xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16 
17 /* Nest IMC data structures and variables */
18 
19 /*
20  * Used to avoid races in counting the nest-pmu units during hotplug
21  * register and unregister
22  */
23 static DEFINE_MUTEX(nest_init_lock);
24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
25 static struct imc_pmu **per_nest_pmu_arr;
26 static cpumask_t nest_imc_cpumask;
27 static struct imc_pmu_ref *nest_imc_refc;
28 static int nest_pmus;
29 
30 /* Core IMC data structures and variables */
31 
32 static cpumask_t core_imc_cpumask;
33 static struct imc_pmu_ref *core_imc_refc;
34 static struct imc_pmu *core_imc_pmu;
35 
36 /* Thread IMC data structures and variables */
37 
38 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
39 static struct imc_pmu *thread_imc_pmu;
40 static int thread_imc_mem_size;
41 
42 /* Trace IMC data structures */
43 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
44 static struct imc_pmu_ref *trace_imc_refc;
45 static int trace_imc_mem_size;
46 
47 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
48 {
49 	return container_of(event->pmu, struct imc_pmu, pmu);
50 }
51 
52 PMU_FORMAT_ATTR(event, "config:0-61");
53 PMU_FORMAT_ATTR(offset, "config:0-31");
54 PMU_FORMAT_ATTR(rvalue, "config:32");
55 PMU_FORMAT_ATTR(mode, "config:33-40");
56 static struct attribute *imc_format_attrs[] = {
57 	&format_attr_event.attr,
58 	&format_attr_offset.attr,
59 	&format_attr_rvalue.attr,
60 	&format_attr_mode.attr,
61 	NULL,
62 };
63 
64 static struct attribute_group imc_format_group = {
65 	.name = "format",
66 	.attrs = imc_format_attrs,
67 };
68 
69 /* Format attribute for imc trace-mode */
70 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
71 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
72 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
73 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
74 static struct attribute *trace_imc_format_attrs[] = {
75 	&format_attr_event.attr,
76 	&format_attr_cpmc_reserved.attr,
77 	&format_attr_cpmc_event.attr,
78 	&format_attr_cpmc_samplesel.attr,
79 	&format_attr_cpmc_load.attr,
80 	NULL,
81 };
82 
83 static struct attribute_group trace_imc_format_group = {
84 .name = "format",
85 .attrs = trace_imc_format_attrs,
86 };
87 
88 /* Get the cpumask printed to a buffer "buf" */
89 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
90 					struct device_attribute *attr,
91 					char *buf)
92 {
93 	struct pmu *pmu = dev_get_drvdata(dev);
94 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
95 	cpumask_t *active_mask;
96 
97 	switch(imc_pmu->domain){
98 	case IMC_DOMAIN_NEST:
99 		active_mask = &nest_imc_cpumask;
100 		break;
101 	case IMC_DOMAIN_CORE:
102 		active_mask = &core_imc_cpumask;
103 		break;
104 	default:
105 		return 0;
106 	}
107 
108 	return cpumap_print_to_pagebuf(true, buf, active_mask);
109 }
110 
111 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
112 
113 static struct attribute *imc_pmu_cpumask_attrs[] = {
114 	&dev_attr_cpumask.attr,
115 	NULL,
116 };
117 
118 static struct attribute_group imc_pmu_cpumask_attr_group = {
119 	.attrs = imc_pmu_cpumask_attrs,
120 };
121 
122 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
123 static struct attribute *device_str_attr_create(const char *name, const char *str)
124 {
125 	struct perf_pmu_events_attr *attr;
126 
127 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
128 	if (!attr)
129 		return NULL;
130 	sysfs_attr_init(&attr->attr.attr);
131 
132 	attr->event_str = str;
133 	attr->attr.attr.name = name;
134 	attr->attr.attr.mode = 0444;
135 	attr->attr.show = perf_event_sysfs_show;
136 
137 	return &attr->attr.attr;
138 }
139 
140 static int imc_parse_event(struct device_node *np, const char *scale,
141 				  const char *unit, const char *prefix,
142 				  u32 base, struct imc_events *event)
143 {
144 	const char *s;
145 	u32 reg;
146 
147 	if (of_property_read_u32(np, "reg", &reg))
148 		goto error;
149 	/* Add the base_reg value to the "reg" */
150 	event->value = base + reg;
151 
152 	if (of_property_read_string(np, "event-name", &s))
153 		goto error;
154 
155 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
156 	if (!event->name)
157 		goto error;
158 
159 	if (of_property_read_string(np, "scale", &s))
160 		s = scale;
161 
162 	if (s) {
163 		event->scale = kstrdup(s, GFP_KERNEL);
164 		if (!event->scale)
165 			goto error;
166 	}
167 
168 	if (of_property_read_string(np, "unit", &s))
169 		s = unit;
170 
171 	if (s) {
172 		event->unit = kstrdup(s, GFP_KERNEL);
173 		if (!event->unit)
174 			goto error;
175 	}
176 
177 	return 0;
178 error:
179 	kfree(event->unit);
180 	kfree(event->scale);
181 	kfree(event->name);
182 	return -EINVAL;
183 }
184 
185 /*
186  * imc_free_events: Function to cleanup the events list, having
187  * 		    "nr_entries".
188  */
189 static void imc_free_events(struct imc_events *events, int nr_entries)
190 {
191 	int i;
192 
193 	/* Nothing to clean, return */
194 	if (!events)
195 		return;
196 	for (i = 0; i < nr_entries; i++) {
197 		kfree(events[i].unit);
198 		kfree(events[i].scale);
199 		kfree(events[i].name);
200 	}
201 
202 	kfree(events);
203 }
204 
205 /*
206  * update_events_in_group: Update the "events" information in an attr_group
207  *                         and assign the attr_group to the pmu "pmu".
