1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/perf_event.h> 10 #include <linux/slab.h> 11 #include <asm/opal.h> 12 #include <asm/imc-pmu.h> 13 #include <asm/cputhreads.h> 14 #include <asm/smp.h> 15 #include <linux/string.h> 16 17 /* Nest IMC data structures and variables */ 18 19 /* 20 * Used to avoid races in counting the nest-pmu units during hotplug 21 * register and unregister 22 */ 23 static DEFINE_MUTEX(nest_init_lock); 24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 25 static struct imc_pmu **per_nest_pmu_arr; 26 static cpumask_t nest_imc_cpumask; 27 static struct imc_pmu_ref *nest_imc_refc; 28 static int nest_pmus; 29 30 /* Core IMC data structures and variables */ 31 32 static cpumask_t core_imc_cpumask; 33 static struct imc_pmu_ref *core_imc_refc; 34 static struct imc_pmu *core_imc_pmu; 35 36 /* Thread IMC data structures and variables */ 37 38 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 39 static struct imc_pmu *thread_imc_pmu; 40 static int thread_imc_mem_size; 41 42 /* Trace IMC data structures */ 43 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 44 static struct imc_pmu_ref *trace_imc_refc; 45 static int trace_imc_mem_size; 46 47 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 48 { 49 return container_of(event->pmu, struct imc_pmu, pmu); 50 } 51 52 PMU_FORMAT_ATTR(event, "config:0-61"); 53 PMU_FORMAT_ATTR(offset, "config:0-31"); 54 PMU_FORMAT_ATTR(rvalue, "config:32"); 55 PMU_FORMAT_ATTR(mode, "config:33-40"); 56 static struct attribute *imc_format_attrs[] = { 57 &format_attr_event.attr, 58 &format_attr_offset.attr, 59 &format_attr_rvalue.attr, 60 &format_attr_mode.attr, 61 NULL, 62 }; 63 64 static struct attribute_group imc_format_group = { 65 .name = "format", 66 .attrs = imc_format_attrs, 67 }; 68 69 /* Format attribute for imc trace-mode */ 70 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 71 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 72 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 73 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 74 static struct attribute *trace_imc_format_attrs[] = { 75 &format_attr_event.attr, 76 &format_attr_cpmc_reserved.attr, 77 &format_attr_cpmc_event.attr, 78 &format_attr_cpmc_samplesel.attr, 79 &format_attr_cpmc_load.attr, 80 NULL, 81 }; 82 83 static struct attribute_group trace_imc_format_group = { 84 .name = "format", 85 .attrs = trace_imc_format_attrs, 86 }; 87 88 /* Get the cpumask printed to a buffer "buf" */ 89 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 90 struct device_attribute *attr, 91 char *buf) 92 { 93 struct pmu *pmu = dev_get_drvdata(dev); 94 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 95 cpumask_t *active_mask; 96 97 switch(imc_pmu->domain){ 98 case IMC_DOMAIN_NEST: 99 active_mask = &nest_imc_cpumask; 100 break; 101 case IMC_DOMAIN_CORE: 102 active_mask = &core_imc_cpumask; 103 break; 104 default: 105 return 0; 106 } 107 108 return cpumap_print_to_pagebuf(true, buf, active_mask); 109 } 110 111 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 112 113 static struct attribute *imc_pmu_cpumask_attrs[] = { 114 &dev_attr_cpumask.attr, 115 NULL, 116 }; 117 118 static struct attribute_group imc_pmu_cpumask_attr_group = { 119 .attrs = imc_pmu_cpumask_attrs, 120 }; 121 122 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 123 static struct attribute *device_str_attr_create(const char *name, const char *str) 124 { 125 struct perf_pmu_events_attr *attr; 126 127 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 128 if (!attr) 129 return NULL; 130 sysfs_attr_init(&attr->attr.attr); 131 132 attr->event_str = str; 133 attr->attr.attr.name = name; 134 attr->attr.attr.mode = 0444; 135 attr->attr.show = perf_event_sysfs_show; 136 137 return &attr->attr.attr; 138 } 139 140 static int imc_parse_event(struct device_node *np, const char *scale, 141 const char *unit, const char *prefix, 142 u32 base, struct imc_events *event) 143 { 144 const char *s; 145 u32 reg; 146 147 if (of_property_read_u32(np, "reg", ®)) 148 goto error; 149 /* Add the base_reg value to the "reg" */ 150 event->value = base + reg; 151 152 if (of_property_read_string(np, "event-name", &s)) 153 goto error; 154 155 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 156 if (!event->name) 157 goto error; 158 159 if (of_property_read_string(np, "scale", &s)) 160 s = scale; 161 162 if (s) { 163 event->scale = kstrdup(s, GFP_KERNEL); 164 if (!event->scale) 165 goto error; 166 } 167 168 if (of_property_read_string(np, "unit", &s)) 169 s = unit; 170 171 if (s) { 172 event->unit = kstrdup(s, GFP_KERNEL); 173 if (!event->unit) 174 goto error; 175 } 176 177 return 0; 178 error: 179 kfree(event->unit); 180 kfree(event->scale); 181 kfree(event->name); 182 return -EINVAL; 183 } 184 185 /* 186 * imc_free_events: Function to cleanup the events list, having 187 * "nr_entries". 188 */ 189 static void imc_free_events(struct imc_events *events, int nr_entries) 190 { 191 int i; 192 193 /* Nothing to clean, return */ 194 if (!events) 195 return; 196 for (i = 0; i < nr_entries; i++) { 197 kfree(events[i].unit); 198 kfree(events[i].scale); 199 kfree(events[i].name); 200 } 201 202 kfree(events); 203 } 204 205 /* 206 * update_events_in_group: Update the "events" information in an attr_group 207 * and assign the attr_group to the pmu "pmu". 