1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/perf_event.h> 10 #include <linux/slab.h> 11 #include <asm/opal.h> 12 #include <asm/imc-pmu.h> 13 #include <asm/cputhreads.h> 14 #include <asm/smp.h> 15 #include <linux/string.h> 16 17 /* Nest IMC data structures and variables */ 18 19 /* 20 * Used to avoid races in counting the nest-pmu units during hotplug 21 * register and unregister 22 */ 23 static DEFINE_MUTEX(nest_init_lock); 24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 25 static struct imc_pmu **per_nest_pmu_arr; 26 static cpumask_t nest_imc_cpumask; 27 static struct imc_pmu_ref *nest_imc_refc; 28 static int nest_pmus; 29 30 /* Core IMC data structures and variables */ 31 32 static cpumask_t core_imc_cpumask; 33 static struct imc_pmu_ref *core_imc_refc; 34 static struct imc_pmu *core_imc_pmu; 35 36 /* Thread IMC data structures and variables */ 37 38 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 39 static struct imc_pmu *thread_imc_pmu; 40 static int thread_imc_mem_size; 41 42 /* Trace IMC data structures */ 43 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 44 static struct imc_pmu_ref *trace_imc_refc; 45 static int trace_imc_mem_size; 46 47 /* 48 * Global data structure used to avoid races between thread, 49 * core and trace-imc 50 */ 51 static struct imc_pmu_ref imc_global_refc = { 52 .lock = __MUTEX_INITIALIZER(imc_global_refc.lock), 53 .id = 0, 54 .refc = 0, 55 }; 56 57 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 58 { 59 return container_of(event->pmu, struct imc_pmu, pmu); 60 } 61 62 PMU_FORMAT_ATTR(event, "config:0-61"); 63 PMU_FORMAT_ATTR(offset, "config:0-31"); 64 PMU_FORMAT_ATTR(rvalue, "config:32"); 65 PMU_FORMAT_ATTR(mode, "config:33-40"); 66 static struct attribute *imc_format_attrs[] = { 67 &format_attr_event.attr, 68 &format_attr_offset.attr, 69 &format_attr_rvalue.attr, 70 &format_attr_mode.attr, 71 NULL, 72 }; 73 74 static struct attribute_group imc_format_group = { 75 .name = "format", 76 .attrs = imc_format_attrs, 77 }; 78 79 /* Format attribute for imc trace-mode */ 80 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 81 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 82 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 83 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 84 static struct attribute *trace_imc_format_attrs[] = { 85 &format_attr_event.attr, 86 &format_attr_cpmc_reserved.attr, 87 &format_attr_cpmc_event.attr, 88 &format_attr_cpmc_samplesel.attr, 89 &format_attr_cpmc_load.attr, 90 NULL, 91 }; 92 93 static struct attribute_group trace_imc_format_group = { 94 .name = "format", 95 .attrs = trace_imc_format_attrs, 96 }; 97 98 /* Get the cpumask printed to a buffer "buf" */ 99 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 100 struct device_attribute *attr, 101 char *buf) 102 { 103 struct pmu *pmu = dev_get_drvdata(dev); 104 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 105 cpumask_t *active_mask; 106 107 switch(imc_pmu->domain){ 108 case IMC_DOMAIN_NEST: 109 active_mask = &nest_imc_cpumask; 110 break; 111 case IMC_DOMAIN_CORE: 112 active_mask = &core_imc_cpumask; 113 break; 114 default: 115 return 0; 116 } 117 118 return cpumap_print_to_pagebuf(true, buf, active_mask); 119 } 120 121 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 122 123 static struct attribute *imc_pmu_cpumask_attrs[] = { 124 &dev_attr_cpumask.attr, 125 NULL, 126 }; 127 128 static struct attribute_group imc_pmu_cpumask_attr_group = { 129 .attrs = imc_pmu_cpumask_attrs, 130 }; 131 132 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 133 static struct attribute *device_str_attr_create(const char *name, const char *str) 134 { 135 struct perf_pmu_events_attr *attr; 136 137 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 138 if (!attr) 139 return NULL; 140 sysfs_attr_init(&attr->attr.attr); 141 142 attr->event_str = str; 143 attr->attr.attr.name = name; 144 attr->attr.attr.mode = 0444; 145 attr->attr.show = perf_event_sysfs_show; 146 147 return &attr->attr.attr; 148 } 149 150 static int imc_parse_event(struct device_node *np, const char *scale, 151 const char *unit, const