = 0444;
145 	attr->attr.show = perf_event_sysfs_show;
146 
147 	return &attr->attr.attr;
148 }
149 
150 static int imc_parse_event(struct device_node *np, const char *scale,
151 				  const char *unit, const char *prefix,
152 				  u32 base, struct imc_events *event)
153 {
154 	const char *s;
155 	u32 reg;
156 
157 	if (of_property_read_u32(np, "reg", &reg))
158 		goto error;
159 	/* Add the base_reg value to the "reg" */
160 	event->value = base + reg;
161 
162 	if (of_property_read_string(np, "event-name", &s))
163 		goto error;
164 
165 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
166 	if (!event->name)
167 		goto error;
168 
169 	if (of_property_read_string(np, "scale", &s))
170 		s = scale;
171 
172 	if (s) {
173 		event->scale = kstrdup(s, GFP_KERNEL);
174 		if (!event->scale)
175 			goto error;
176 	}
177 
178 	if (of_property_read_string(np, "unit", &s))
179 		s = unit;
180 
181 	if (s) {
182 		event->unit = kstrdup(s, GFP_KERNEL);
183 		if (!event->unit)
184 			goto error;
185 	}
186 
187 	return 0;
188 error:
189 	kfree(event->unit);
190 	kfree(event->scale);
191 	kfree(event->name);
192 	return -EINVAL;
193 }
194 
195 /*
196  * imc_free_events: Function to cleanup the events list, having
197  * 		    "nr_entries".
198  */
199 static void imc_free_events(struct imc_events *events, int nr_entries)
200 {
201 	int i;
202 
203 	/* Nothing to clean, return */
204 	if (!events)
205 		return;
206 	for (i = 0; i < nr_entries; i++) {
207 		kfree(events[i].unit);
208 		kfree(events[i].scale);
209 		kfree(events[i].name);
210 	}
211 
212 	kfree(events);
213 }
214 
215 /*
216  * update_events_in_group: Update the "events" information in an attr_group
217  *                         and assign the attr_group to the pmu "pmu".
218  */
219 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
220 {
221 	struct attribute_group *attr_group;
222 	struct attribute **attrs, *dev_str;
223 	struct device_node *np, *pmu_events;
224 	u32 handle, base_reg;
225 	int i = 0, j = 0, ct, ret;
226 	const char *prefix, *g_scale, *g_unit;
227 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
228 
229 	if (!of_property_read_u32(node, "events", &handle))
230 		pmu_events = of_find_node_by_phandle(handle);
231 	else
232 		return 0;
233 
234 	/* Did not find any node with a given phandle */
235 	if (!pmu_events)
236 		return 0;
237 
238 	/* Get a count of number of child nodes */
239 	ct = of_get_child_count(pmu_events);
240 
241 	/* Get the event prefix */
242 	if (of_property_read_string(node, "events-prefix", &prefix))
243 		return 0;
244 
245 	/* Get a global unit and scale data if available */
246 	if (of_property_read_string(node, "scale", &g_scale))
247 		g_scale = NULL;
248 
249 	if (of_property_read_string(node, "unit", &g_unit))
250 		g_unit = NULL;
251 
252 	/* "reg" property gives out the base offset of the counters data */
253 	of_property_read_u32(node, "reg", &base_reg);
254 
255 	/* Allocate memory for the events */
256 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
257 	if (!pmu->events)
258 		return -ENOMEM;
259 
260 	ct = 0;
261 	/* Parse the events and update the struct */
262 	for_each_child_of_node(pmu_events, np) {
263 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
264 		if (!ret)
265 			ct++;
266 	}
267 
268 	/* Allocate memory for attribute group */
269 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
270 	if (!attr_group) {
271 		imc_free_events(pmu->events, ct);
272 		return -ENOMEM;
273 	}
274 
275 	/*
276 	 * Allocate memory for attributes.
277 	 * Since we have count of events for this pmu, we also allocate
278 	 * memory for the scale and unit attribute for now.
279 	 * "ct" has the total event structs added from the events-parent node.
280 	 * So allocate three times the "ct" (this includes event, event_scale and
281 	 * event_unit).
282 	 */
283 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
284 	if (!attrs) {
285 		kfree(attr_group);
286 		imc_free_events(pmu->events, ct);
287 		return -ENOMEM;
288 	}
289 
290 	attr_group->name = "events";
291 	attr_group->attrs = attrs;
292 	do {
293 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
294 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
295 		if (!dev_str)
296 			continue;
297 
298 		attrs[j++] = dev_str;
299 		if (pmu->events[i].scale) {
300 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
301 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
302 			if (!dev_str)
303 				continue;
304 
305 			attrs[j++] = dev_str;
306 		}
307 
308 		if (pmu->events[i].unit) {
309 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
310 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
311 			if (!dev_str)
312 				continue;
313 
314 			attrs[j++] = dev_str;
315 		}
316 	} while (++i < ct);
317 
318 	/* Save the event attribute */
319 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
320 
321 	return 0;
322 }
323 
324 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
325 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
326 {
327 	return per_cpu(local_nest_imc_refc, cpu);
328 }
329 
330 static void nest_change_cpu_context(int old_cpu, int new_cpu)
331 {
332 	struct imc_pmu **pn = per_nest_pmu_arr;
333 
334 	if (old_cpu < 0 || new_cpu < 0)
335 		return;
336 
337 	while (*pn) {
338 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
339 		pn++;
340 	}
341 }
342 
343 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
344 {
345 	int nid, target = -1;
346 	const struct cpumask *l_cpumask;
347 	struct imc_pmu_ref *ref;
348 
349 	/*
350 	 * Check in the designated list for this cpu. Dont bother
351 	 * if not one of them.
352 	 */
353 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
354 		return 0;
355 
356 	/*
357 	 * Check whether nest_imc is registered. We could end up here if the
358 	 * cpuhotplug callback registration fails. i.e, callback invokes the
359 	 * offline path for all successfully registered nodes. At this stage,
360 	 * nest_imc pmu will not be registered and we should return here.
361 	 *
362 	 * We return with a zero since this is not an offline failure. And
363 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
364 	 * which in turn will call the cleanup routine.
365 	 */
366 	if (!nest_pmus)
367 		return 0;
368 
369 	/*
370 	 * Now that this cpu is one of the designated,
371 	 * find a next cpu a) which is online and b) in same chip.
372 	 */
373 	nid = cpu_to_node(cpu);
374 	l_cpumask = cpumask_of_node(nid);
375 	target = cpumask_last(l_cpumask);
376 
377 	/*
378 	 * If this(target) is the last cpu in the cpumask for this chip,
379 	 * check for any possible online cpu in the chip.