208 */ 209 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 210 { 211 struct attribute_group *attr_group; 212 struct attribute **attrs, *dev_str; 213 struct device_node *np, *pmu_events; 214 u32 handle, base_reg; 215 int i = 0, j = 0, ct, ret; 216 const char *prefix, *g_scale, *g_unit; 217 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 218 219 if (!of_property_read_u32(node, "events", &handle)) 220 pmu_events = of_find_node_by_phandle(handle); 221 else 222 return 0; 223 224 /* Did not find any node with a given phandle */ 225 if (!pmu_events) 226 return 0; 227 228 /* Get a count of number of child nodes */ 229 ct = of_get_child_count(pmu_events); 230 231 /* Get the event prefix */ 232 if (of_property_read_string(node, "events-prefix", &prefix)) 233 return 0; 234 235 /* Get a global unit and scale data if available */ 236 if (of_property_read_string(node, "scale", &g_scale)) 237 g_scale = NULL; 238 239 if (of_property_read_string(node, "unit", &g_unit)) 240 g_unit = NULL; 241 242 /* "reg" property gives out the base offset of the counters data */ 243 of_property_read_u32(node, "reg", &base_reg); 244 245 /* Allocate memory for the events */ 246 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 247 if (!pmu->events) 248 return -ENOMEM; 249 250 ct = 0; 251 /* Parse the events and update the struct */ 252 for_each_child_of_node(pmu_events, np) { 253 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 254 if (!ret) 255 ct++; 256 } 257 258 /* Allocate memory for attribute group */ 259 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 260 if (!attr_group) { 261 imc_free_events(pmu->events, ct); 262 return -ENOMEM; 263 } 264 265 /* 266 * Allocate memory for attributes. 267 * Since we have count of events for this pmu, we also allocate 268 * memory for the scale and unit attribute for now. 269 * "ct" has the total event structs added from the events-parent node. 270 * So allocate three times the "ct" (this includes event, event_scale and 271 * event_unit). 272 */ 273 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 274 if (!attrs) { 275 kfree(attr_group); 276 imc_free_events(pmu->events, ct); 277 return -ENOMEM; 278 } 279 280 attr_group->name = "events"; 281 attr_group->attrs = attrs; 282 do { 283 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 284 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 285 if (!dev_str) 286 continue; 287 288 attrs[j++] = dev_str; 289 if (pmu->events[i].scale) { 290 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 291 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 292 if (!dev_str) 293 continue; 294 295 attrs[j++] = dev_str; 296 } 297 298 if (pmu->events[i].unit) { 299 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 300 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 301 if (!dev_str) 302 continue; 303 304 attrs[j++] = dev_str; 305 } 306 } while (++i < ct); 307 308 /* Save the event attribute */ 309 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 310 311 return 0; 312 } 313 314 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 315 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 316 { 317 return per_cpu(local_nest_imc_refc, cpu); 318 } 319 320 static void nest_change_cpu_context(int old_cpu, int new_cpu) 321 { 322 struct imc_pmu **pn = per_nest_pmu_arr; 323 324 if (old_cpu < 0 || new_cpu < 0) 325 return; 326 327 while (*pn) { 328 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 329 pn++; 330 } 331 } 332 333 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 334 { 335 int nid, target = -1; 336 const struct cpumask *l_cpumask; 337 struct imc_pmu_ref *ref; 338 339 /* 340 * Check in the designated list for this cpu. Dont bother 341 * if not one of them. 342 */ 343 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 344 return 0; 345 346 /* 347 * Check whether nest_imc is registered. We could end up here if the 348 * cpuhotplug callback registration fails. i.e, callback invokes the 349 * offline path for all successfully registered nodes. At this stage, 350 * nest_imc pmu will not be registered and we should return here. 351 * 352 * We return with a zero since this is not an offline failure. And 353 * cpuhp_setup_state() returns the actual failure reason to the caller, 354 * which in turn will call the cleanup routine. 355 */ 356 if (!nest_pmus) 357 return 0; 358 359 /* 360 * Now that this cpu is one of the designated, 361 * find a next cpu a) which is online and b) in same chip. 362 */ 363 nid = cpu_to_node(cpu); 364 l_cpumask = cpumask_of_node(nid); 365 target = cpumask_last(l_cpumask); 366 367 /* 368 * If this(target) is the last cpu in the cpumask for this chip, 369 * check for any possible online cpu in the chip. 370 */ 371 if (unlikely(target == cpu)) 372 target = cpumask_any_but(l_cpumask, cpu); 373 374 /* 375 * Update the cpumask with the target cpu and 376 * migrate the context if needed 377 */ 378 if (target >= 0 && target < nr_cpu_ids) { 379 cpumask_set_cpu(target, &nest_imc_cpumask); 380 nest_change_cpu_context(cpu, target); 381 } else { 382 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 383 get_hard_smp_processor_id(cpu)); 384 /* 385 * If this is the last cpu in this chip then, skip the reference 386 * count mutex lock and make the reference count on this chip zero. 387 */ 388 ref = get_nest_pmu_ref(cpu); 389 if (!ref) 390 return -EINVAL; 391 392 ref->refc = 0; 393 } 394 return 0; 395 } 396 397 static int ppc_nest_imc_cpu_online(unsigned int cpu) 398 { 399 const struct cpumask *l_cpumask; 400 static struct cpumask tmp_mask; 401 int res; 402 403 /* Get the cpumask of this node */ 404 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 405 406 /* 407 * If this is not the first online CPU on this node, then 408 * just return. 409 */ 410 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 411 return 0; 412 413 /* 414 * If this is the first online cpu on this node 415 * disable the nest counters by making an OPAL call. 416 */ 417 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 418 get_hard_smp_processor_id(cpu)); 419 if (res) 420 return res; 421 422 /* Make this CPU the designated target for counter collection */ 423 cpumask_set_cpu(cpu, &nest_imc_cpumask); 424 return 0; 425 } 426 427 static int nest_pmu_cpumask_init(void) 428 { 429 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 430 "perf/powerpc/imc:online", 431 ppc_nest_imc_cpu_online, 432 ppc_nest_imc_cpu_offline); 433 } 434 435 static void nest_imc_counters_release(struct perf_event *event) 436 { 437 int rc, node_id; 438 struct imc_pmu_ref *ref; 439 440 if (event->cpu < 0) 441 return; 442 443 node_id = cpu_to_node(event->cpu); 444 445 /* 446 * See if we need to disable the nest PMU. 447 * If no events are currently in use, then we have to take a 448 * mutex to ensure that we don't race with another task doing 449 * enable or disable the nest counters. 