208  */
209 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
210 {
211 	struct attribute_group *attr_group;
212 	struct attribute **attrs, *dev_str;
213 	struct device_node *np, *pmu_events;
214 	u32 handle, base_reg;
215 	int i = 0, j = 0, ct, ret;
216 	const char *prefix, *g_scale, *g_unit;
217 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
218 
219 	if (!of_property_read_u32(node, "events", &handle))
220 		pmu_events = of_find_node_by_phandle(handle);
221 	else
222 		return 0;
223 
224 	/* Did not find any node with a given phandle */
225 	if (!pmu_events)
226 		return 0;
227 
228 	/* Get a count of number of child nodes */
229 	ct = of_get_child_count(pmu_events);
230 
231 	/* Get the event prefix */
232 	if (of_property_read_string(node, "events-prefix", &prefix))
233 		return 0;
234 
235 	/* Get a global unit and scale data if available */
236 	if (of_property_read_string(node, "scale", &g_scale))
237 		g_scale = NULL;
238 
239 	if (of_property_read_string(node, "unit", &g_unit))
240 		g_unit = NULL;
241 
242 	/* "reg" property gives out the base offset of the counters data */
243 	of_property_read_u32(node, "reg", &base_reg);
244 
245 	/* Allocate memory for the events */
246 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
247 	if (!pmu->events)
248 		return -ENOMEM;
249 
250 	ct = 0;
251 	/* Parse the events and update the struct */
252 	for_each_child_of_node(pmu_events, np) {
253 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
254 		if (!ret)
255 			ct++;
256 	}
257 
258 	/* Allocate memory for attribute group */
259 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
260 	if (!attr_group) {
261 		imc_free_events(pmu->events, ct);
262 		return -ENOMEM;
263 	}
264 
265 	/*
266 	 * Allocate memory for attributes.
267 	 * Since we have count of events for this pmu, we also allocate
268 	 * memory for the scale and unit attribute for now.
269 	 * "ct" has the total event structs added from the events-parent node.
270 	 * So allocate three times the "ct" (this includes event, event_scale and
271 	 * event_unit).
272 	 */
273 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
274 	if (!attrs) {
275 		kfree(attr_group);
276 		imc_free_events(pmu->events, ct);
277 		return -ENOMEM;
278 	}
279 
280 	attr_group->name = "events";
281 	attr_group->attrs = attrs;
282 	do {
283 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
284 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
285 		if (!dev_str)
286 			continue;
287 
288 		attrs[j++] = dev_str;
289 		if (pmu->events[i].scale) {
290 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
291 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
292 			if (!dev_str)
293 				continue;
294 
295 			attrs[j++] = dev_str;
296 		}
297 
298 		if (pmu->events[i].unit) {
299 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
300 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
301 			if (!dev_str)
302 				continue;
303 
304 			attrs[j++] = dev_str;
305 		}
306 	} while (++i < ct);
307 
308 	/* Save the event attribute */
309 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
310 
311 	return 0;
312 }
313 
314 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
315 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
316 {
317 	return per_cpu(local_nest_imc_refc, cpu);
318 }
319 
320 static void nest_change_cpu_context(int old_cpu, int new_cpu)
321 {
322 	struct imc_pmu **pn = per_nest_pmu_arr;
323 
324 	if (old_cpu < 0 || new_cpu < 0)
325 		return;
326 
327 	while (*pn) {
328 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
329 		pn++;
330 	}
331 }
332 
333 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
334 {
335 	int nid, target = -1;
336 	const struct cpumask *l_cpumask;
337 	struct imc_pmu_ref *ref;
338 
339 	/*
340 	 * Check in the designated list for this cpu. Dont bother
341 	 * if not one of them.
342 	 */
343 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
344 		return 0;
345 
346 	/*
347 	 * Check whether nest_imc is registered. We could end up here if the
348 	 * cpuhotplug callback registration fails. i.e, callback invokes the
349 	 * offline path for all successfully registered nodes. At this stage,
350 	 * nest_imc pmu will not be registered and we should return here.
351 	 *
352 	 * We return with a zero since this is not an offline failure. And
353 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
354 	 * which in turn will call the cleanup routine.
355 	 */
356 	if (!nest_pmus)
357 		return 0;
358 
359 	/*
360 	 * Now that this cpu is one of the designated,
361 	 * find a next cpu a) which is online and b) in same chip.
362 	 */
363 	nid = cpu_to_node(cpu);
364 	l_cpumask = cpumask_of_node(nid);
365 	target = cpumask_last(l_cpumask);
366 
367 	/*
368 	 * If this(target) is the last cpu in the cpumask for this chip,
369 	 * check for any possible online cpu in the chip.
370 	 */
371 	if (unlikely(target == cpu))
372 		target = cpumask_any_but(l_cpumask, cpu);
373 
374 	/*
375 	 * Update the cpumask with the target cpu and
376 	 * migrate the context if needed
377 	 */
378 	if (target >= 0 && target < nr_cpu_ids) {
379 		cpumask_set_cpu(target, &nest_imc_cpumask);
380 		nest_change_cpu_context(cpu, target);
381 	} else {
382 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
383 				       get_hard_smp_processor_id(cpu));
384 		/*
385 		 * If this is the last cpu in this chip then, skip the reference
386 		 * count mutex lock and make the reference count on this chip zero.
387 		 */
388 		ref = get_nest_pmu_ref(cpu);
389 		if (!ref)
390 			return -EINVAL;
391 
392 		ref->refc = 0;
393 	}
394 	return 0;
395 }
396 
397 static int ppc_nest_imc_cpu_online(unsigned int cpu)
398 {
399 	const struct cpumask *l_cpumask;
400 	static struct cpumask tmp_mask;
401 	int res;
402 
403 	/* Get the cpumask of this node */
404 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
405 
406 	/*
407 	 * If this is not the first online CPU on this node, then
408 	 * just return.
409 	 */
410 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
411 		return 0;
412 
413 	/*
414 	 * If this is the first online cpu on this node
415 	 * disable the nest counters by making an OPAL call.
416 	 */
417 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
418 				     get_hard_smp_processor_id(cpu));
419 	if (res)
420 		return res;
421 
422 	/* Make this CPU the designated target for counter collection */
423 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
424 	return 0;
425 }
426 
427 static int nest_pmu_cpumask_init(void)
428 {
429 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
430 				 "perf/powerpc/imc:online",
431 				 ppc_nest_imc_cpu_online,
432 				 ppc_nest_imc_cpu_offline);
433 }
434 
435 static void nest_imc_counters_release(struct perf_event *event)
436 {
437 	int rc, node_id;
438 	struct imc_pmu_ref *ref;
439 
440 	if (event->cpu < 0)
441 		return;
442 
443 	node_id = cpu_to_node(event->cpu);
444 
445 	/*
446 	 * See if we need to disable the nest PMU.
447 	 * If no events are currently in use, then we have to take a
448 	 * mutex to ensure that we don't race with another task doing
449 	 * enable or disable the nest counters.