380 	 */
381 	if (unlikely(target == cpu))
382 		target = cpumask_any_but(l_cpumask, cpu);
383 
384 	/*
385 	 * Update the cpumask with the target cpu and
386 	 * migrate the context if needed
387 	 */
388 	if (target >= 0 && target < nr_cpu_ids) {
389 		cpumask_set_cpu(target, &nest_imc_cpumask);
390 		nest_change_cpu_context(cpu, target);
391 	} else {
392 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
393 				       get_hard_smp_processor_id(cpu));
394 		/*
395 		 * If this is the last cpu in this chip then, skip the reference
396 		 * count mutex lock and make the reference count on this chip zero.
397 		 */
398 		ref = get_nest_pmu_ref(cpu);
399 		if (!ref)
400 			return -EINVAL;
401 
402 		ref->refc = 0;
403 	}
404 	return 0;
405 }
406 
407 static int ppc_nest_imc_cpu_online(unsigned int cpu)
408 {
409 	const struct cpumask *l_cpumask;
410 	static struct cpumask tmp_mask;
411 	int res;
412 
413 	/* Get the cpumask of this node */
414 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
415 
416 	/*
417 	 * If this is not the first online CPU on this node, then
418 	 * just return.
419 	 */
420 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
421 		return 0;
422 
423 	/*
424 	 * If this is the first online cpu on this node
425 	 * disable the nest counters by making an OPAL call.
426 	 */
427 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
428 				     get_hard_smp_processor_id(cpu));
429 	if (res)
430 		return res;
431 
432 	/* Make this CPU the designated target for counter collection */
433 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
434 	return 0;
435 }
436 
437 static int nest_pmu_cpumask_init(void)
438 {
439 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
440 				 "perf/powerpc/imc:online",
441 				 ppc_nest_imc_cpu_online,
442 				 ppc_nest_imc_cpu_offline);
443 }
444 
445 static void nest_imc_counters_release(struct perf_event *event)
446 {
447 	int rc, node_id;
448 	struct imc_pmu_ref *ref;
449 
450 	if (event->cpu < 0)
451 		return;
452 
453 	node_id = cpu_to_node(event->cpu);
454 
455 	/*
456 	 * See if we need to disable the nest PMU.
457 	 * If no events are currently in use, then we have to take a
458 	 * mutex to ensure that we don't race with another task doing
459 	 * enable or disable the nest counters.
460 	 */
461 	ref = get_nest_pmu_ref(event->cpu);
462 	if (!ref)
463 		return;
464 
465 	/* Take the mutex lock for this node and then decrement the reference count */
466 	mutex_lock(&ref->lock);
467 	if (ref->refc == 0) {
468 		/*
469 		 * The scenario where this is true is, when perf session is
470 		 * started, followed by offlining of all cpus in a given node.
471 		 *
472 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
473 		 * function set the ref->count to zero, if the cpu which is
474 		 * about to offline is the last cpu in a given node and make
475 		 * an OPAL call to disable the engine in that node.
476 		 *
477 		 */
478 		mutex_unlock(&ref->lock);
479 		return;
480 	}
481 	ref->refc--;
482 	if (ref->refc == 0) {
483 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
484 					    get_hard_smp_processor_id(event->cpu));
485 		if (rc) {
486 			mutex_unlock(&ref->lock);
487 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
488 			return;
489 		}
490 	} else if (ref->refc < 0) {
491 		WARN(1, "nest-imc: Invalid event reference count\n");
492 		ref->refc = 0;
493 	}
494 	mutex_unlock(&ref->lock);
495 }
496 
497 static int nest_imc_event_init(struct perf_event *event)
498 {
499 	int chip_id, rc, node_id;
500 	u32 l_config, config = event->attr.config;
501 	struct imc_mem_info *pcni;
502 	struct imc_pmu *pmu;
503 	struct imc_pmu_ref *ref;
504 	bool flag = false;
505 
506 	if (event->attr.type != event->pmu->type)
507 		return -ENOENT;
508 
509 	/* Sampling not supported */
510 	if (event->hw.sample_period)
511 		return -EINVAL;
512 
513 	if (event->cpu < 0)
514 		return -EINVAL;
515 
516 	pmu = imc_event_to_pmu(event);
517 
518 	/* Sanity check for config (event offset) */
519 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
520 		return -EINVAL;
521 
522 	/*
523 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
524 	 * Get the base memory addresss for this cpu.
525 	 */
526 	chip_id = cpu_to_chip_id(event->cpu);
527 
528 	/* Return, if chip_id is not valid */
529 	if (chip_id < 0)
530 		return -ENODEV;
531 
532 	pcni = pmu->mem_info;
533 	do {
534 		if (pcni->id == chip_id) {
535 			flag = true;
536 			break;
537 		}
538 		pcni++;
539 	} while (pcni->vbase != 0);
540 
541 	if (!flag)
542 		return -ENODEV;
543 
544 	/*
545 	 * Add the event offset to the base address.
546 	 */
547 	l_config = config & IMC_EVENT_OFFSET_MASK;
548 	event->hw.event_base = (u64)pcni->vbase + l_config;
549 	node_id = cpu_to_node(event->cpu);
550 
551 	/*
552 	 * Get the imc_pmu_ref struct for this node.
553 	 * Take the mutex lock and then increment the count of nest pmu events
554 	 * inited.
555 	 */
556 	ref = get_nest_pmu_ref(event->cpu);
557 	if (!ref)
558 		return -EINVAL;
559 
560 	mutex_lock(&ref->lock);
561 	if (ref->refc == 0) {
562 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
563 					     get_hard_smp_processor_id(event->cpu));
564 		if (rc) {
565 			mutex_unlock(&ref->lock);
566 			pr_err("nest-imc: Unable to start the counters for node %d\n",
567 									node_id);
568 			return rc;
569 		}
570 	}
571 	++ref->refc;
572 	mutex_unlock(&ref->lock);
573 
574 	event->destroy = nest_imc_counters_release;
575 	return 0;
576 }
577 
578 /*
579  * core_imc_mem_init : Initializes memory for the current core.
580  *
581  * Uses alloc_pages_node() and uses the returned address as an argument to
582  * an opal call to configure the pdbar. The address sent as an argument is
583  * converted to physical address before the opal call is made. This is the
584  * base address at which the core imc counters are populated.