450 */ 451 ref = get_nest_pmu_ref(event->cpu); 452 if (!ref) 453 return; 454 455 /* Take the mutex lock for this node and then decrement the reference count */ 456 mutex_lock(&ref->lock); 457 if (ref->refc == 0) { 458 /* 459 * The scenario where this is true is, when perf session is 460 * started, followed by offlining of all cpus in a given node. 461 * 462 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 463 * function set the ref->count to zero, if the cpu which is 464 * about to offline is the last cpu in a given node and make 465 * an OPAL call to disable the engine in that node. 466 * 467 */ 468 mutex_unlock(&ref->lock); 469 return; 470 } 471 ref->refc--; 472 if (ref->refc == 0) { 473 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 474 get_hard_smp_processor_id(event->cpu)); 475 if (rc) { 476 mutex_unlock(&ref->lock); 477 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 478 return; 479 } 480 } else if (ref->refc < 0) { 481 WARN(1, "nest-imc: Invalid event reference count\n"); 482 ref->refc = 0; 483 } 484 mutex_unlock(&ref->lock); 485 } 486 487 static int nest_imc_event_init(struct perf_event *event) 488 { 489 int chip_id, rc, node_id; 490 u32 l_config, config = event->attr.config; 491 struct imc_mem_info *pcni; 492 struct imc_pmu *pmu; 493 struct imc_pmu_ref *ref; 494 bool flag = false; 495 496 if (event->attr.type != event->pmu->type) 497 return -ENOENT; 498 499 /* Sampling not supported */ 500 if (event->hw.sample_period) 501 return -EINVAL; 502 503 if (event->cpu < 0) 504 return -EINVAL; 505 506 pmu = imc_event_to_pmu(event); 507 508 /* Sanity check for config (event offset) */ 509 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 510 return -EINVAL; 511 512 /* 513 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 514 * Get the base memory addresss for this cpu. 515 */ 516 chip_id = cpu_to_chip_id(event->cpu); 517 518 /* Return, if chip_id is not valid */ 519 if (chip_id < 0) 520 return -ENODEV; 521 522 pcni = pmu->mem_info; 523 do { 524 if (pcni->id == chip_id) { 525 flag = true; 526 break; 527 } 528 pcni++; 529 } while (pcni->vbase != 0); 530 531 if (!flag) 532 return -ENODEV; 533 534 /* 535 * Add the event offset to the base address. 536 */ 537 l_config = config & IMC_EVENT_OFFSET_MASK; 538 event->hw.event_base = (u64)pcni->vbase + l_config; 539 node_id = cpu_to_node(event->cpu); 540 541 /* 542 * Get the imc_pmu_ref struct for this node. 543 * Take the mutex lock and then increment the count of nest pmu events 544 * inited. 545 */ 546 ref = get_nest_pmu_ref(event->cpu); 547 if (!ref) 548 return -EINVAL; 549 550 mutex_lock(&ref->lock); 551 if (ref->refc == 0) { 552 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 553 get_hard_smp_processor_id(event->cpu)); 554 if (rc) { 555 mutex_unlock(&ref->lock); 556 pr_err("nest-imc: Unable to start the counters for node %d\n", 557 node_id); 558 return rc; 559 } 560 } 561 ++ref->refc; 562 mutex_unlock(&ref->lock); 563 564 event->destroy = nest_imc_counters_release; 565 return 0; 566 } 567 568 /* 569 * core_imc_mem_init : Initializes memory for the current core. 570 * 571 * Uses alloc_pages_node() and uses the returned address as an argument to 572 * an opal call to configure the pdbar. The address sent as an argument is 573 * converted to physical address before the opal call is made. This is the 574 * base address at which the core imc counters are populated. 575 */ 576 static int core_imc_mem_init(int cpu, int size) 577 { 578 int nid, rc = 0, core_id = (cpu / threads_per_core); 579 struct imc_mem_info *mem_info; 580 581 /* 582 * alloc_pages_node() will allocate memory for core in the 583 * local node only. 584 */ 585 nid = cpu_to_node(cpu); 586 mem_info = &core_imc_pmu->mem_info[core_id]; 587 mem_info->id = core_id; 588 589 /* We need only vbase for core counters */ 590 mem_info->vbase = page_address(alloc_pages_node(nid, 591 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 592 __GFP_NOWARN, get_order(size))); 593 if (!mem_info->vbase) 594 return -ENOMEM; 595 596 /* Init the mutex */ 597 core_imc_refc[core_id].id = core_id; 598 mutex_init(&core_imc_refc[core_id].lock); 599 600 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 601 __pa((void *)mem_info->vbase), 602 get_hard_smp_processor_id(cpu)); 603 if (rc) { 604 free_pages((u64)mem_info->vbase, get_order(size)); 605 mem_info->vbase = NULL; 606 } 607 608 return rc; 609 } 610 611 static bool is_core_imc_mem_inited(int cpu) 612 { 613 struct imc_mem_info *mem_info; 614 int core_id = (cpu / threads_per_core); 615 616 mem_info = &core_imc_pmu->mem_info[core_id]; 617 if (!mem_info->vbase) 618 return false; 619 620 return true; 621 } 622 623 static int ppc_core_imc_cpu_online(unsigned int cpu) 624 { 625 const struct cpumask *l_cpumask; 626 static struct cpumask tmp_mask; 627 int ret = 0; 628 629 /* Get the cpumask for this core */ 630 l_cpumask = cpu_sibling_mask(cpu); 631 632 /* If a cpu for this core is already set, then, don't do anything */ 633 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 634 return 0; 635 636 if (!is_core_imc_mem_inited(cpu)) { 637 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 638 if (ret) { 639 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 640 return ret; 641 } 642 } 643 644 /* set the cpu in the mask */ 645 cpumask_set_cpu(cpu, &core_imc_cpumask); 646 return 0; 647 } 648 649 static int ppc_core_imc_cpu_offline(unsigned int cpu) 650 { 651 unsigned int core_id; 652 int ncpu; 653 struct imc_pmu_ref *ref; 654 655 /* 656 * clear this cpu out of the mask, if not present in the mask, 657 * don't bother doing anything. 