450 	 */
451 	ref = get_nest_pmu_ref(event->cpu);
452 	if (!ref)
453 		return;
454 
455 	/* Take the mutex lock for this node and then decrement the reference count */
456 	mutex_lock(&ref->lock);
457 	if (ref->refc == 0) {
458 		/*
459 		 * The scenario where this is true is, when perf session is
460 		 * started, followed by offlining of all cpus in a given node.
461 		 *
462 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
463 		 * function set the ref->count to zero, if the cpu which is
464 		 * about to offline is the last cpu in a given node and make
465 		 * an OPAL call to disable the engine in that node.
466 		 *
467 		 */
468 		mutex_unlock(&ref->lock);
469 		return;
470 	}
471 	ref->refc--;
472 	if (ref->refc == 0) {
473 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
474 					    get_hard_smp_processor_id(event->cpu));
475 		if (rc) {
476 			mutex_unlock(&ref->lock);
477 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
478 			return;
479 		}
480 	} else if (ref->refc < 0) {
481 		WARN(1, "nest-imc: Invalid event reference count\n");
482 		ref->refc = 0;
483 	}
484 	mutex_unlock(&ref->lock);
485 }
486 
487 static int nest_imc_event_init(struct perf_event *event)
488 {
489 	int chip_id, rc, node_id;
490 	u32 l_config, config = event->attr.config;
491 	struct imc_mem_info *pcni;
492 	struct imc_pmu *pmu;
493 	struct imc_pmu_ref *ref;
494 	bool flag = false;
495 
496 	if (event->attr.type != event->pmu->type)
497 		return -ENOENT;
498 
499 	/* Sampling not supported */
500 	if (event->hw.sample_period)
501 		return -EINVAL;
502 
503 	if (event->cpu < 0)
504 		return -EINVAL;
505 
506 	pmu = imc_event_to_pmu(event);
507 
508 	/* Sanity check for config (event offset) */
509 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
510 		return -EINVAL;
511 
512 	/*
513 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
514 	 * Get the base memory addresss for this cpu.
515 	 */
516 	chip_id = cpu_to_chip_id(event->cpu);
517 
518 	/* Return, if chip_id is not valid */
519 	if (chip_id < 0)
520 		return -ENODEV;
521 
522 	pcni = pmu->mem_info;
523 	do {
524 		if (pcni->id == chip_id) {
525 			flag = true;
526 			break;
527 		}
528 		pcni++;
529 	} while (pcni->vbase != 0);
530 
531 	if (!flag)
532 		return -ENODEV;
533 
534 	/*
535 	 * Add the event offset to the base address.
536 	 */
537 	l_config = config & IMC_EVENT_OFFSET_MASK;
538 	event->hw.event_base = (u64)pcni->vbase + l_config;
539 	node_id = cpu_to_node(event->cpu);
540 
541 	/*
542 	 * Get the imc_pmu_ref struct for this node.
543 	 * Take the mutex lock and then increment the count of nest pmu events
544 	 * inited.
545 	 */
546 	ref = get_nest_pmu_ref(event->cpu);
547 	if (!ref)
548 		return -EINVAL;
549 
550 	mutex_lock(&ref->lock);
551 	if (ref->refc == 0) {
552 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
553 					     get_hard_smp_processor_id(event->cpu));
554 		if (rc) {
555 			mutex_unlock(&ref->lock);
556 			pr_err("nest-imc: Unable to start the counters for node %d\n",
557 									node_id);
558 			return rc;
559 		}
560 	}
561 	++ref->refc;
562 	mutex_unlock(&ref->lock);
563 
564 	event->destroy = nest_imc_counters_release;
565 	return 0;
566 }
567 
568 /*
569  * core_imc_mem_init : Initializes memory for the current core.
570  *
571  * Uses alloc_pages_node() and uses the returned address as an argument to
572  * an opal call to configure the pdbar. The address sent as an argument is
573  * converted to physical address before the opal call is made. This is the
574  * base address at which the core imc counters are populated.
575  */
576 static int core_imc_mem_init(int cpu, int size)
577 {
578 	int nid, rc = 0, core_id = (cpu / threads_per_core);
579 	struct imc_mem_info *mem_info;
580 	struct page *page;
581 
582 	/*
583 	 * alloc_pages_node() will allocate memory for core in the
584 	 * local node only.
585 	 */
586 	nid = cpu_to_node(cpu);
587 	mem_info = &core_imc_pmu->mem_info[core_id];
588 	mem_info->id = core_id;
589 
590 	/* We need only vbase for core counters */
591 	page = alloc_pages_node(nid,
592 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
593 				__GFP_NOWARN, get_order(size));
594 	if (!page)
595 		return -ENOMEM;
596 	mem_info->vbase = page_address(page);
597 
598 	/* Init the mutex */
599 	core_imc_refc[core_id].id = core_id;
600 	mutex_init(&core_imc_refc[core_id].lock);
601 
602 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
603 				__pa((void *)mem_info->vbase),
604 				get_hard_smp_processor_id(cpu));
605 	if (rc) {
606 		free_pages((u64)mem_info->vbase, get_order(size));
607 		mem_info->vbase = NULL;
608 	}
609 
610 	return rc;
611 }
612 
613 static bool is_core_imc_mem_inited(int cpu)
614 {
615 	struct imc_mem_info *mem_info;
616 	int core_id = (cpu / threads_per_core);
617 
618 	mem_info = &core_imc_pmu->mem_info[core_id];
619 	if (!mem_info->vbase)
620 		return false;
621 
622 	return true;
623 }
624 
625 static int ppc_core_imc_cpu_online(unsigned int cpu)
626 {
627 	const struct cpumask *l_cpumask;
628 	static struct cpumask tmp_mask;
629 	int ret = 0;
630 
631 	/* Get the cpumask for this core */
632 	l_cpumask = cpu_sibling_mask(cpu);
633 
634 	/* If a cpu for this core is already set, then, don't do anything */
635 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
636 		return 0;
637 
638 	if (!is_core_imc_mem_inited(cpu)) {
639 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
640 		if (ret) {
641 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
642 			return ret;
643 		}
644 	}
645 
646 	/* set the cpu in the mask */
647 	cpumask_set_cpu(cpu, &core_imc_cpumask);
648 	return 0;
649 }
650 
651 static int ppc_core_imc_cpu_offline(unsigned int cpu)
652 {
653 	unsigned int core_id;
654 	int ncpu;
655 	struct imc_pmu_ref *ref;
656 
657 	/*
658 	 * clear this cpu out of the mask, if not present in the mask,
659 	 * don't bother doing anything.