char *prefix, 152 u32 base, struct imc_events *event) 153 { 154 const char *s; 155 u32 reg; 156 157 if (of_property_read_u32(np, "reg", ®)) 158 goto error; 159 /* Add the base_reg value to the "reg" */ 160 event->value = base + reg; 161 162 if (of_property_read_string(np, "event-name", &s)) 163 goto error; 164 165 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 166 if (!event->name) 167 goto error; 168 169 if (of_property_read_string(np, "scale", &s)) 170 s = scale; 171 172 if (s) { 173 event->scale = kstrdup(s, GFP_KERNEL); 174 if (!event->scale) 175 goto error; 176 } 177 178 if (of_property_read_string(np, "unit", &s)) 179 s = unit; 180 181 if (s) { 182 event->unit = kstrdup(s, GFP_KERNEL); 183 if (!event->unit) 184 goto error; 185 } 186 187 return 0; 188 error: 189 kfree(event->unit); 190 kfree(event->scale); 191 kfree(event->name); 192 return -EINVAL; 193 } 194 195 /* 196 * imc_free_events: Function to cleanup the events list, having 197 * "nr_entries". 198 */ 199 static void imc_free_events(struct imc_events *events, int nr_entries) 200 { 201 int i; 202 203 /* Nothing to clean, return */ 204 if (!events) 205 return; 206 for (i = 0; i < nr_entries; i++) { 207 kfree(events[i].unit); 208 kfree(events[i].scale); 209 kfree(events[i].name); 210 } 211 212 kfree(events); 213 } 214 215 /* 216 * update_events_in_group: Update the "events" information in an attr_group 217 * and assign the attr_group to the pmu "pmu". 218 */ 219 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 220 { 221 struct attribute_group *attr_group; 222 struct attribute **attrs, *dev_str; 223 struct device_node *np, *pmu_events; 224 u32 handle, base_reg; 225 int i = 0, j = 0, ct, ret; 226 const char *prefix, *g_scale, *g_unit; 227 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 228 229 if (!of_property_read_u32(node, "events", &handle)) 230 pmu_events = of_find_node_by_phandle(handle); 231 else 232 return 0; 233 234 /* Did not find any node with a given phandle */ 235 if (!pmu_events) 236 return 0; 237 238 /* Get a count of number of child nodes */ 239 ct = of_get_child_count(pmu_events); 240 241 /* Get the event prefix */ 242 if (of_property_read_string(node, "events-prefix", &prefix)) 243 return 0; 244 245 /* Get a global unit and scale data if available */ 246 if (of_property_read_string(node, "scale", &g_scale)) 247 g_scale = NULL; 248 249 if (of_property_read_string(node, "unit", &g_unit)) 250 g_unit = NULL; 251 252 /* "reg" property gives out the base offset of the counters data */ 253 of_property_read_u32(node, "reg", &base_reg); 254 255 /* Allocate memory for the events */ 256 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 257 if (!pmu->events) 258 return -ENOMEM; 259 260 ct = 0; 261 /* Parse the events and update the struct */ 262 for_each_child_of_node(pmu_events, np) { 263 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 264 if (!ret) 265 ct++; 266 } 267 268 /* Allocate memory for attribute group */ 269 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 270 if (!attr_group) { 271 imc_free_events(pmu->events, ct); 272 return -ENOMEM; 273 } 274 275 /* 276 * Allocate memory for attributes. 277 * Since we have count of events for this pmu, we also allocate 278 * memory for the scale and unit attribute for now. 279 * "ct" has the total event structs added from the events-parent node. 280 * So allocate three times the "ct" (this includes event, event_scale and 281 * event_unit). 282 */ 283 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 284 if (!attrs) { 285 kfree(attr_group); 286 imc_free_events(pmu->events, ct); 287 return -ENOMEM; 288 } 289 290 attr_group->name = "events"; 291 attr_group->attrs = attrs; 292 do { 293 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 294 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 295 if (!dev_str) 296 continue; 297 298 attrs[j++] = dev_str; 299 if (pmu->events[i].scale) { 300 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 301 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 302 if (!dev_str) 303 continue; 304 305 attrs[j++] = dev_str; 306 } 307 308 if (pmu->events[i].unit) { 309 