585  */
586 static int core_imc_mem_init(int cpu, int size)
587 {
588 	int nid, rc = 0, core_id = (cpu / threads_per_core);
589 	struct imc_mem_info *mem_info;
590 	struct page *page;
591 
592 	/*
593 	 * alloc_pages_node() will allocate memory for core in the
594 	 * local node only.
595 	 */
596 	nid = cpu_to_node(cpu);
597 	mem_info = &core_imc_pmu->mem_info[core_id];
598 	mem_info->id = core_id;
599 
600 	/* We need only vbase for core counters */
601 	page = alloc_pages_node(nid,
602 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
603 				__GFP_NOWARN, get_order(size));
604 	if (!page)
605 		return -ENOMEM;
606 	mem_info->vbase = page_address(page);
607 
608 	/* Init the mutex */
609 	core_imc_refc[core_id].id = core_id;
610 	mutex_init(&core_imc_refc[core_id].lock);
611 
612 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
613 				__pa((void *)mem_info->vbase),
614 				get_hard_smp_processor_id(cpu));
615 	if (rc) {
616 		free_pages((u64)mem_info->vbase, get_order(size));
617 		mem_info->vbase = NULL;
618 	}
619 
620 	return rc;
621 }
622 
623 static bool is_core_imc_mem_inited(int cpu)
624 {
625 	struct imc_mem_info *mem_info;
626 	int core_id = (cpu / threads_per_core);
627 
628 	mem_info = &core_imc_pmu->mem_info[core_id];
629 	if (!mem_info->vbase)
630 		return false;
631 
632 	return true;
633 }
634 
635 static int ppc_core_imc_cpu_online(unsigned int cpu)
636 {
637 	const struct cpumask *l_cpumask;
638 	static struct cpumask tmp_mask;
639 	int ret = 0;
640 
641 	/* Get the cpumask for this core */
642 	l_cpumask = cpu_sibling_mask(cpu);
643 
644 	/* If a cpu for this core is already set, then, don't do anything */
645 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
646 		return 0;
647 
648 	if (!is_core_imc_mem_inited(cpu)) {
649 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
650 		if (ret) {
651 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
652 			return ret;
653 		}
654 	}
655 
656 	/* set the cpu in the mask */
657 	cpumask_set_cpu(cpu, &core_imc_cpumask);
658 	return 0;
659 }
660 
661 static int ppc_core_imc_cpu_offline(unsigned int cpu)
662 {
663 	unsigned int core_id;
664 	int ncpu;
665 	struct imc_pmu_ref *ref;
666 
667 	/*
668 	 * clear this cpu out of the mask, if not present in the mask,
669 	 * don't bother doing anything.
670 	 */
671 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
672 		return 0;
673 
674 	/*
675 	 * Check whether core_imc is registered. We could end up here
676 	 * if the cpuhotplug callback registration fails. i.e, callback
677 	 * invokes the offline path for all sucessfully registered cpus.
678 	 * At this stage, core_imc pmu will not be registered and we
679 	 * should return here.
680 	 *
681 	 * We return with a zero since this is not an offline failure.
682 	 * And cpuhp_setup_state() returns the actual failure reason
683 	 * to the caller, which inturn will call the cleanup routine.
684 	 */
685 	if (!core_imc_pmu->pmu.event_init)
686 		return 0;
687 
688 	/* Find any online cpu in that core except the current "cpu" */
689 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
690 
691 	if (unlikely(ncpu == cpu))
692 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
693 
694 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
695 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
696 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
697 	} else {
698 		/*
699 		 * If this is the last cpu in this core then, skip taking refernce
700 		 * count mutex lock for this core and directly zero "refc" for
701 		 * this core.
702 		 */
703 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
704 				       get_hard_smp_processor_id(cpu));
705 		core_id = cpu / threads_per_core;
706 		ref = &core_imc_refc[core_id];
707 		if (!ref)
708 			return -EINVAL;
709 
710 		ref->refc = 0;
711 		/*
712 		 * Reduce the global reference count, if this is the
713 		 * last cpu in this core and core-imc event running
714 		 * in this cpu.
715 		 */
716 		mutex_lock(&imc_global_refc.lock);
717 		if (imc_global_refc.id == IMC_DOMAIN_CORE)
718 			imc_global_refc.refc--;
719 
720 		mutex_unlock(&imc_global_refc.lock);
721 	}
722 	return 0;
723 }
724 
725 static int core_imc_pmu_cpumask_init(void)
726 {
727 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
728 				 "perf/powerpc/imc_core:online",
729 				 ppc_core_imc_cpu_online,
730 				 ppc_core_imc_cpu_offline);
731 }
732 
733 static void reset_global_refc(struct perf_event *event)
734 {
735 		mutex_lock(&imc_global_refc.lock);
736 		imc_global_refc.refc--;
737 
738 		/*
739 		 * If no other thread is running any
740 		 * event for this domain(thread/core/trace),
741 		 * set the global id to zero.
742 		 */
743 		if (imc_global_refc.refc <= 0) {
744 			imc_global_refc.refc = 0;
745 			imc_global_refc.id = 0;
746 		}
747 		mutex_unlock(&imc_global_refc.lock);
748 }
749 
750 static void core_imc_counters_release(struct perf_event *event)
751 {
752 	int rc, core_id;
753 	struct imc_pmu_ref *ref;
754 
755 	if (event->cpu < 0)
756 		return;
757 	/*
758 	 * See if we need to disable the IMC PMU.
759 	 * If no events are currently in use, then we have to take a
760 	 * mutex to ensure that we don't race with another task doing
761 	 * enable or disable the core counters.
762 	 */
763 	core_id = event->cpu / threads_per_core;
764 
765 	/* Take the mutex lock and decrement the refernce count for this core */
766 	ref = &core_imc_refc[core_id];
767 	if (!ref)
768 		return;
769 
770 	mutex_lock(&ref->lock);
771 	if (ref->refc == 0) {
772 		/*
773 		 * The scenario where this is true is, when perf session is
774 		 * started, followed by offlining of all cpus in a given core.
775 		 *
776 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
777 		 * function set the ref->count to zero, if the cpu which is
778 		 * about to offline is the last cpu in a given core and make
779 		 * an OPAL call to disable the engine in that core.