660 	 */
661 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
662 		return 0;
663 
664 	/*
665 	 * Check whether core_imc is registered. We could end up here
666 	 * if the cpuhotplug callback registration fails. i.e, callback
667 	 * invokes the offline path for all sucessfully registered cpus.
668 	 * At this stage, core_imc pmu will not be registered and we
669 	 * should return here.
670 	 *
671 	 * We return with a zero since this is not an offline failure.
672 	 * And cpuhp_setup_state() returns the actual failure reason
673 	 * to the caller, which inturn will call the cleanup routine.
674 	 */
675 	if (!core_imc_pmu->pmu.event_init)
676 		return 0;
677 
678 	/* Find any online cpu in that core except the current "cpu" */
679 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
680 
681 	if (unlikely(ncpu == cpu))
682 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
683 
684 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
685 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
686 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
687 	} else {
688 		/*
689 		 * If this is the last cpu in this core then, skip taking refernce
690 		 * count mutex lock for this core and directly zero "refc" for
691 		 * this core.
692 		 */
693 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
694 				       get_hard_smp_processor_id(cpu));
695 		core_id = cpu / threads_per_core;
696 		ref = &core_imc_refc[core_id];
697 		if (!ref)
698 			return -EINVAL;
699 
700 		ref->refc = 0;
701 	}
702 	return 0;
703 }
704 
705 static int core_imc_pmu_cpumask_init(void)
706 {
707 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
708 				 "perf/powerpc/imc_core:online",
709 				 ppc_core_imc_cpu_online,
710 				 ppc_core_imc_cpu_offline);
711 }
712 
713 static void core_imc_counters_release(struct perf_event *event)
714 {
715 	int rc, core_id;
716 	struct imc_pmu_ref *ref;
717 
718 	if (event->cpu < 0)
719 		return;
720 	/*
721 	 * See if we need to disable the IMC PMU.
722 	 * If no events are currently in use, then we have to take a
723 	 * mutex to ensure that we don't race with another task doing
724 	 * enable or disable the core counters.
725 	 */
726 	core_id = event->cpu / threads_per_core;
727 
728 	/* Take the mutex lock and decrement the refernce count for this core */
729 	ref = &core_imc_refc[core_id];
730 	if (!ref)
731 		return;
732 
733 	mutex_lock(&ref->lock);
734 	if (ref->refc == 0) {
735 		/*
736 		 * The scenario where this is true is, when perf session is
737 		 * started, followed by offlining of all cpus in a given core.
738 		 *
739 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
740 		 * function set the ref->count to zero, if the cpu which is
741 		 * about to offline is the last cpu in a given core and make
742 		 * an OPAL call to disable the engine in that core.
743 		 *
744 		 */
745 		mutex_unlock(&ref->lock);
746 		return;
747 	}
748 	ref->refc--;
749 	if (ref->refc == 0) {
750 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
751 					    get_hard_smp_processor_id(event->cpu));
752 		if (rc) {
753 			mutex_unlock(&ref->lock);
754 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
755 			return;
756 		}
757 	} else if (ref->refc < 0) {
758 		WARN(1, "core-imc: Invalid event reference count\n");
759 		ref->refc = 0;
760 	}
761 	mutex_unlock(&ref->lock);
762 }
763 
764 static int core_imc_event_init(struct perf_event *event)
765 {
766 	int core_id, rc;
767 	u64 config = event->attr.config;
768 	struct imc_mem_info *pcmi;
769 	struct imc_pmu *pmu;
770 	struct imc_pmu_ref *ref;
771 
772 	if (event->attr.type != event->pmu->type)
773 		return -ENOENT;
774 
775 	/* Sampling not supported */
776 	if (event->hw.sample_period)
777 		return -EINVAL;
778 
779 	if (event->cpu < 0)
780 		return -EINVAL;
781 
782 	event->hw.idx = -1;
783 	pmu = imc_event_to_pmu(event);
784 
785 	/* Sanity check for config (event offset) */
786 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
787 		return -EINVAL;
788 
789 	if (!is_core_imc_mem_inited(event->cpu))
790 		return -ENODEV;
791 
792 	core_id = event->cpu / threads_per_core;
793 	pcmi = &core_imc_pmu->mem_info[core_id];
794 	if ((!pcmi->vbase))
795 		return -ENODEV;
796 
797 	/* Get the core_imc mutex for this core */
798 	ref = &core_imc_refc[core_id];
799 	if (!ref)
800 		return -EINVAL;
801 
802 	/*
803 	 * Core pmu units are enabled only when it is used.
804 	 * See if this is triggered for the first time.
805 	 * If yes, take the mutex lock and enable the core counters.
806 	 * If not, just increment the count in core_imc_refc struct.
807 	 */
808 	mutex_lock(&ref->lock);
809 	if (ref->refc == 0) {
810 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
811 					     get_hard_smp_processor_id(event->cpu));
812 		if (rc) {
813 			mutex_unlock(&ref->lock);
814 			pr_err("core-imc: Unable to start the counters for core %d\n",
815 									core_id);
816 			return rc;
817 		}
818 	}
819 	++ref->refc;
820 	mutex_unlock(&ref->lock);
821 
822 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
823 	event->destroy = core_imc_counters_release;
824 	return 0;
825 }
826 
827 /*
828  * Allocates a page of memory for each of the online cpus, and load
829  * LDBAR with 0.
830  * The physical base address of the page allocated for a cpu will be
831  * written to the LDBAR for that cpu, when the thread-imc event
832  * is added.
833  *
834  * LDBAR Register Layout:
835  *
836  *  0          4         8         12        16        20        24        28
837  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
838  *   | |       [   ]    [                   Counter Address [8:50]
839  *   | * Mode    |
840  *   |           * PB Scope
841  *   * Enable/Disable
842  *
843  *  32        36        40        44        48        52        56        60
844  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
845  *           Counter Address [8:50]              ]
846  *
847  */
848 static int thread_imc_mem_alloc(int cpu_id, int size)
849 {
850 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
851 	int nid = cpu_to_node(cpu_id);
852 
853 	if (!local_mem) {
854 		struct page *page;
855 		/*
856 		 * This case could happen only once at start, since we dont
857 		 * free the memory in cpu offline path.