658 */ 659 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 660 return 0; 661 662 /* 663 * Check whether core_imc is registered. We could end up here 664 * if the cpuhotplug callback registration fails. i.e, callback 665 * invokes the offline path for all sucessfully registered cpus. 666 * At this stage, core_imc pmu will not be registered and we 667 * should return here. 668 * 669 * We return with a zero since this is not an offline failure. 670 * And cpuhp_setup_state() returns the actual failure reason 671 * to the caller, which inturn will call the cleanup routine. 672 */ 673 if (!core_imc_pmu->pmu.event_init) 674 return 0; 675 676 /* Find any online cpu in that core except the current "cpu" */ 677 ncpu = cpumask_last(cpu_sibling_mask(cpu)); 678 679 if (unlikely(ncpu == cpu)) 680 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 681 682 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 683 cpumask_set_cpu(ncpu, &core_imc_cpumask); 684 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 685 } else { 686 /* 687 * If this is the last cpu in this core then, skip taking refernce 688 * count mutex lock for this core and directly zero "refc" for 689 * this core. 690 */ 691 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 692 get_hard_smp_processor_id(cpu)); 693 core_id = cpu / threads_per_core; 694 ref = &core_imc_refc[core_id]; 695 if (!ref) 696 return -EINVAL; 697 698 ref->refc = 0; 699 } 700 return 0; 701 } 702 703 static int core_imc_pmu_cpumask_init(void) 704 { 705 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 706 "perf/powerpc/imc_core:online", 707 ppc_core_imc_cpu_online, 708 ppc_core_imc_cpu_offline); 709 } 710 711 static void core_imc_counters_release(struct perf_event *event) 712 { 713 int rc, core_id; 714 struct imc_pmu_ref *ref; 715 716 if (event->cpu < 0) 717 return; 718 /* 719 * See if we need to disable the IMC PMU. 720 * If no events are currently in use, then we have to take a 721 * mutex to ensure that we don't race with another task doing 722 * enable or disable the core counters. 723 */ 724 core_id = event->cpu / threads_per_core; 725 726 /* Take the mutex lock and decrement the refernce count for this core */ 727 ref = &core_imc_refc[core_id]; 728 if (!ref) 729 return; 730 731 mutex_lock(&ref->lock); 732 if (ref->refc == 0) { 733 /* 734 * The scenario where this is true is, when perf session is 735 * started, followed by offlining of all cpus in a given core. 736 * 737 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 738 * function set the ref->count to zero, if the cpu which is 739 * about to offline is the last cpu in a given core and make 740 * an OPAL call to disable the engine in that core. 741 * 742 */ 743 mutex_unlock(&ref->lock); 744 return; 745 } 746 ref->refc--; 747 if (ref->refc == 0) { 748 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 749 get_hard_smp_processor_id(event->cpu)); 750 if (rc) { 751 mutex_unlock(&ref->lock); 752 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 753 return; 754 } 755 } else if (ref->refc < 0) { 756 WARN(1, "core-imc: Invalid event reference count\n"); 757 ref->refc = 0; 758 } 759 mutex_unlock(&ref->lock); 760 } 761 762 static int core_imc_event_init(struct perf_event *event) 763 { 764 int core_id, rc; 765 u64 config = event->attr.config; 766 struct imc_mem_info *pcmi; 767 struct imc_pmu *pmu; 768 struct imc_pmu_ref *ref; 769 770 if (event->attr.type != event->pmu->type) 771 return -ENOENT; 772 773 /* Sampling not supported */ 774 if (event->hw.sample_period) 775 return -EINVAL; 776 777 if (event->cpu < 0) 778 return -EINVAL; 779 780 event->hw.idx = -1; 781 pmu = imc_event_to_pmu(event); 782 783 /* Sanity check for config (event offset) */ 784 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 785 return -EINVAL; 786 787 if (!is_core_imc_mem_inited(event->cpu)) 788 return -ENODEV; 789 790 core_id = event->cpu / threads_per_core; 791 pcmi = &core_imc_pmu->mem_info[core_id]; 792 if ((!pcmi->vbase)) 793 return -ENODEV; 794 795 /* Get the core_imc mutex for this core */ 796 ref = &core_imc_refc[core_id]; 797 if (!ref) 798 return -EINVAL; 799 800 /* 801 * Core pmu units are enabled only when it is used. 802 * See if this is triggered for the first time. 803 * If yes, take the mutex lock and enable the core counters. 804 * If not, just increment the count in core_imc_refc struct. 805 */ 806 mutex_lock(&ref->lock); 807 if (ref->refc == 0) { 808 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 809 get_hard_smp_processor_id(event->cpu)); 810 if (rc) { 811 mutex_unlock(&ref->lock); 812 pr_err("core-imc: Unable to start the counters for core %d\n", 813 core_id); 814 return rc; 815 } 816 } 817 ++ref->refc; 818 mutex_unlock(&ref->lock); 819 820 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 821 event->destroy = core_imc_counters_release; 822 return 0; 823 } 824 825 /* 826 * Allocates a page of memory for each of the online cpus, and load 827 * LDBAR with 0. 828 * The physical base address of the page allocated for a cpu will be 829 * written to the LDBAR for that cpu, when the thread-imc event 830 * is added. 