780 		 *
781 		 */
782 		mutex_unlock(&ref->lock);
783 		return;
784 	}
785 	ref->refc--;
786 	if (ref->refc == 0) {
787 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
788 					    get_hard_smp_processor_id(event->cpu));
789 		if (rc) {
790 			mutex_unlock(&ref->lock);
791 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
792 			return;
793 		}
794 	} else if (ref->refc < 0) {
795 		WARN(1, "core-imc: Invalid event reference count\n");
796 		ref->refc = 0;
797 	}
798 	mutex_unlock(&ref->lock);
799 
800 	reset_global_refc(event);
801 }
802 
803 static int core_imc_event_init(struct perf_event *event)
804 {
805 	int core_id, rc;
806 	u64 config = event->attr.config;
807 	struct imc_mem_info *pcmi;
808 	struct imc_pmu *pmu;
809 	struct imc_pmu_ref *ref;
810 
811 	if (event->attr.type != event->pmu->type)
812 		return -ENOENT;
813 
814 	/* Sampling not supported */
815 	if (event->hw.sample_period)
816 		return -EINVAL;
817 
818 	if (event->cpu < 0)
819 		return -EINVAL;
820 
821 	event->hw.idx = -1;
822 	pmu = imc_event_to_pmu(event);
823 
824 	/* Sanity check for config (event offset) */
825 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
826 		return -EINVAL;
827 
828 	if (!is_core_imc_mem_inited(event->cpu))
829 		return -ENODEV;
830 
831 	core_id = event->cpu / threads_per_core;
832 	pcmi = &core_imc_pmu->mem_info[core_id];
833 	if ((!pcmi->vbase))
834 		return -ENODEV;
835 
836 	/* Get the core_imc mutex for this core */
837 	ref = &core_imc_refc[core_id];
838 	if (!ref)
839 		return -EINVAL;
840 
841 	/*
842 	 * Core pmu units are enabled only when it is used.
843 	 * See if this is triggered for the first time.
844 	 * If yes, take the mutex lock and enable the core counters.
845 	 * If not, just increment the count in core_imc_refc struct.
846 	 */
847 	mutex_lock(&ref->lock);
848 	if (ref->refc == 0) {
849 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
850 					     get_hard_smp_processor_id(event->cpu));
851 		if (rc) {
852 			mutex_unlock(&ref->lock);
853 			pr_err("core-imc: Unable to start the counters for core %d\n",
854 									core_id);
855 			return rc;
856 		}
857 	}
858 	++ref->refc;
859 	mutex_unlock(&ref->lock);
860 
861 	/*
862 	 * Since the system can run either in accumulation or trace-mode
863 	 * of IMC at a time, core-imc events are allowed only if no other
864 	 * trace/thread imc events are enabled/monitored.
865 	 *
866 	 * Take the global lock, and check the refc.id
867 	 * to know whether any other trace/thread imc
868 	 * events are running.
869 	 */
870 	mutex_lock(&imc_global_refc.lock);
871 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
872 		/*
873 		 * No other trace/thread imc events are running in
874 		 * the system, so set the refc.id to core-imc.
875 		 */
876 		imc_global_refc.id = IMC_DOMAIN_CORE;
877 		imc_global_refc.refc++;
878 	} else {
879 		mutex_unlock(&imc_global_refc.lock);
880 		return -EBUSY;
881 	}
882 	mutex_unlock(&imc_global_refc.lock);
883 
884 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
885 	event->destroy = core_imc_counters_release;
886 	return 0;
887 }
888 
889 /*
890  * Allocates a page of memory for each of the online cpus, and load
891  * LDBAR with 0.
892  * The physical base address of the page allocated for a cpu will be
893  * written to the LDBAR for that cpu, when the thread-imc event
894  * is added.
895  *
896  * LDBAR Register Layout:
897  *
898  *  0          4         8         12        16        20        24        28
899  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
900  *   | |       [   ]    [                   Counter Address [8:50]
901  *   | * Mode    |
902  *   |           * PB Scope
903  *   * Enable/Disable
904  *
905  *  32        36        40        44        48        52        56        60
906  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
907  *           Counter Address [8:50]              ]
908  *
909  */
910 static int thread_imc_mem_alloc(int cpu_id, int size)
911 {
912 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
913 	int nid = cpu_to_node(cpu_id);
914 
915 	if (!local_mem) {
916 		struct page *page;
917 		/*
918 		 * This case could happen only once at start, since we dont
919 		 * free the memory in cpu offline path.
920 		 */
921 		page = alloc_pages_node(nid,
922 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
923 				  __GFP_NOWARN, get_order(size));
924 		if (!page)
925 			return -ENOMEM;
926 		local_mem = page_address(page);
927 
928 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
929 	}
930 
931 	mtspr(SPRN_LDBAR, 0);
932 	return 0;
933 }
934 
935 static int ppc_thread_imc_cpu_online(unsigned int cpu)
936 {
937 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
938 }
939 
940 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
941 {
942 	/*
943 	 * Set the bit 0 of LDBAR to zero.
944 	 *
945 	 * If bit 0 of LDBAR is unset, it will stop posting
946 	 * the counter data to memory.
947 	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
948 	 * event_add function. So reset this bit here, to stop the updates
949 	 * to memory in the cpu_offline path.
950 	 */
951 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
952 
953 	/* Reduce the refc if thread-imc event running on this cpu */
954 	mutex_lock(&imc_global_refc.lock);
955 	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
956 		imc_global_refc.refc--;
957 	mutex_unlock(&imc_global_refc.lock);
958 
959 	return 0;
960 }
961 
962 static int thread_imc_cpu_init(void)
963 {
964 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
965 			  "perf/powerpc/imc_thread:online",
966 			  ppc_thread_imc_cpu_online,
967 			  ppc_thread_imc_cpu_offline);
968 }
969 
970 static int thread_imc_event_init(struct perf_event *event)
971 {
972 	u32 config = event->attr.config;
973 	struct task_struct *target;
974 	struct imc_pmu *pmu;
975 
976 	if (event->attr.type != event->pmu->type)
977 		return -ENOENT;
978 
979 	if (!perfmon_capable())
980 		return -EACCES;
981 
982 	/* Sampling not supported */
983 	if (event->hw.sample_period)
984 		return -EINVAL;
985 
986 	event->hw.idx = -1;
987 	pmu = imc_event_to_pmu(event);
988 
989 	/* Sanity check for config offset */
990 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
991 		return -EINVAL;
992 
993 	target = event->hw.target;
994 	if (!target)
995 		return -EINVAL;
996 
997 	mutex_lock(&imc_global_refc.lock);
998 	/*
999 	 * Check if any other trace/core imc events are running in the
1000 	 * system, if not set the global id to thread-imc.