858 		 */
859 		page = alloc_pages_node(nid,
860 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
861 				  __GFP_NOWARN, get_order(size));
862 		if (!page)
863 			return -ENOMEM;
864 		local_mem = page_address(page);
865 
866 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
867 	}
868 
869 	mtspr(SPRN_LDBAR, 0);
870 	return 0;
871 }
872 
873 static int ppc_thread_imc_cpu_online(unsigned int cpu)
874 {
875 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
876 }
877 
878 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
879 {
880 	mtspr(SPRN_LDBAR, 0);
881 	return 0;
882 }
883 
884 static int thread_imc_cpu_init(void)
885 {
886 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
887 			  "perf/powerpc/imc_thread:online",
888 			  ppc_thread_imc_cpu_online,
889 			  ppc_thread_imc_cpu_offline);
890 }
891 
892 static int thread_imc_event_init(struct perf_event *event)
893 {
894 	u32 config = event->attr.config;
895 	struct task_struct *target;
896 	struct imc_pmu *pmu;
897 
898 	if (event->attr.type != event->pmu->type)
899 		return -ENOENT;
900 
901 	if (!capable(CAP_SYS_ADMIN))
902 		return -EACCES;
903 
904 	/* Sampling not supported */
905 	if (event->hw.sample_period)
906 		return -EINVAL;
907 
908 	event->hw.idx = -1;
909 	pmu = imc_event_to_pmu(event);
910 
911 	/* Sanity check for config offset */
912 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
913 		return -EINVAL;
914 
915 	target = event->hw.target;
916 	if (!target)
917 		return -EINVAL;
918 
919 	event->pmu->task_ctx_nr = perf_sw_context;
920 	return 0;
921 }
922 
923 static bool is_thread_imc_pmu(struct perf_event *event)
924 {
925 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
926 		return true;
927 
928 	return false;
929 }
930 
931 static u64 * get_event_base_addr(struct perf_event *event)
932 {
933 	u64 addr;
934 
935 	if (is_thread_imc_pmu(event)) {
936 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
937 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
938 	}
939 
940 	return (u64 *)event->hw.event_base;
941 }
942 
943 static void thread_imc_pmu_start_txn(struct pmu *pmu,
944 				     unsigned int txn_flags)
945 {
946 	if (txn_flags & ~PERF_PMU_TXN_ADD)
947 		return;
948 	perf_pmu_disable(pmu);
949 }
950 
951 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
952 {
953 	perf_pmu_enable(pmu);
954 }
955 
956 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
957 {
958 	perf_pmu_enable(pmu);
959 	return 0;
960 }
961 
962 static u64 imc_read_counter(struct perf_event *event)
963 {
964 	u64 *addr, data;
965 
966 	/*
967 	 * In-Memory Collection (IMC) counters are free flowing counters.
968 	 * So we take a snapshot of the counter value on enable and save it
969 	 * to calculate the delta at later stage to present the event counter
970 	 * value.
971 	 */
972 	addr = get_event_base_addr(event);
973 	data = be64_to_cpu(READ_ONCE(*addr));
974 	local64_set(&event->hw.prev_count, data);
975 
976 	return data;
977 }
978 
979 static void imc_event_update(struct perf_event *event)
980 {
981 	u64 counter_prev, counter_new, final_count;
982 
983 	counter_prev = local64_read(&event->hw.prev_count);
984 	counter_new = imc_read_counter(event);
985 	final_count = counter_new - counter_prev;
986 
987 	/* Update the delta to the event count */
988 	local64_add(final_count, &event->count);
989 }
990 
991 static void imc_event_start(struct perf_event *event, int flags)
992 {
993 	/*
994 	 * In Memory Counters are free flowing counters. HW or the microcode
995 	 * keeps adding to the counter offset in memory. To get event
996 	 * counter value, we snapshot the value here and we calculate
997 	 * delta at later point.
998 	 */
999 	imc_read_counter(event);
1000 }
1001 
1002 static void imc_event_stop(struct perf_event *event, int flags)
1003 {
1004 	/*
1005 	 * Take a snapshot and calculate the delta and update
1006 	 * the event counter values.
1007 	 */
1008 	imc_event_update(event);
1009 }
1010 
1011 static int imc_event_add(struct perf_event *event, int flags)
1012 {
1013 	if (flags & PERF_EF_START)
1014 		imc_event_start(event, flags);
1015 
1016 	return 0;
1017 }
1018 
1019 static int thread_imc_event_add(struct perf_event *event, int flags)
1020 {
1021 	int core_id;
1022 	struct imc_pmu_ref *ref;
1023 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1024 
1025 	if (flags & PERF_EF_START)
1026 		imc_event_start(event, flags);
1027 
1028 	if (!is_core_imc_mem_inited(smp_processor_id()))
1029 		return -EINVAL;
1030 
1031 	core_id = smp_processor_id() / threads_per_core;
1032 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1033 	mtspr(SPRN_LDBAR, ldbar_value);
1034 
1035 	/*
1036 	 * imc pmus are enabled only when it is used.
1037 	 * See if this is triggered for the first time.
1038 	 * If yes, take the mutex lock and enable the counters.
1039 	 * If not, just increment the count in ref count struct.
1040 	 */
1041 	ref = &core_imc_refc[core_id];
1042 	if (!ref)
1043 		return -EINVAL;
1044 
1045 	mutex_lock(&ref->lock);
1046 	if (ref->refc == 0) {
1047 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1048 		    get_hard_smp_processor_id(smp_processor_id()))) {
1049 			mutex_unlock(&ref->lock);
1050 			pr_err("thread-imc: Unable to start the counter\
1051 				for core %d\n", core_id);
1052 			return -EINVAL;
1053 		}
1054 	}
1055 	++ref->refc;
1056 	mutex_unlock(&ref->lock);
1057 	return 0;
1058 }
1059 
1060 static void thread_imc_event_del(struct perf_event *event, int flags)
1061 {
1062 
1063 	int core_id;
1064 	struct imc_pmu_ref *ref;
1065 
1066 	mtspr(SPRN_LDBAR, 0);
1067 
1068 	core_id = smp_processor_id() / threads_per_core;
1069 	ref = &core_imc_refc[core_id];
1070 
1071 	mutex_lock(&ref->lock);
1072 	ref->refc--;
1073 	if (ref->refc == 0) {
1074 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1075 		    get_hard_smp_processor_id(smp_processor_id()))) {
1076 			mutex_unlock(&ref->lock);
1077 			pr_err("thread-imc: Unable to stop the counters\
1078 				for core %d\n", core_id);
1079 			return;
1080 		}
1081 	} else if (ref->refc < 0) {
1082 		ref->refc = 0;
1083 	}
1084 	mutex_unlock(&ref->lock);
1085 	/*
1086 	 * Take a snapshot and calculate the delta and update
1087 	 * the event counter values.