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 310 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 311 if (!dev_str) 312 continue; 313 314 attrs[j++] = dev_str; 315 } 316 } while (++i < ct); 317 318 /* Save the event attribute */ 319 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 320 321 return 0; 322 } 323 324 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 325 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 326 { 327 return per_cpu(local_nest_imc_refc, cpu); 328 } 329 330 static void nest_change_cpu_context(int old_cpu, int new_cpu) 331 { 332 struct imc_pmu **pn = per_nest_pmu_arr; 333 334 if (old_cpu < 0 || new_cpu < 0) 335 return; 336 337 while (*pn) { 338 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 339 pn++; 340 } 341 } 342 343 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 344 { 345 int nid, target = -1; 346 const struct cpumask *l_cpumask; 347 struct imc_pmu_ref *ref; 348 349 /* 350 * Check in the designated list for this cpu. Dont bother 351 * if not one of them. 352 */ 353 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 354 return 0; 355 356 /* 357 * Check whether nest_imc is registered. We could end up here if the 358 * cpuhotplug callback registration fails. i.e, callback invokes the 359 * offline path for all successfully registered nodes. At this stage, 360 * nest_imc pmu will not be registered and we should return here. 361 * 362 * We return with a zero since this is not an offline failure. And 363 * cpuhp_setup_state() returns the actual failure reason to the caller, 364 * which in turn will call the cleanup routine. 365 */ 366 if (!nest_pmus) 367 return 0; 368 369 /* 370 * Now that this cpu is one of the designated, 371 * find a next cpu a) which is online and b) in same chip. 372 */ 373 nid = cpu_to_node(cpu); 374 l_cpumask = cpumask_of_node(nid); 375 target = cpumask_last(l_cpumask); 376 377 /* 378 * If this(target) is the last cpu in the cpumask for this chip, 379 * check for any possible online cpu in the chip. 380 */ 381 if (unlikely(target == cpu)) 382 target = cpumask_any_but(l_cpumask, cpu); 383 384 /* 385 * Update the cpumask with the target cpu and 386 * migrate the context if needed 387 */ 388 if (target >= 0 && target < nr_cpu_ids) { 389 cpumask_set_cpu(target, &nest_imc_cpumask); 390 nest_change_cpu_context(cpu, target); 391 } else { 392 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 393 get_hard_smp_processor_id(cpu)); 394 /* 395 * If this is the last cpu in this chip then, skip the reference 396 * count mutex lock and make the reference count on this chip zero. 397 */ 398 ref = get_nest_pmu_ref(cpu); 399 if (!ref) 400 return -EINVAL; 401 402 ref->refc = 0; 403 } 404 return 0; 405 } 406 407 static int ppc_nest_imc_cpu_online(unsigned int cpu) 408 { 409 const struct cpumask *l_cpumask; 410 static struct cpumask tmp_mask; 411 int res; 412 413 /* Get the cpumask of this node */ 414 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 415 416 /* 417 * If this is not the first online CPU on this node, then 418 * just return. 419 */ 420 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 421 return 0; 422 423 /* 424 * If this is the first online cpu on this node 425 * disable the nest counters by making an OPAL call. 426 */ 427 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 428 get_hard_smp_processor_id(cpu)); 429 if (res) 430 return res; 431 432 /* Make this CPU the designated target for counter collection */ 433 cpumask_set_cpu(cpu, &nest_imc_cpumask); 434 return 0; 435 } 436 437 static int nest_pmu_cpumask_init(void) 438 { 439 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 440 "perf/powerpc/imc:online", 441 ppc_nest_imc_cpu_online, 442 ppc_nest_imc_cpu_offline); 443 } 444 445 static void nest_imc_counters_release(struct perf_event *event) 446 { 447 int rc, node_id; 448 struct imc_pmu_ref *ref; 449 450 if (event->cpu < 0) 451 return; 452 453 node_id = cpu_to_node(event->cpu); 454 455 /* 456 * See if we need to disable the nest PMU. 457 * If no events are currently in use, then we have to take a 458 * mutex to ensure that we don't race with another task doing 459 * enable or disable the nest counters. 