1001 	 */
1002 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1003 		imc_global_refc.id = IMC_DOMAIN_THREAD;
1004 		imc_global_refc.refc++;
1005 	} else {
1006 		mutex_unlock(&imc_global_refc.lock);
1007 		return -EBUSY;
1008 	}
1009 	mutex_unlock(&imc_global_refc.lock);
1010 
1011 	event->pmu->task_ctx_nr = perf_sw_context;
1012 	event->destroy = reset_global_refc;
1013 	return 0;
1014 }
1015 
1016 static bool is_thread_imc_pmu(struct perf_event *event)
1017 {
1018 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1019 		return true;
1020 
1021 	return false;
1022 }
1023 
1024 static u64 * get_event_base_addr(struct perf_event *event)
1025 {
1026 	u64 addr;
1027 
1028 	if (is_thread_imc_pmu(event)) {
1029 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1030 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1031 	}
1032 
1033 	return (u64 *)event->hw.event_base;
1034 }
1035 
1036 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1037 				     unsigned int txn_flags)
1038 {
1039 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1040 		return;
1041 	perf_pmu_disable(pmu);
1042 }
1043 
1044 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1045 {
1046 	perf_pmu_enable(pmu);
1047 }
1048 
1049 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1050 {
1051 	perf_pmu_enable(pmu);
1052 	return 0;
1053 }
1054 
1055 static u64 imc_read_counter(struct perf_event *event)
1056 {
1057 	u64 *addr, data;
1058 
1059 	/*
1060 	 * In-Memory Collection (IMC) counters are free flowing counters.
1061 	 * So we take a snapshot of the counter value on enable and save it
1062 	 * to calculate the delta at later stage to present the event counter
1063 	 * value.
1064 	 */
1065 	addr = get_event_base_addr(event);
1066 	data = be64_to_cpu(READ_ONCE(*addr));
1067 	local64_set(&event->hw.prev_count, data);
1068 
1069 	return data;
1070 }
1071 
1072 static void imc_event_update(struct perf_event *event)
1073 {
1074 	u64 counter_prev, counter_new, final_count;
1075 
1076 	counter_prev = local64_read(&event->hw.prev_count);
1077 	counter_new = imc_read_counter(event);
1078 	final_count = counter_new - counter_prev;
1079 
1080 	/* Update the delta to the event count */
1081 	local64_add(final_count, &event->count);
1082 }
1083 
1084 static void imc_event_start(struct perf_event *event, int flags)
1085 {
1086 	/*
1087 	 * In Memory Counters are free flowing counters. HW or the microcode
1088 	 * keeps adding to the counter offset in memory. To get event
1089 	 * counter value, we snapshot the value here and we calculate
1090 	 * delta at later point.
1091 	 */
1092 	imc_read_counter(event);
1093 }
1094 
1095 static void imc_event_stop(struct perf_event *event, int flags)
1096 {
1097 	/*
1098 	 * Take a snapshot and calculate the delta and update
1099 	 * the event counter values.
1100 	 */
1101 	imc_event_update(event);
1102 }
1103 
1104 static int imc_event_add(struct perf_event *event, int flags)
1105 {
1106 	if (flags & PERF_EF_START)
1107 		imc_event_start(event, flags);
1108 
1109 	return 0;
1110 }
1111 
1112 static int thread_imc_event_add(struct perf_event *event, int flags)
1113 {
1114 	int core_id;
1115 	struct imc_pmu_ref *ref;
1116 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1117 
1118 	if (flags & PERF_EF_START)
1119 		imc_event_start(event, flags);
1120 
1121 	if (!is_core_imc_mem_inited(smp_processor_id()))
1122 		return -EINVAL;
1123 
1124 	core_id = smp_processor_id() / threads_per_core;
1125 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1126 	mtspr(SPRN_LDBAR, ldbar_value);
1127 
1128 	/*
1129 	 * imc pmus are enabled only when it is used.
1130 	 * See if this is triggered for the first time.
1131 	 * If yes, take the mutex lock and enable the counters.
1132 	 * If not, just increment the count in ref count struct.
1133 	 */
1134 	ref = &core_imc_refc[core_id];
1135 	if (!ref)
1136 		return -EINVAL;
1137 
1138 	mutex_lock(&ref->lock);
1139 	if (ref->refc == 0) {
1140 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1141 		    get_hard_smp_processor_id(smp_processor_id()))) {
1142 			mutex_unlock(&ref->lock);
1143 			pr_err("thread-imc: Unable to start the counter\
1144 				for core %d\n", core_id);
1145 			return -EINVAL;
1146 		}
1147 	}
1148 	++ref->refc;
1149 	mutex_unlock(&ref->lock);
1150 	return 0;
1151 }
1152 
1153 static void thread_imc_event_del(struct perf_event *event, int flags)
1154 {
1155 
1156 	int core_id;
1157 	struct imc_pmu_ref *ref;
1158 
1159 	core_id = smp_processor_id() / threads_per_core;
1160 	ref = &core_imc_refc[core_id];
1161 	if (!ref) {
1162 		pr_debug("imc: Failed to get event reference count\n");
1163 		return;
1164 	}
1165 
1166 	mutex_lock(&ref->lock);
1167 	ref->refc--;
1168 	if (ref->refc == 0) {
1169 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1170 		    get_hard_smp_processor_id(smp_processor_id()))) {
1171 			mutex_unlock(&ref->lock);
1172 			pr_err("thread-imc: Unable to stop the counters\
1173 				for core %d\n", core_id);
1174 			return;
1175 		}
1176 	} else if (ref->refc < 0) {
1177 		ref->refc = 0;
1178 	}
1179 	mutex_unlock(&ref->lock);
1180 
1181 	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1182 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1183 
1184 	/*
1185 	 * Take a snapshot and calculate the delta and update
1186 	 * the event counter values.
1187 	 */
1188 	imc_event_update(event);
1189 }
1190 
1191 /*
1192  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1193  */
1194 static int trace_imc_mem_alloc(int cpu_id, int size)
1195 {
1196 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1197 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1198 	int core_id = (cpu_id / threads_per_core);
1199 
1200 	if (!local_mem) {
1201 		struct page *page;
1202 
1203 		page = alloc_pages_node(phys_id,
1204 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1205 				__GFP_NOWARN, get_order(size));
1206 		if (!page)
1207 			return -ENOMEM;
1208 		local_mem = page_address(page);
1209 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1210 
1211 		/* Initialise the counters for trace mode */
1212 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1213 					    get_hard_smp_processor_id(cpu_id));
1214 		if (rc) {
1215 			pr_info("IMC:opal init failed for trace imc\n");
1216 			return rc;
1217 		}
1218 	}
1219 
1220 	/* Init the mutex, if not already */
1221 	trace_imc_refc[core_id].id = core_id;
1222 	mutex_init(&trace_imc_refc[core_id].lock);
1223 
1224 	mtspr(SPRN_LDBAR, 0);
1225 	return 0;
1226 }
1227 
1228 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1229 {
1230 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1231 }
1232 
1233 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1234 {
1235 	/*
1236 	 * No need to set bit 0 of LDBAR to zero, as
1237 	 * it is set to zero for imc trace-mode
1238 	 *
1239 	 * Reduce the refc if any trace-imc event running
1240 	 * on this cpu.