1088 	 */
1089 	imc_event_update(event);
1090 }
1091 
1092 /*
1093  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1094  */
1095 static int trace_imc_mem_alloc(int cpu_id, int size)
1096 {
1097 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1098 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1099 	int core_id = (cpu_id / threads_per_core);
1100 
1101 	if (!local_mem) {
1102 		struct page *page;
1103 
1104 		page = alloc_pages_node(phys_id,
1105 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1106 				__GFP_NOWARN, get_order(size));
1107 		if (!page)
1108 			return -ENOMEM;
1109 		local_mem = page_address(page);
1110 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1111 
1112 		/* Initialise the counters for trace mode */
1113 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1114 					    get_hard_smp_processor_id(cpu_id));
1115 		if (rc) {
1116 			pr_info("IMC:opal init failed for trace imc\n");
1117 			return rc;
1118 		}
1119 	}
1120 
1121 	/* Init the mutex, if not already */
1122 	trace_imc_refc[core_id].id = core_id;
1123 	mutex_init(&trace_imc_refc[core_id].lock);
1124 
1125 	mtspr(SPRN_LDBAR, 0);
1126 	return 0;
1127 }
1128 
1129 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1130 {
1131 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1132 }
1133 
1134 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1135 {
1136 	mtspr(SPRN_LDBAR, 0);
1137 	return 0;
1138 }
1139 
1140 static int trace_imc_cpu_init(void)
1141 {
1142 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1143 			  "perf/powerpc/imc_trace:online",
1144 			  ppc_trace_imc_cpu_online,
1145 			  ppc_trace_imc_cpu_offline);
1146 }
1147 
1148 static u64 get_trace_imc_event_base_addr(void)
1149 {
1150 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1151 }
1152 
1153 /*
1154  * Function to parse trace-imc data obtained
1155  * and to prepare the perf sample.
1156  */
1157 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1158 				    struct perf_sample_data *data,
1159 				    u64 *prev_tb,
1160 				    struct perf_event_header *header,
1161 				    struct perf_event *event)
1162 {
1163 	/* Sanity checks for a valid record */
1164 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1165 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1166 	else
1167 		return -EINVAL;
1168 
1169 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1170 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1171 		return -EINVAL;
1172 
1173 	/* Prepare perf sample */
1174 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1175 	data->period = event->hw.last_period;
1176 
1177 	header->type = PERF_RECORD_SAMPLE;
1178 	header->size = sizeof(*header) + event->header_size;
1179 	header->misc = 0;
1180 
1181 	if (is_kernel_addr(data->ip))
1182 		header->misc |= PERF_RECORD_MISC_KERNEL;
1183 	else
1184 		header->misc |= PERF_RECORD_MISC_USER;
1185 
1186 	perf_event_header__init_id(header, data, event);
1187 
1188 	return 0;
1189 }
1190 
1191 static void dump_trace_imc_data(struct perf_event *event)
1192 {
1193 	struct trace_imc_data *mem;
1194 	int i, ret;
1195 	u64 prev_tb = 0;
1196 
1197 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1198 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1199 		i++, mem++) {
1200 		struct perf_sample_data data;
1201 		struct perf_event_header header;
1202 
1203 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1204 		if (ret) /* Exit, if not a valid record */
1205 			break;
1206 		else {
1207 			/* If this is a valid record, create the sample */
1208 			struct perf_output_handle handle;
1209 
1210 			if (perf_output_begin(&handle, event, header.size))
1211 				return;
1212 
1213 			perf_output_sample(&handle, &header, &data, event);
1214 			perf_output_end(&handle);
1215 		}
1216 	}
1217 }
1218 
1219 static int trace_imc_event_add(struct perf_event *event, int flags)
1220 {
1221 	int core_id = smp_processor_id() / threads_per_core;
1222 	struct imc_pmu_ref *ref = NULL;
1223 	u64 local_mem, ldbar_value;
1224 
1225 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1226 	local_mem = get_trace_imc_event_base_addr();
1227 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1228 
1229 	if (core_imc_refc)
1230 		ref = &core_imc_refc[core_id];
1231 	if (!ref) {
1232 		/* If core-imc is not enabled, use trace-imc reference count */
1233 		if (trace_imc_refc)
1234 			ref = &trace_imc_refc[core_id];
1235 		if (!ref)
1236 			return -EINVAL;
1237 	}
1238 	mtspr(SPRN_LDBAR, ldbar_value);
1239 	mutex_lock(&ref->lock);
1240 	if (ref->refc == 0) {
1241 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1242 				get_hard_smp_processor_id(smp_processor_id()))) {
1243 			mutex_unlock(&ref->lock);
1244 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1245 			mtspr(SPRN_LDBAR, 0);
1246 			return -EINVAL;
1247 		}
1248 	}
1249 	++ref->refc;
1250 	mutex_unlock(&ref->lock);
1251 
1252 	return 0;
1253 }
1254 
1255 static void trace_imc_event_read(struct perf_event *event)
1256 {
1257 	return;
1258 }
1259 
1260 static void trace_imc_event_stop(struct perf_event *event, int flags)
1261 {
1262 	u64 local_mem = get_trace_imc_event_base_addr();
1263 	dump_trace_imc_data(event);
1264 	memset((void *)local_mem, 0, sizeof(u64));
1265 }
1266 
1267 static void trace_imc_event_start(struct perf_event *event, int flags)
1268 {
1269 	return;
1270 }
1271 
1272 static void trace_imc_event_del(struct perf_event *event, int flags)
1273 {
1274 	int core_id = smp_processor_id() / threads_per_core;
1275 	struct imc_pmu_ref *ref = NULL;
1276 
1277 	if (core_imc_refc)
1278 		ref = &core_imc_refc[core_id];
1279 	if (!ref) {
1280 		/* If core-imc is not enabled, use trace-imc reference count */
1281 		if (trace_imc_refc)
1282 			ref = &trace_imc_refc[core_id];
1283 		if (!ref)
1284 			return;
1285 	}
1286 	mtspr(SPRN_LDBAR, 0);
1287 	mutex_lock(&ref->lock);
1288 	ref->refc--;
1289 	if (ref->refc == 0) {
1290 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1291 				get_hard_smp_processor_id(smp_processor_id()))) {
1292 			mutex_unlock(&ref->lock);
1293 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1294 			return;
1295 		}
1296 	} else if (ref->refc < 0) {
1297 		ref->refc = 0;
1298 	}
1299 	mutex_unlock(&ref->lock);
1300 	trace_imc_event_stop(event, flags);
1301 }
1302 