831 * 832 * LDBAR Register Layout: 833 * 834 * 0 4 8 12 16 20 24 28 835 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 836 * | | [ ] [ Counter Address [8:50] 837 * | * Mode | 838 * | * PB Scope 839 * * Enable/Disable 840 * 841 * 32 36 40 44 48 52 56 60 842 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 843 * Counter Address [8:50] ] 844 * 845 */ 846 static int thread_imc_mem_alloc(int cpu_id, int size) 847 { 848 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 849 int nid = cpu_to_node(cpu_id); 850 851 if (!local_mem) { 852 /* 853 * This case could happen only once at start, since we dont 854 * free the memory in cpu offline path. 855 */ 856 local_mem = page_address(alloc_pages_node(nid, 857 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 858 __GFP_NOWARN, get_order(size))); 859 if (!local_mem) 860 return -ENOMEM; 861 862 per_cpu(thread_imc_mem, cpu_id) = local_mem; 863 } 864 865 mtspr(SPRN_LDBAR, 0); 866 return 0; 867 } 868 869 static int ppc_thread_imc_cpu_online(unsigned int cpu) 870 { 871 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 872 } 873 874 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 875 { 876 mtspr(SPRN_LDBAR, 0); 877 return 0; 878 } 879 880 static int thread_imc_cpu_init(void) 881 { 882 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 883 "perf/powerpc/imc_thread:online", 884 ppc_thread_imc_cpu_online, 885 ppc_thread_imc_cpu_offline); 886 } 887 888 static int thread_imc_event_init(struct perf_event *event) 889 { 890 u32 config = event->attr.config; 891 struct task_struct *target; 892 struct imc_pmu *pmu; 893 894 if (event->attr.type != event->pmu->type) 895 return -ENOENT; 896 897 if (!capable(CAP_SYS_ADMIN)) 898 return -EACCES; 899 900 /* Sampling not supported */ 901 if (event->hw.sample_period) 902 return -EINVAL; 903 904 event->hw.idx = -1; 905 pmu = imc_event_to_pmu(event); 906 907 /* Sanity check for config offset */ 908 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 909 return -EINVAL; 910 911 target = event->hw.target; 912 if (!target) 913 return -EINVAL; 914 915 event->pmu->task_ctx_nr = perf_sw_context; 916 return 0; 917 } 918 919 static bool is_thread_imc_pmu(struct perf_event *event) 920 { 921 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 922 return true; 923 924 return false; 925 } 926 927 static u64 * get_event_base_addr(struct perf_event *event) 928 { 929 u64 addr; 930 931 if (is_thread_imc_pmu(event)) { 932 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 933 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 934 } 935 936 return (u64 *)event->hw.event_base; 937 } 938 939 static void thread_imc_pmu_start_txn(struct pmu *pmu, 940 unsigned int txn_flags) 941 { 942 if (txn_flags & ~PERF_PMU_TXN_ADD) 943 return; 944 perf_pmu_disable(pmu); 945 } 946 947 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 948 { 949 perf_pmu_enable(pmu); 950 } 951 952 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 953 { 954 perf_pmu_enable(pmu); 955 return 0; 956 } 957 958 static u64 imc_read_counter(struct perf_event *event) 959 { 960 u64 *addr, data; 961 962 /* 963 * In-Memory Collection (IMC) counters are free flowing counters. 964 * So we take a snapshot of the counter value on enable and save it 965 * to calculate the delta at later stage to present the event counter 966 * value. 967 */ 968 addr = get_event_base_addr(event); 969 data = be64_to_cpu(READ_ONCE(*addr)); 970 local64_set(&event->hw.prev_count, data); 971 972 return data; 973 } 974 975 static void imc_event_update(struct perf_event *event) 976 { 977 u64 counter_prev, counter_new, final_count; 978 979 counter_prev = local64_read(&event->hw.prev_count); 980 counter_new = imc_read_counter(event); 981 final_count = counter_new - counter_prev; 982 983 /* Update the delta to the event count */ 984 local64_add(final_count, &event->count); 985 } 986 987 static void imc_event_start(struct perf_event *event, int flags) 988 { 989 /* 990 * In Memory Counters are free flowing counters. HW or the microcode 991 * keeps adding to the counter offset in memory. To get event 992 * counter value, we snapshot the value here and we calculate 993 * delta at later point. 994 */ 995 imc_read_counter(event); 996 } 997 998 static void imc_event_stop(struct perf_event *event, int flags) 999 { 1000 /* 1001 * Take a snapshot and calculate the delta and update 1002 * the event counter values. 1003 */ 1004 imc_event_update(event); 1005 } 1006 1007 static int imc_event_add(struct perf_event *event, int flags) 1008 { 1009 if (flags & PERF_EF_START) 1010 imc_event_start(event, flags); 1011 1012 return 0; 1013 } 1014 1015 static int thread_imc_event_add(struct perf_event *event, int flags) 1016 { 1017 int core_id; 1018 struct imc_pmu_ref *ref; 1019 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1020 1021 if (flags & PERF_EF_START) 1022 imc_event_start(event, flags); 1023 1024 if (!is_core_imc_mem_inited(smp_processor_id())) 1025 return -EINVAL; 1026 1027 core_id = smp_processor_id() / threads_per_core; 1028 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1029 mtspr(SPRN_LDBAR, ldbar_value); 1030 1031 /* 1032 * imc pmus are enabled only when it is used. 1033 * See if this is triggered for the first time. 1034 * If yes, take the mutex lock and enable the counters. 1035 * If not, just increment the count in ref count struct. 1036 */ 1037 ref = &core_imc_refc[core_id]; 1038 if (!ref) 1039 return -EINVAL; 1040 1041 mutex_lock(&ref->lock); 1042 if (ref->refc == 0) { 1043 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1044 get_hard_smp_processor_id(smp_processor_id()))) { 1045 mutex_unlock(&ref->lock); 1046 pr_err("thread-imc: Unable to start the counter\ 1047 for core %d\n", core_id); 1048 return -EINVAL; 1049 } 1050 } 1051 ++ref->refc; 1052 mutex_unlock(&ref->lock); 1053 return 0; 1054 } 1055 1056 static void thread_imc_event_del(struct perf_event *event, int flags) 1057 { 1058 1059 int core_id; 1060 struct imc_pmu_ref *ref; 1061 1062 mtspr(SPRN_LDBAR, 0); 1063 1064 core_id = smp_processor_id() / threads_per_core; 1065 ref = &core_imc_refc[core_id]; 1066 1067 mutex_lock(&ref->lock); 1068 ref->refc--; 1069 if (ref->refc == 0) { 1070 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1071 get_hard_smp_processor_id(smp_processor_id()))) { 1072 mutex_unlock(&ref->lock); 1073 pr_err("thread-imc: Unable to stop the counters\ 1074 for core %d\n", core_id); 1075 return; 1076 } 1077 } else if (ref->refc < 0) { 1078 ref->refc = 0; 1079 } 1080 mutex_unlock(&ref->lock); 1081 /* 1082 * Take a snapshot and calculate the delta and update 1083 * the event counter values. 