1241 	 */
1242 	mutex_lock(&imc_global_refc.lock);
1243 	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1244 		imc_global_refc.refc--;
1245 	mutex_unlock(&imc_global_refc.lock);
1246 
1247 	return 0;
1248 }
1249 
1250 static int trace_imc_cpu_init(void)
1251 {
1252 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1253 			  "perf/powerpc/imc_trace:online",
1254 			  ppc_trace_imc_cpu_online,
1255 			  ppc_trace_imc_cpu_offline);
1256 }
1257 
1258 static u64 get_trace_imc_event_base_addr(void)
1259 {
1260 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1261 }
1262 
1263 /*
1264  * Function to parse trace-imc data obtained
1265  * and to prepare the perf sample.
1266  */
1267 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1268 				    struct perf_sample_data *data,
1269 				    u64 *prev_tb,
1270 				    struct perf_event_header *header,
1271 				    struct perf_event *event)
1272 {
1273 	/* Sanity checks for a valid record */
1274 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1275 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1276 	else
1277 		return -EINVAL;
1278 
1279 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1280 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1281 		return -EINVAL;
1282 
1283 	/* Prepare perf sample */
1284 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1285 	data->period = event->hw.last_period;
1286 
1287 	header->type = PERF_RECORD_SAMPLE;
1288 	header->size = sizeof(*header) + event->header_size;
1289 	header->misc = 0;
1290 
1291 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1292 		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1293 		case 0:/* when MSR HV and PR not set in the trace-record */
1294 			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1295 			break;
1296 		case 1: /* MSR HV is 0 and PR is 1 */
1297 			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1298 			break;
1299 		case 2: /* MSR HV is 1 and PR is 0 */
1300 			header->misc |= PERF_RECORD_MISC_KERNEL;
1301 			break;
1302 		case 3: /* MSR HV is 1 and PR is 1 */
1303 			header->misc |= PERF_RECORD_MISC_USER;
1304 			break;
1305 		default:
1306 			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1307 			break;
1308 		}
1309 	} else {
1310 		if (is_kernel_addr(data->ip))
1311 			header->misc |= PERF_RECORD_MISC_KERNEL;
1312 		else
1313 			header->misc |= PERF_RECORD_MISC_USER;
1314 	}
1315 	perf_event_header__init_id(header, data, event);
1316 
1317 	return 0;
1318 }
1319 
1320 static void dump_trace_imc_data(struct perf_event *event)
1321 {
1322 	struct trace_imc_data *mem;
1323 	int i, ret;
1324 	u64 prev_tb = 0;
1325 
1326 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1327 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1328 		i++, mem++) {
1329 		struct perf_sample_data data;
1330 		struct perf_event_header header;
1331 
1332 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1333 		if (ret) /* Exit, if not a valid record */
1334 			break;
1335 		else {
1336 			/* If this is a valid record, create the sample */
1337 			struct perf_output_handle handle;
1338 
1339 			if (perf_output_begin(&handle, &data, event, header.size))
1340 				return;
1341 
1342 			perf_output_sample(&handle, &header, &data, event);
1343 			perf_output_end(&handle);
1344 		}
1345 	}
1346 }
1347 
1348 static int trace_imc_event_add(struct perf_event *event, int flags)
1349 {
1350 	int core_id = smp_processor_id() / threads_per_core;
1351 	struct imc_pmu_ref *ref = NULL;
1352 	u64 local_mem, ldbar_value;
1353 
1354 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1355 	local_mem = get_trace_imc_event_base_addr();
1356 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1357 
1358 	/* trace-imc reference count */
1359 	if (trace_imc_refc)
1360 		ref = &trace_imc_refc[core_id];
1361 	if (!ref) {
1362 		pr_debug("imc: Failed to get the event reference count\n");
1363 		return -EINVAL;
1364 	}
1365 
1366 	mtspr(SPRN_LDBAR, ldbar_value);
1367 	mutex_lock(&ref->lock);
1368 	if (ref->refc == 0) {
1369 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1370 				get_hard_smp_processor_id(smp_processor_id()))) {
1371 			mutex_unlock(&ref->lock);
1372 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1373 			return -EINVAL;
1374 		}
1375 	}
1376 	++ref->refc;
1377 	mutex_unlock(&ref->lock);
1378 	return 0;
1379 }
1380 
1381 static void trace_imc_event_read(struct perf_event *event)
1382 {
1383 	return;
1384 }
1385 
1386 static void trace_imc_event_stop(struct perf_event *event, int flags)
1387 {
1388 	u64 local_mem = get_trace_imc_event_base_addr();
1389 	dump_trace_imc_data(event);
1390 	memset((void *)local_mem, 0, sizeof(u64));
1391 }
1392 
1393 static void trace_imc_event_start(struct perf_event *event, int flags)
1394 {
1395 	return;
1396 }
1397 
1398 static void trace_imc_event_del(struct perf_event *event, int flags)
1399 {
1400 	int core_id = smp_processor_id() / threads_per_core;
1401 	struct imc_pmu_ref *ref = NULL;
1402 
1403 	if (trace_imc_refc)
1404 		ref = &trace_imc_refc[core_id];
1405 	if (!ref) {
1406 		pr_debug("imc: Failed to get event reference count\n");
1407 		return;
1408 	}
1409 
1410 	mutex_lock(&ref->lock);
1411 	ref->refc--;
1412 	if (ref->refc == 0) {
1413 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1414 				get_hard_smp_processor_id(smp_processor_id()))) {
1415 			mutex_unlock(&ref->lock);
1416 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1417 			return;
1418 		}
1419 	} else if (ref->refc < 0) {
1420 		ref->refc = 0;
1421 	}
1422 	mutex_unlock(&ref->lock);
1423 
1424 	trace_imc_event_stop(event, flags);
1425 }
1426 
1427 static int trace_imc_event_init(struct perf_event *event)
1428 {
1429 	if (event->attr.type != event->pmu->type)
1430 		return -ENOENT;
1431 
1432 	if (!perfmon_capable())
1433 		return -EACCES;
1434 
1435 	/* Return if this is a couting event */
1436 	if (event->attr.sample_period == 0)
1437 		return -ENOENT;
1438 
1439 	/*
1440 	 * Take the global lock, and make sure
1441 	 * no other thread is running any core/thread imc
1442 	 * events
1443 	 */
1444 	mutex_lock(&imc_global_refc.lock);
1445 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1446 		/*
1447 		 * No core/thread imc events are running in the
1448 		 * system, so set the refc.id to trace-imc.