1303 static int trace_imc_event_init(struct perf_event *event)
1304 {
1305 	struct task_struct *target;
1306 
1307 	if (event->attr.type != event->pmu->type)
1308 		return -ENOENT;
1309 
1310 	if (!capable(CAP_SYS_ADMIN))
1311 		return -EACCES;
1312 
1313 	/* Return if this is a couting event */
1314 	if (event->attr.sample_period == 0)
1315 		return -ENOENT;
1316 
1317 	event->hw.idx = -1;
1318 	target = event->hw.target;
1319 
1320 	event->pmu->task_ctx_nr = perf_hw_context;
1321 	return 0;
1322 }
1323 
1324 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1325 static int update_pmu_ops(struct imc_pmu *pmu)
1326 {
1327 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1328 	pmu->pmu.add = imc_event_add;
1329 	pmu->pmu.del = imc_event_stop;
1330 	pmu->pmu.start = imc_event_start;
1331 	pmu->pmu.stop = imc_event_stop;
1332 	pmu->pmu.read = imc_event_update;
1333 	pmu->pmu.attr_groups = pmu->attr_groups;
1334 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1335 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1336 
1337 	switch (pmu->domain) {
1338 	case IMC_DOMAIN_NEST:
1339 		pmu->pmu.event_init = nest_imc_event_init;
1340 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1341 		break;
1342 	case IMC_DOMAIN_CORE:
1343 		pmu->pmu.event_init = core_imc_event_init;
1344 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1345 		break;
1346 	case IMC_DOMAIN_THREAD:
1347 		pmu->pmu.event_init = thread_imc_event_init;
1348 		pmu->pmu.add = thread_imc_event_add;
1349 		pmu->pmu.del = thread_imc_event_del;
1350 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1351 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1352 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1353 		break;
1354 	case IMC_DOMAIN_TRACE:
1355 		pmu->pmu.event_init = trace_imc_event_init;
1356 		pmu->pmu.add = trace_imc_event_add;
1357 		pmu->pmu.del = trace_imc_event_del;
1358 		pmu->pmu.start = trace_imc_event_start;
1359 		pmu->pmu.stop = trace_imc_event_stop;
1360 		pmu->pmu.read = trace_imc_event_read;
1361 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1362 	default:
1363 		break;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1370 static int init_nest_pmu_ref(void)
1371 {
1372 	int nid, i, cpu;
1373 
1374 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1375 								GFP_KERNEL);
1376 
1377 	if (!nest_imc_refc)
1378 		return -ENOMEM;
1379 
1380 	i = 0;
1381 	for_each_node(nid) {
1382 		/*
1383 		 * Mutex lock to avoid races while tracking the number of
1384 		 * sessions using the chip's nest pmu units.
1385 		 */
1386 		mutex_init(&nest_imc_refc[i].lock);
1387 
1388 		/*
1389 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1390 		 * 0 and will be used as index to the array. "i" will not go off the
1391 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1392 		 * nodes only.
1393 		 */
1394 		nest_imc_refc[i++].id = nid;
1395 	}
1396 
1397 	/*
1398 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1399 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1400 	 */
1401 	for_each_possible_cpu(cpu) {
1402 		nid = cpu_to_node(cpu);
1403 		for (i = 0; i < num_possible_nodes(); i++) {
1404 			if (nest_imc_refc[i].id == nid) {
1405 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1406 				break;
1407 			}
1408 		}
1409 	}
1410 	return 0;
1411 }
1412 
1413 static void cleanup_all_core_imc_memory(void)
1414 {
1415 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1416 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1417 	int size = core_imc_pmu->counter_mem_size;
1418 
1419 	/* mem_info will never be NULL */
1420 	for (i = 0; i < nr_cores; i++) {
1421 		if (ptr[i].vbase)
1422 			free_pages((u64)ptr[i].vbase, get_order(size));
1423 	}
1424 
1425 	kfree(ptr);
1426 	kfree(core_imc_refc);
1427 }
1428 
1429 static void thread_imc_ldbar_disable(void *dummy)
1430 {
1431 	/*
1432 	 * By Zeroing LDBAR, we disable thread-imc
1433 	 * updates.
1434 	 */
1435 	mtspr(SPRN_LDBAR, 0);
1436 }
1437 
1438 void thread_imc_disable(void)
1439 {
1440 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1441 }
1442 
1443 static void cleanup_all_thread_imc_memory(void)
1444 {
1445 	int i, order = get_order(thread_imc_mem_size);
1446 
1447 	for_each_online_cpu(i) {
1448 		if (per_cpu(thread_imc_mem, i))
1449 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1450 
1451 	}
1452 }
1453 
1454 static void cleanup_all_trace_imc_memory(void)
1455 {
1456 	int i, order = get_order(trace_imc_mem_size);
1457 
1458 	for_each_online_cpu(i) {
1459 		if (per_cpu(trace_imc_mem, i))
1460 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1461 
1462 	}
1463 	kfree(trace_imc_refc);
1464 }
1465 
1466 /* Function to free the attr_groups which are dynamically allocated */
1467 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1468 {
1469 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1470 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1471 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1472 }
1473 
1474 /*
1475  * Common function to unregister cpu hotplug callback and
1476  * free the memory.
1477  * TODO: Need to handle pmu unregistering, which will be
1478  * done in followup series.
1479  */
1480 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1481 {
1482 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1483 		mutex_lock(&nest_init_lock);
1484 		if (nest_pmus == 1) {
1485 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1486 			kfree(nest_imc_refc);
1487 			kfree(per_nest_pmu_arr);
1488 			per_nest_pmu_arr = NULL;
1489 		}
1490 
1491 		if (nest_pmus > 0)
1492 			nest_pmus--;
1493 		mutex_unlock(&nest_init_lock);
1494 	}
1495 
1496 	/* Free core_imc memory */
1497 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1498 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1499 		cleanup_all_core_imc_memory();
1500 	}
1501 
1502 	/* Free thread_imc memory */
1503 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1504 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1505 		cleanup_all_thread_imc_memory();
1506 	}
1507 
1508 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1509 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1510 		cleanup_all_trace_imc_memory();
1511 	}
1512 }
1513 
1514 /*
1515  * Function to unregister thread-imc if core-imc
1516  * is not registered.