1084 */ 1085 imc_event_update(event); 1086 } 1087 1088 /* 1089 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1090 */ 1091 static int trace_imc_mem_alloc(int cpu_id, int size) 1092 { 1093 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1094 int phys_id = cpu_to_node(cpu_id), rc = 0; 1095 int core_id = (cpu_id / threads_per_core); 1096 1097 if (!local_mem) { 1098 local_mem = page_address(alloc_pages_node(phys_id, 1099 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1100 __GFP_NOWARN, get_order(size))); 1101 if (!local_mem) 1102 return -ENOMEM; 1103 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1104 1105 /* Initialise the counters for trace mode */ 1106 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1107 get_hard_smp_processor_id(cpu_id)); 1108 if (rc) { 1109 pr_info("IMC:opal init failed for trace imc\n"); 1110 return rc; 1111 } 1112 } 1113 1114 /* Init the mutex, if not already */ 1115 trace_imc_refc[core_id].id = core_id; 1116 mutex_init(&trace_imc_refc[core_id].lock); 1117 1118 mtspr(SPRN_LDBAR, 0); 1119 return 0; 1120 } 1121 1122 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1123 { 1124 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1125 } 1126 1127 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1128 { 1129 mtspr(SPRN_LDBAR, 0); 1130 return 0; 1131 } 1132 1133 static int trace_imc_cpu_init(void) 1134 { 1135 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1136 "perf/powerpc/imc_trace:online", 1137 ppc_trace_imc_cpu_online, 1138 ppc_trace_imc_cpu_offline); 1139 } 1140 1141 static u64 get_trace_imc_event_base_addr(void) 1142 { 1143 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1144 } 1145 1146 /* 1147 * Function to parse trace-imc data obtained 1148 * and to prepare the perf sample. 1149 */ 1150 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1151 struct perf_sample_data *data, 1152 u64 *prev_tb, 1153 struct perf_event_header *header, 1154 struct perf_event *event) 1155 { 1156 /* Sanity checks for a valid record */ 1157 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1158 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1159 else 1160 return -EINVAL; 1161 1162 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1163 be64_to_cpu(READ_ONCE(mem->tb2))) 1164 return -EINVAL; 1165 1166 /* Prepare perf sample */ 1167 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1168 data->period = event->hw.last_period; 1169 1170 header->type = PERF_RECORD_SAMPLE; 1171 header->size = sizeof(*header) + event->header_size; 1172 header->misc = 0; 1173 1174 if (is_kernel_addr(data->ip)) 1175 header->misc |= PERF_RECORD_MISC_KERNEL; 1176 else 1177 header->misc |= PERF_RECORD_MISC_USER; 1178 1179 perf_event_header__init_id(header, data, event); 1180 1181 return 0; 1182 } 1183 1184 static void dump_trace_imc_data(struct perf_event *event) 1185 { 1186 struct trace_imc_data *mem; 1187 int i, ret; 1188 u64 prev_tb = 0; 1189 1190 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1191 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1192 i++, mem++) { 1193 struct perf_sample_data data; 1194 struct perf_event_header header; 1195 1196 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1197 if (ret) /* Exit, if not a valid record */ 1198 break; 1199 else { 1200 /* If this is a valid record, create the sample */ 1201 struct perf_output_handle handle; 1202 1203 if (perf_output_begin(&handle, event, header.size)) 1204 return; 1205 1206 perf_output_sample(&handle, &header, &data, event); 1207 perf_output_end(&handle); 1208 } 1209 } 1210 } 1211 1212 static int trace_imc_event_add(struct perf_event *event, int flags) 1213 { 1214 int core_id = smp_processor_id() / threads_per_core; 1215 struct imc_pmu_ref *ref = NULL; 1216 u64 local_mem, ldbar_value; 1217 1218 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1219 local_mem = get_trace_imc_event_base_addr(); 1220 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1221 1222 if (core_imc_refc) 1223 ref = &core_imc_refc[core_id]; 1224 if (!ref) { 1225 /* If core-imc is not enabled, use trace-imc reference count */ 1226 if (trace_imc_refc) 1227 ref = &trace_imc_refc[core_id]; 1228 if (!ref) 1229 return -EINVAL; 1230 } 1231 mtspr(SPRN_LDBAR, ldbar_value); 1232 mutex_lock(&ref->lock); 1233 if (ref->refc == 0) { 1234 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1235 get_hard_smp_processor_id(smp_processor_id()))) { 1236 mutex_unlock(&ref->lock); 1237 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1238 mtspr(SPRN_LDBAR, 0); 1239 return -EINVAL; 1240 } 1241 } 1242 ++ref->refc; 1243 mutex_unlock(&ref->lock); 1244 1245 return 0; 1246 } 1247 1248 static void trace_imc_event_read(struct perf_event *event) 1249 { 1250 return; 1251 } 1252 1253 static void trace_imc_event_stop(struct perf_event *event, int flags) 1254 { 1255 u64 local_mem = get_trace_imc_event_base_addr(); 1256 dump_trace_imc_data(event); 1257 memset((void *)local_mem, 0, sizeof(u64)); 1258 } 1259 1260 static void trace_imc_event_start(struct perf_event *event, int flags) 1261 { 1262 return; 1263 } 1264 1265 static void trace_imc_event_del(struct perf_event *event, int flags) 1266 { 1267 int core_id = smp_processor_id() / threads_per_core; 1268 struct imc_pmu_ref *ref = NULL; 1269 1270 if (core_imc_refc) 1271 ref = &core_imc_refc[core_id]; 1272 if (!ref) { 1273 /* If core-imc is not enabled, use trace-imc reference count */ 1274 if (trace_imc_refc) 1275 ref = &trace_imc_refc[core_id]; 1276 if (!ref) 1277 return; 1278 } 1279 mtspr(SPRN_LDBAR, 0); 1280 mutex_lock(&ref->lock); 1281 ref->refc--; 1282 if (ref->refc == 0) { 1283 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1284 