1449 		 */
1450 		imc_global_refc.id = IMC_DOMAIN_TRACE;
1451 		imc_global_refc.refc++;
1452 	} else {
1453 		mutex_unlock(&imc_global_refc.lock);
1454 		return -EBUSY;
1455 	}
1456 	mutex_unlock(&imc_global_refc.lock);
1457 
1458 	event->hw.idx = -1;
1459 
1460 	/*
1461 	 * There can only be a single PMU for perf_hw_context events which is assigned to
1462 	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1463 	 */
1464 	event->pmu->task_ctx_nr = perf_sw_context;
1465 	event->destroy = reset_global_refc;
1466 	return 0;
1467 }
1468 
1469 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1470 static int update_pmu_ops(struct imc_pmu *pmu)
1471 {
1472 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1473 	pmu->pmu.add = imc_event_add;
1474 	pmu->pmu.del = imc_event_stop;
1475 	pmu->pmu.start = imc_event_start;
1476 	pmu->pmu.stop = imc_event_stop;
1477 	pmu->pmu.read = imc_event_update;
1478 	pmu->pmu.attr_groups = pmu->attr_groups;
1479 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1480 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1481 
1482 	switch (pmu->domain) {
1483 	case IMC_DOMAIN_NEST:
1484 		pmu->pmu.event_init = nest_imc_event_init;
1485 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1486 		break;
1487 	case IMC_DOMAIN_CORE:
1488 		pmu->pmu.event_init = core_imc_event_init;
1489 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1490 		break;
1491 	case IMC_DOMAIN_THREAD:
1492 		pmu->pmu.event_init = thread_imc_event_init;
1493 		pmu->pmu.add = thread_imc_event_add;
1494 		pmu->pmu.del = thread_imc_event_del;
1495 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1496 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1497 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1498 		break;
1499 	case IMC_DOMAIN_TRACE:
1500 		pmu->pmu.event_init = trace_imc_event_init;
1501 		pmu->pmu.add = trace_imc_event_add;
1502 		pmu->pmu.del = trace_imc_event_del;
1503 		pmu->pmu.start = trace_imc_event_start;
1504 		pmu->pmu.stop = trace_imc_event_stop;
1505 		pmu->pmu.read = trace_imc_event_read;
1506 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1507 		break;
1508 	default:
1509 		break;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1516 static int init_nest_pmu_ref(void)
1517 {
1518 	int nid, i, cpu;
1519 
1520 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1521 								GFP_KERNEL);
1522 
1523 	if (!nest_imc_refc)
1524 		return -ENOMEM;
1525 
1526 	i = 0;
1527 	for_each_node(nid) {
1528 		/*
1529 		 * Mutex lock to avoid races while tracking the number of
1530 		 * sessions using the chip's nest pmu units.
1531 		 */
1532 		mutex_init(&nest_imc_refc[i].lock);
1533 
1534 		/*
1535 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1536 		 * 0 and will be used as index to the array. "i" will not go off the
1537 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1538 		 * nodes only.
1539 		 */
1540 		nest_imc_refc[i++].id = nid;
1541 	}
1542 
1543 	/*
1544 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1545 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1546 	 */
1547 	for_each_possible_cpu(cpu) {
1548 		nid = cpu_to_node(cpu);
1549 		for (i = 0; i < num_possible_nodes(); i++) {
1550 			if (nest_imc_refc[i].id == nid) {
1551 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1552 				break;
1553 			}
1554 		}
1555 	}
1556 	return 0;
1557 }
1558 
1559 static void cleanup_all_core_imc_memory(void)
1560 {
1561 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1562 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1563 	int size = core_imc_pmu->counter_mem_size;
1564 
1565 	/* mem_info will never be NULL */
1566 	for (i = 0; i < nr_cores; i++) {
1567 		if (ptr[i].vbase)
1568 			free_pages((u64)ptr[i].vbase, get_order(size));
1569 	}
1570 
1571 	kfree(ptr);
1572 	kfree(core_imc_refc);
1573 }
1574 
1575 static void thread_imc_ldbar_disable(void *dummy)
1576 {
1577 	/*
1578 	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1579 	 * updates to memory.
1580 	 */
1581 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1582 }
1583 
1584 void thread_imc_disable(void)
1585 {
1586 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1587 }
1588 
1589 static void cleanup_all_thread_imc_memory(void)
1590 {
1591 	int i, order = get_order(thread_imc_mem_size);
1592 
1593 	for_each_online_cpu(i) {
1594 		if (per_cpu(thread_imc_mem, i))
1595 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1596 
1597 	}
1598 }
1599 
1600 static void cleanup_all_trace_imc_memory(void)
1601 {
1602 	int i, order = get_order(trace_imc_mem_size);
1603 
1604 	for_each_online_cpu(i) {
1605 		if (per_cpu(trace_imc_mem, i))
1606 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1607 
1608 	}
1609 	kfree(trace_imc_refc);
1610 }
1611 
1612 /* Function to free the attr_groups which are dynamically allocated */
1613 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1614 {
1615 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1616 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1617 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1618 }
1619 
1620 /*
1621  * Common function to unregister cpu hotplug callback and
1622  * free the memory.
1623  * TODO: Need to handle pmu unregistering, which will be
1624  * done in followup series.
1625  */
1626 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1627 {
1628 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1629 		mutex_lock(&nest_init_lock);
1630 		if (nest_pmus == 1) {
1631 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1632 			kfree(nest_imc_refc);
1633 			kfree(per_nest_pmu_arr);
1634 			per_nest_pmu_arr = NULL;
1635 		}
1636 
1637 		if (nest_pmus > 0)
1638 			nest_pmus--;
1639 		mutex_unlock(&nest_init_lock);
1640 	}
1641 
1642 	/* Free core_imc memory */
1643 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1644 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1645 		cleanup_all_core_imc_memory();
1646 	}
1647 
1648 	/* Free thread_imc memory */
1649 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1650 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1651 		cleanup_all_thread_imc_memory();
1652 	}
1653 
1654 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1655 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1656 		cleanup_all_trace_imc_memory();
1657 	}
1658 }
1659 
1660 /*
1661  * Function to unregister thread-imc if core-imc
1662  * is not registered.