1517  */
1518 void unregister_thread_imc(void)
1519 {
1520 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1521 	imc_common_mem_free(thread_imc_pmu);
1522 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1523 }
1524 
1525 /*
1526  * imc_mem_init : Function to support memory allocation for core imc.
1527  */
1528 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1529 								int pmu_index)
1530 {
1531 	const char *s;
1532 	int nr_cores, cpu, res = -ENOMEM;
1533 
1534 	if (of_property_read_string(parent, "name", &s))
1535 		return -ENODEV;
1536 
1537 	switch (pmu_ptr->domain) {
1538 	case IMC_DOMAIN_NEST:
1539 		/* Update the pmu name */
1540 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1541 		if (!pmu_ptr->pmu.name)
1542 			goto err;
1543 
1544 		/* Needed for hotplug/migration */
1545 		if (!per_nest_pmu_arr) {
1546 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1547 						sizeof(struct imc_pmu *),
1548 						GFP_KERNEL);
1549 			if (!per_nest_pmu_arr)
1550 				goto err;
1551 		}
1552 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1553 		break;
1554 	case IMC_DOMAIN_CORE:
1555 		/* Update the pmu name */
1556 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1557 		if (!pmu_ptr->pmu.name)
1558 			goto err;
1559 
1560 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1561 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1562 								GFP_KERNEL);
1563 
1564 		if (!pmu_ptr->mem_info)
1565 			goto err;
1566 
1567 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1568 								GFP_KERNEL);
1569 
1570 		if (!core_imc_refc) {
1571 			kfree(pmu_ptr->mem_info);
1572 			goto err;
1573 		}
1574 
1575 		core_imc_pmu = pmu_ptr;
1576 		break;
1577 	case IMC_DOMAIN_THREAD:
1578 		/* Update the pmu name */
1579 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1580 		if (!pmu_ptr->pmu.name)
1581 			goto err;
1582 
1583 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1584 		for_each_online_cpu(cpu) {
1585 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1586 			if (res) {
1587 				cleanup_all_thread_imc_memory();
1588 				goto err;
1589 			}
1590 		}
1591 
1592 		thread_imc_pmu = pmu_ptr;
1593 		break;
1594 	case IMC_DOMAIN_TRACE:
1595 		/* Update the pmu name */
1596 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1597 		if (!pmu_ptr->pmu.name)
1598 			return -ENOMEM;
1599 
1600 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1601 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1602 								GFP_KERNEL);
1603 		if (!trace_imc_refc)
1604 			return -ENOMEM;
1605 
1606 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1607 		for_each_online_cpu(cpu) {
1608 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1609 			if (res) {
1610 				cleanup_all_trace_imc_memory();
1611 				goto err;
1612 			}
1613 		}
1614 		break;
1615 	default:
1616 		return -EINVAL;
1617 	}
1618 
1619 	return 0;
1620 err:
1621 	return res;
1622 }
1623 
1624 /*
1625  * init_imc_pmu : Setup and register the IMC pmu device.
1626  *
1627  * @parent:	Device tree unit node
1628  * @pmu_ptr:	memory allocated for this pmu
1629  * @pmu_idx:	Count of nest pmc registered
1630  *
1631  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1632  * Handles failure cases and accordingly frees memory.
1633  */
1634 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1635 {
1636 	int ret;
1637 
1638 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1639 	if (ret)
1640 		goto err_free_mem;
1641 
1642 	switch (pmu_ptr->domain) {
1643 	case IMC_DOMAIN_NEST:
1644 		/*
1645 		* Nest imc pmu need only one cpu per chip, we initialize the
1646 		* cpumask for the first nest imc pmu and use the same for the
1647 		* rest. To handle the cpuhotplug callback unregister, we track
1648 		* the number of nest pmus in "nest_pmus".
1649 		*/
1650 		mutex_lock(&nest_init_lock);
1651 		if (nest_pmus == 0) {
1652 			ret = init_nest_pmu_ref();
1653 			if (ret) {
1654 				mutex_unlock(&nest_init_lock);
1655 				kfree(per_nest_pmu_arr);
1656 				per_nest_pmu_arr = NULL;
1657 				goto err_free_mem;
1658 			}
1659 			/* Register for cpu hotplug notification. */
1660 			ret = nest_pmu_cpumask_init();
1661 			if (ret) {
1662 				mutex_unlock(&nest_init_lock);
1663 				kfree(nest_imc_refc);
1664 				kfree(per_nest_pmu_arr);
1665 				per_nest_pmu_arr = NULL;
1666 				goto err_free_mem;
1667 			}
1668 		}
1669 		nest_pmus++;
1670 		mutex_unlock(&nest_init_lock);
1671 		break;
1672 	case IMC_DOMAIN_CORE:
1673 		ret = core_imc_pmu_cpumask_init();
1674 		if (ret) {
1675 			cleanup_all_core_imc_memory();
1676 			goto err_free_mem;
1677 		}
1678 
1679 		break;
1680 	case IMC_DOMAIN_THREAD:
1681 		ret = thread_imc_cpu_init();
1682 		if (ret) {
1683 			cleanup_all_thread_imc_memory();
1684 			goto err_free_mem;
1685 		}
1686 
1687 		break;
1688 	case IMC_DOMAIN_TRACE:
1689 		ret = trace_imc_cpu_init();
1690 		if (ret) {
1691 			cleanup_all_trace_imc_memory();
1692 			goto err_free_mem;
1693 		}
1694 
1695 		break;
1696 	default:
1697 		return  -EINVAL;	/* Unknown domain */
1698 	}
1699 
1700 	ret = update_events_in_group(parent, pmu_ptr);
1701 	if (ret)
1702 		goto err_free_cpuhp_mem;
1703 
1704 	ret = update_pmu_ops(pmu_ptr);
1705 	if (ret)
1706 		goto err_free_cpuhp_mem;
1707 
1708 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1709 	if (ret)
1710 		goto err_free_cpuhp_mem;
1711 
1712 	pr_debug("%s performance monitor hardware support registered\n",
1713 							pmu_ptr->pmu.name);
1714 
1715 	return 0;
1716 
1717 err_free_cpuhp_mem:
1718 	imc_common_cpuhp_mem_free(pmu_ptr);
1719 err_free_mem:
1720 	imc_common_mem_free(pmu_ptr);
1721 	return ret;
1722 }
1723