get_hard_smp_processor_id(smp_processor_id()))) { 1285 mutex_unlock(&ref->lock); 1286 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1287 return; 1288 } 1289 } else if (ref->refc < 0) { 1290 ref->refc = 0; 1291 } 1292 mutex_unlock(&ref->lock); 1293 trace_imc_event_stop(event, flags); 1294 } 1295 1296 static int trace_imc_event_init(struct perf_event *event) 1297 { 1298 struct task_struct *target; 1299 1300 if (event->attr.type != event->pmu->type) 1301 return -ENOENT; 1302 1303 if (!capable(CAP_SYS_ADMIN)) 1304 return -EACCES; 1305 1306 /* Return if this is a couting event */ 1307 if (event->attr.sample_period == 0) 1308 return -ENOENT; 1309 1310 event->hw.idx = -1; 1311 target = event->hw.target; 1312 1313 event->pmu->task_ctx_nr = perf_hw_context; 1314 return 0; 1315 } 1316 1317 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1318 static int update_pmu_ops(struct imc_pmu *pmu) 1319 { 1320 pmu->pmu.task_ctx_nr = perf_invalid_context; 1321 pmu->pmu.add = imc_event_add; 1322 pmu->pmu.del = imc_event_stop; 1323 pmu->pmu.start = imc_event_start; 1324 pmu->pmu.stop = imc_event_stop; 1325 pmu->pmu.read = imc_event_update; 1326 pmu->pmu.attr_groups = pmu->attr_groups; 1327 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1328 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1329 1330 switch (pmu->domain) { 1331 case IMC_DOMAIN_NEST: 1332 pmu->pmu.event_init = nest_imc_event_init; 1333 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1334 break; 1335 case IMC_DOMAIN_CORE: 1336 pmu->pmu.event_init = core_imc_event_init; 1337 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1338 break; 1339 case IMC_DOMAIN_THREAD: 1340 pmu->pmu.event_init = thread_imc_event_init; 1341 pmu->pmu.add = thread_imc_event_add; 1342 pmu->pmu.del = thread_imc_event_del; 1343 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1344 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1345 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1346 break; 1347 case IMC_DOMAIN_TRACE: 1348 pmu->pmu.event_init = trace_imc_event_init; 1349 pmu->pmu.add = trace_imc_event_add; 1350 pmu->pmu.del = trace_imc_event_del; 1351 pmu->pmu.start = trace_imc_event_start; 1352 pmu->pmu.stop = trace_imc_event_stop; 1353 pmu->pmu.read = trace_imc_event_read; 1354 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1355 default: 1356 break; 1357 } 1358 1359 return 0; 1360 } 1361 1362 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1363 static int init_nest_pmu_ref(void) 1364 { 1365 int nid, i, cpu; 1366 1367 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1368 GFP_KERNEL); 1369 1370 if (!nest_imc_refc) 1371 return -ENOMEM; 1372 1373 i = 0; 1374 for_each_node(nid) { 1375 /* 1376 * Mutex lock to avoid races while tracking the number of 1377 * sessions using the chip's nest pmu units. 1378 */ 1379 mutex_init(&nest_imc_refc[i].lock); 1380 1381 /* 1382 * Loop to init the "id" with the node_id. Variable "i" initialized to 1383 * 0 and will be used as index to the array. "i" will not go off the 1384 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1385 * nodes only. 1386 */ 1387 nest_imc_refc[i++].id = nid; 1388 } 1389 1390 /* 1391 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1392 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1393 */ 1394 for_each_possible_cpu(cpu) { 1395 nid = cpu_to_node(cpu); 1396 for (i = 0; i < num_possible_nodes(); i++) { 1397 if (nest_imc_refc[i].id == nid) { 1398 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1399 break; 1400 } 1401 } 1402 } 1403 return 0; 1404 } 1405 1406 static void cleanup_all_core_imc_memory(void) 1407 { 1408 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1409 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1410 int size = core_imc_pmu->counter_mem_size; 1411 1412 /* mem_info will never be NULL */ 1413 for (i = 0; i < nr_cores; i++) { 1414 if (ptr[i].vbase) 1415 free_pages((u64)ptr[i].vbase, get_order(size)); 1416 } 1417 1418 kfree(ptr); 1419 kfree(core_imc_refc); 1420 } 1421 1422 static void thread_imc_ldbar_disable(void *dummy) 1423 { 1424 /* 1425 * By Zeroing LDBAR, we disable thread-imc 1426 * updates. 1427 */ 1428 mtspr(SPRN_LDBAR, 0); 1429 } 1430 1431 void thread_imc_disable(void) 1432 { 1433 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1434 } 1435 1436 static void cleanup_all_thread_imc_memory(void) 1437 { 1438 int i, order = get_order(thread_imc_mem_size); 1439 1440 for_each_online_cpu(i) { 1441 if (per_cpu(thread_imc_mem, i)) 1442 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1443 1444 } 1445 } 1446 1447 static void cleanup_all_trace_imc_memory(void) 1448 { 1449 int i, order = get_order(trace_imc_mem_size); 1450 1451 for_each_online_cpu(i) { 1452 if (per_cpu(trace_imc_mem, i)) 1453 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1454 1455 } 1456 kfree(trace_imc_refc); 1457 } 1458 1459 /* Function to free the attr_groups which are dynamically allocated */ 1460 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1461 { 1462 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1463 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1464 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1465 } 1466 1467 /* 1468 * Common function to unregister cpu hotplug callback and 1469 * free the memory. 1470 * TODO: Need to handle pmu unregistering, which will be 1471 * done in followup series. 