1663  */
1664 void unregister_thread_imc(void)
1665 {
1666 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1667 	imc_common_mem_free(thread_imc_pmu);
1668 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1669 }
1670 
1671 /*
1672  * imc_mem_init : Function to support memory allocation for core imc.
1673  */
1674 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1675 								int pmu_index)
1676 {
1677 	const char *s;
1678 	int nr_cores, cpu, res = -ENOMEM;
1679 
1680 	if (of_property_read_string(parent, "name", &s))
1681 		return -ENODEV;
1682 
1683 	switch (pmu_ptr->domain) {
1684 	case IMC_DOMAIN_NEST:
1685 		/* Update the pmu name */
1686 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1687 		if (!pmu_ptr->pmu.name)
1688 			goto err;
1689 
1690 		/* Needed for hotplug/migration */
1691 		if (!per_nest_pmu_arr) {
1692 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1693 						sizeof(struct imc_pmu *),
1694 						GFP_KERNEL);
1695 			if (!per_nest_pmu_arr)
1696 				goto err;
1697 		}
1698 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1699 		break;
1700 	case IMC_DOMAIN_CORE:
1701 		/* Update the pmu name */
1702 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1703 		if (!pmu_ptr->pmu.name)
1704 			goto err;
1705 
1706 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1707 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1708 								GFP_KERNEL);
1709 
1710 		if (!pmu_ptr->mem_info)
1711 			goto err;
1712 
1713 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1714 								GFP_KERNEL);
1715 
1716 		if (!core_imc_refc) {
1717 			kfree(pmu_ptr->mem_info);
1718 			goto err;
1719 		}
1720 
1721 		core_imc_pmu = pmu_ptr;
1722 		break;
1723 	case IMC_DOMAIN_THREAD:
1724 		/* Update the pmu name */
1725 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1726 		if (!pmu_ptr->pmu.name)
1727 			goto err;
1728 
1729 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1730 		for_each_online_cpu(cpu) {
1731 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1732 			if (res) {
1733 				cleanup_all_thread_imc_memory();
1734 				goto err;
1735 			}
1736 		}
1737 
1738 		thread_imc_pmu = pmu_ptr;
1739 		break;
1740 	case IMC_DOMAIN_TRACE:
1741 		/* Update the pmu name */
1742 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1743 		if (!pmu_ptr->pmu.name)
1744 			return -ENOMEM;
1745 
1746 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1747 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1748 								GFP_KERNEL);
1749 		if (!trace_imc_refc)
1750 			return -ENOMEM;
1751 
1752 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1753 		for_each_online_cpu(cpu) {
1754 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1755 			if (res) {
1756 				cleanup_all_trace_imc_memory();
1757 				goto err;
1758 			}
1759 		}
1760 		break;
1761 	default:
1762 		return -EINVAL;
1763 	}
1764 
1765 	return 0;
1766 err:
1767 	return res;
1768 }
1769 
1770 /*
1771  * init_imc_pmu : Setup and register the IMC pmu device.
1772  *
1773  * @parent:	Device tree unit node
1774  * @pmu_ptr:	memory allocated for this pmu
1775  * @pmu_idx:	Count of nest pmc registered
1776  *
1777  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1778  * Handles failure cases and accordingly frees memory.
1779  */
1780 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1781 {
1782 	int ret;
1783 
1784 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1785 	if (ret)
1786 		goto err_free_mem;
1787 
1788 	switch (pmu_ptr->domain) {
1789 	case IMC_DOMAIN_NEST:
1790 		/*
1791 		* Nest imc pmu need only one cpu per chip, we initialize the
1792 		* cpumask for the first nest imc pmu and use the same for the
1793 		* rest. To handle the cpuhotplug callback unregister, we track
1794 		* the number of nest pmus in "nest_pmus".
1795 		*/
1796 		mutex_lock(&nest_init_lock);
1797 		if (nest_pmus == 0) {
1798 			ret = init_nest_pmu_ref();
1799 			if (ret) {
1800 				mutex_unlock(&nest_init_lock);
1801 				kfree(per_nest_pmu_arr);
1802 				per_nest_pmu_arr = NULL;
1803 				goto err_free_mem;
1804 			}
1805 			/* Register for cpu hotplug notification. */
1806 			ret = nest_pmu_cpumask_init();
1807 			if (ret) {
1808 				mutex_unlock(&nest_init_lock);
1809 				kfree(nest_imc_refc);
1810 				kfree(per_nest_pmu_arr);
1811 				per_nest_pmu_arr = NULL;
1812 				goto err_free_mem;
1813 			}
1814 		}
1815 		nest_pmus++;
1816 		mutex_unlock(&nest_init_lock);
1817 		break;
1818 	case IMC_DOMAIN_CORE:
1819 		ret = core_imc_pmu_cpumask_init();
1820 		if (ret) {
1821 			cleanup_all_core_imc_memory();
1822 			goto err_free_mem;
1823 		}
1824 
1825 		break;
1826 	case IMC_DOMAIN_THREAD:
1827 		ret = thread_imc_cpu_init();
1828 		if (ret) {
1829 			cleanup_all_thread_imc_memory();
1830 			goto err_free_mem;
1831 		}
1832 
1833 		break;
1834 	case IMC_DOMAIN_TRACE:
1835 		ret = trace_imc_cpu_init();
1836 		if (ret) {
1837 			cleanup_all_trace_imc_memory();
1838 			goto err_free_mem;
1839 		}
1840 
1841 		break;
1842 	default:
1843 		return  -EINVAL;	/* Unknown domain */
1844 	}
1845 
1846 	ret = update_events_in_group(parent, pmu_ptr);
1847 	if (ret)
1848 		goto err_free_cpuhp_mem;
1849 
1850 	ret = update_pmu_ops(pmu_ptr);
1851 	if (ret)
1852 		goto err_free_cpuhp_mem;
1853 
1854 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1855 	if (ret)
1856 		goto err_free_cpuhp_mem;
1857 
1858 	pr_debug("%s performance monitor hardware support registered\n",
1859 							pmu_ptr->pmu.name);
1860 
1861 	return 0;
1862 
1863 err_free_cpuhp_mem:
1864 	imc_common_cpuhp_mem_free(pmu_ptr);
1865 err_free_mem:
1866 	imc_common_mem_free(pmu_ptr);
1867 	return ret;
1868 }
1869