1472 */ 1473 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1474 { 1475 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1476 mutex_lock(&nest_init_lock); 1477 if (nest_pmus == 1) { 1478 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1479 kfree(nest_imc_refc); 1480 kfree(per_nest_pmu_arr); 1481 per_nest_pmu_arr = NULL; 1482 } 1483 1484 if (nest_pmus > 0) 1485 nest_pmus--; 1486 mutex_unlock(&nest_init_lock); 1487 } 1488 1489 /* Free core_imc memory */ 1490 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1491 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1492 cleanup_all_core_imc_memory(); 1493 } 1494 1495 /* Free thread_imc memory */ 1496 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1497 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1498 cleanup_all_thread_imc_memory(); 1499 } 1500 1501 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1502 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1503 cleanup_all_trace_imc_memory(); 1504 } 1505 } 1506 1507 /* 1508 * Function to unregister thread-imc if core-imc 1509 * is not registered. 1510 */ 1511 void unregister_thread_imc(void) 1512 { 1513 imc_common_cpuhp_mem_free(thread_imc_pmu); 1514 imc_common_mem_free(thread_imc_pmu); 1515 perf_pmu_unregister(&thread_imc_pmu->pmu); 1516 } 1517 1518 /* 1519 * imc_mem_init : Function to support memory allocation for core imc. 1520 */ 1521 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1522 int pmu_index) 1523 { 1524 const char *s; 1525 int nr_cores, cpu, res = -ENOMEM; 1526 1527 if (of_property_read_string(parent, "name", &s)) 1528 return -ENODEV; 1529 1530 switch (pmu_ptr->domain) { 1531 case IMC_DOMAIN_NEST: 1532 /* Update the pmu name */ 1533 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1534 if (!pmu_ptr->pmu.name) 1535 goto err; 1536 1537 /* Needed for hotplug/migration */ 1538 if (!per_nest_pmu_arr) { 1539 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1540 sizeof(struct imc_pmu *), 1541 GFP_KERNEL); 1542 if (!per_nest_pmu_arr) 1543 goto err; 1544 } 1545 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1546 break; 1547 case IMC_DOMAIN_CORE: 1548 /* Update the pmu name */ 1549 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1550 if (!pmu_ptr->pmu.name) 1551 goto err; 1552 1553 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1554 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1555 GFP_KERNEL); 1556 1557 if (!pmu_ptr->mem_info) 1558 goto err; 1559 1560 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1561 GFP_KERNEL); 1562 1563 if (!core_imc_refc) { 1564 kfree(pmu_ptr->mem_info); 1565 goto err; 1566 } 1567 1568 core_imc_pmu = pmu_ptr; 1569 break; 1570 case IMC_DOMAIN_THREAD: 1571 /* Update the pmu name */ 1572 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1573 if (!pmu_ptr->pmu.name) 1574 goto err; 1575 1576 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1577 for_each_online_cpu(cpu) { 1578 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1579 if (res) { 1580 cleanup_all_thread_imc_memory(); 1581 goto err; 1582 } 1583 } 1584 1585 thread_imc_pmu = pmu_ptr; 1586 break; 1587 case IMC_DOMAIN_TRACE: 1588 /* Update the pmu name */ 1589 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1590 if (!pmu_ptr->pmu.name) 1591 return -ENOMEM; 1592 1593 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1594 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1595 GFP_KERNEL); 1596 if (!trace_imc_refc) 1597 return -ENOMEM; 1598 1599 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1600 for_each_online_cpu(cpu) { 1601 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1602 if (res) { 1603 cleanup_all_trace_imc_memory(); 1604 goto err; 1605 } 1606 } 1607 break; 1608 default: 1609 return -EINVAL; 1610 } 1611 1612 return 0; 1613 err: 1614 return res; 1615 } 1616 1617 /* 1618 * init_imc_pmu : Setup and register the IMC pmu device. 1619 * 1620 * @parent: Device tree unit node 1621 * @pmu_ptr: memory allocated for this pmu 1622 * @pmu_idx: Count of nest pmc registered 1623 * 1624 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1625 * Handles failure cases and accordingly frees memory. 1626 */ 1627 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1628 { 1629 int ret; 1630 1631 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1632 if (ret) 1633 goto err_free_mem; 1634 1635 switch (pmu_ptr->domain) { 1636 case IMC_DOMAIN_NEST: 1637 /* 1638 * Nest imc pmu need only one cpu per chip, we initialize the 1639 * cpumask for the first nest imc pmu and use the same for the 1640 * rest. To handle the cpuhotplug callback unregister, we track 1641 * the number of nest pmus in "nest_pmus". 1642 */ 1643 mutex_lock(&nest_init_lock); 1644 if (nest_pmus == 0) { 1645 ret = init_nest_pmu_ref(); 1646 if (ret) { 1647 mutex_unlock(&nest_init_lock); 1648 kfree(per_nest_pmu_arr); 1649 per_nest_pmu_arr = NULL; 1650 goto err_free_mem; 1651 } 1652 /* Register for cpu hotplug notification. */ 1653 ret = nest_pmu_cpumask_init(); 1654 if (ret) { 1655 mutex_unlock(&nest_init_lock); 1656 kfree(nest_imc_refc); 1657 kfree(per_nest_pmu_arr); 1658 per_nest_pmu_arr = NULL; 1659 goto err_free_mem; 1660 } 1661 } 1662 nest_pmus++; 1663 mutex_unlock(&nest_init_lock); 1664 break; 1665 case IMC_DOMAIN_CORE: 1666 ret = core_imc_pmu_cpumask_init(); 1667 if (ret) { 1668 cleanup_all_core_imc_memory(); 1669 goto err_free_mem; 1670 } 1671 1672 break; 1673 case IMC_DOMAIN_THREAD: 1674 ret = thread_imc_cpu_init(); 1675 if (ret) { 1676 cleanup_all_thread_imc_memory(); 1677 goto err_free_mem; 1678 } 1679 1680 break; 1681 case IMC_DOMAIN_TRACE: 1682 ret = trace_imc_cpu_init(); 1683 if (ret) { 1684 cleanup_all_trace_imc_memory(); 1685 goto err_free_mem; 1686 } 1687 1688 break; 1689 default: 1690 return -EINVAL; /* Unknown domain */ 1691 } 1692 1693 ret = update_events_in_group(parent, pmu_ptr); 1694 if (ret) 1695 goto err_free_cpuhp_mem; 1696 1697 ret = update_pmu_ops(pmu_ptr); 1698 if (ret) 1699 goto err_free_cpuhp_mem; 1700 1701 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1702 if (ret) 1703 goto err_free_cpuhp_mem; 1704 1705 pr_debug("%s performance monitor hardware support registered\n", 1706 pmu_ptr->pmu.name); 1707 1708 return 0; 1709 1710 err_free_cpuhp_mem: 1711 imc_common_cpuhp_mem_free(pmu_ptr); 1712 err_free_mem: 1713 imc_common_mem_free(pmu_ptr); 1714 return ret; 1715 } 1716