460 */ 461 ref = get_nest_pmu_ref(event->cpu); 462 if (!ref) 463 return; 464 465 /* Take the mutex lock for this node and then decrement the reference count */ 466 mutex_lock(&ref->lock); 467 if (ref->refc == 0) { 468 /* 469 * The scenario where this is true is, when perf session is 470 * started, followed by offlining of all cpus in a given node. 471 * 472 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 473 * function set the ref->count to zero, if the cpu which is 474 * about to offline is the last cpu in a given node and make 475 * an OPAL call to disable the engine in that node. 476 * 477 */ 478 mutex_unlock(&ref->lock); 479 return; 480 } 481 ref->refc--; 482 if (ref->refc == 0) { 483 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 484 get_hard_smp_processor_id(event->cpu)); 485 if (rc) { 486 mutex_unlock(&ref->lock); 487 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 488 return; 489 } 490 } else if (ref->refc < 0) { 491 WARN(1, "nest-imc: Invalid event reference count\n"); 492 ref->refc = 0; 493 } 494 mutex_unlock(&ref->lock); 495 } 496 497 static int nest_imc_event_init(struct perf_event *event) 498 { 499 int chip_id, rc, node_id; 500 u32 l_config, config = event->attr.config; 501 struct imc_mem_info *pcni; 502 struct imc_pmu *pmu; 503 struct imc_pmu_ref *ref; 504 bool flag = false; 505 506 if (event->attr.type != event->pmu->type) 507 return -ENOENT; 508 509 /* Sampling not supported */ 510 if (event->hw.sample_period) 511 return -EINVAL; 512 513 if (event->cpu < 0) 514 return -EINVAL; 515 516 pmu = imc_event_to_pmu(event); 517 518 /* Sanity check for config (event offset) */ 519 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 520 return -EINVAL; 521 522 /* 523 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 524 * Get the base memory addresss for this cpu. 525 */ 526 chip_id = cpu_to_chip_id(event->cpu); 527 528 /* Return, if chip_id is not valid */ 529 if (chip_id < 0) 530 return -ENODEV; 531 532 pcni = pmu->mem_info; 533 do { 534 if (pcni->id == chip_id) { 535 flag = true; 536 break; 537 } 538 pcni++; 539 } while (pcni->vbase != 0); 540 541 if (!flag) 542 return -ENODEV; 543 544 /* 545 * Add the event offset to the base address. 546 */ 547 l_config = config & IMC_EVENT_OFFSET_MASK; 548 event->hw.event_base = (u64)pcni->vbase + l_config; 549 node_id = cpu_to_node(event->cpu); 550 551 /* 552 * Get the imc_pmu_ref struct for this node. 553 * Take the mutex lock and then increment the count of nest pmu events 554 * inited. 555 */ 556 ref = get_nest_pmu_ref(event->cpu); 557 if (!ref) 558 return -EINVAL; 559 560 mutex_lock(&ref->lock); 561 if (ref->refc == 0) { 562 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 563 get_hard_smp_processor_id(event->cpu)); 564 if (rc) { 565 mutex_unlock(&ref->lock); 566 pr_err("nest-imc: Unable to start the counters for node %d\n", 567 node_id); 568 return rc; 569 } 570 } 571 ++ref->refc; 572 mutex_unlock(&ref->lock); 573 574 event->destroy = nest_imc_counters_release; 575 return 0; 576 } 577 578 /* 579 * core_imc_mem_init : Initializes memory for the current core. 580 * 581 * Uses alloc_pages_node() and uses the returned address as an argument to 582 * an opal call to configure the pdbar. The address sent as an argument is 583 * converted to physical address before the opal call is made. This is the 584 * base address at which the core imc counters are populated. 585 */ 586 static int core_imc_mem_init(int cpu, int size) 587 { 588 int nid, rc = 0, core_id = (cpu / threads_per_core); 589 struct imc_mem_info *mem_info; 590 struct page *page; 591 592 /* 593 * alloc_pages_node() will allocate memory for core in the 594 * local node only. 595 */ 596 nid = cpu_to_node(cpu); 597 mem_info = &core_imc_pmu->mem_info[core_id]; 598 mem_info->id = core_id; 599 600 /* We need only vbase for core counters */ 601 page = alloc_pages_node(nid, 602 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 603 __GFP_NOWARN, get_order(size)); 604 if (!page) 605 return -ENOMEM; 606 mem_info->vbase = page_address(page); 607 608 /* Init the mutex */ 609 core_imc_refc[core_id].id = core_id; 610 mutex_init(&core_imc_refc[core_id].lock); 611 612 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 613 __pa((void *)mem_info->vbase), 614 get_hard_smp_processor_id(cpu)); 615 if (rc) { 616 free_pages((u64)mem_info->vbase, get_order(size)); 617 mem_info->vbase = NULL; 618 } 619 620 return rc; 621 } 622 623 static bool is_core_imc_mem_inited(int cpu) 624 { 625 struct imc_mem_info *mem_info; 626 int core_id = (cpu / threads_per_core); 627 628 mem_info = &core_imc_pmu->mem_info[core_id]; 629 if (!mem_info->vbase) 630 return false; 631 632 return true; 633 } 634 635 static int ppc_core_imc_cpu_online(unsigned int cpu) 636 { 637 const struct cpumask *l_cpumask; 638 static struct cpumask tmp_mask; 639 int ret = 0; 640 641 /* Get the cpumask for this core */ 642 l_cpumask = cpu_sibling_mask(cpu); 643 644 /* If a cpu for this core is already set, then, don't do anything */ 645 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 646 return 0; 647 648 if (!is_core_imc_mem_inited(cpu)) { 649 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 650 if (ret) { 651 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 652 return ret; 653 } 654 } 655 656 /* set the cpu in the mask */ 657 cpumask_set_cpu(cpu, &core_imc_cpumask); 658 return 0; 659 } 660 661 static int ppc_core_imc_cpu_offline(unsigned int cpu) 662 { 663 unsigned int core_id; 664 int ncpu; 665 struct imc_pmu_ref *ref; 666 667 /* 668 * clear this cpu out of the mask, if not present in the mask, 669 * don't bother doing anything. 670 */ 671 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 672 return 0; 673 674 /* 675 * Check whether core_imc is registered. We could end up here 676 * if the cpuhotplug callback registration fails. i.e, callback 677 * invokes the offline path for all sucessfully registered cpus. 678 * At this stage, core_imc pmu will not be registered and we 679 * should return here. 680 * 681 * We return with a zero since this is not an offline failure. 682 * And cpuhp_setup_state() returns the actual failure reason 683 * to the caller, which inturn will call the cleanup routine. 684 */ 685 if (!core_imc_pmu->pmu.event_init) 686 return 0; 687 688 /* Find any online cpu in that core except the current "cpu" */ 689 ncpu = cpumask_last(cpu_sibling_mask(cpu)); 690 691 if (unlikely(ncpu == cpu)) 692 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 693 694 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 695 cpumask_set_cpu(ncpu, &core_imc_cpumask); 696 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 697 } else { 698 /* 699 * If this is the last cpu in this core then, skip taking refernce 700 * count mutex lock for this core and directly zero "refc" for 701 * this core. 702 */ 703 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 704 get_hard_smp_processor_id(cpu)); 705 core_id = cpu / threads_per_core; 706 ref = &core_imc_refc[core_id]; 707 if (!ref) 708 return -EINVAL; 709 710 ref->refc = 0; 711 /* 712 * Reduce the global reference count, if this is the 713 * last cpu in this core and core-imc event running 714 * in this cpu. 715 */ 716 mutex_lock(&imc_global_refc.lock); 717 if (imc_global_refc.id == IMC_DOMAIN_CORE) 718 imc_global_refc.refc--; 719 720 mutex_unlock(&imc_global_refc.lock); 721 } 722 return 0; 723 } 724 725 static int core_imc_pmu_cpumask_init(void) 726 { 727 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 728 "perf/powerpc/imc_core:online", 729 ppc_core_imc_cpu_online, 730 ppc_core_imc_cpu_offline); 731 } 732 733 static void reset_global_refc(struct perf_event *event) 734 { 735 mutex_lock(&imc_global_refc.lock); 736 imc_global_refc.refc--; 737 738 /* 739 * If no other thread is running any 740 * event for this domain(thread/core/trace), 741 * set the global id to zero. 742 */ 743 if (imc_global_refc.refc <= 0) { 744 imc_global_refc.refc = 0; 745 imc_global_refc.id = 0; 746 } 747 mutex_unlock(&imc_global_refc.lock); 748 } 749 750 static void core_imc_counters_release(struct perf_event *event) 751 { 752 int rc, core_id; 753 struct imc_pmu_ref *ref; 754 755 if (event->cpu < 0) 756 return; 757 /* 758 * See if we need to disable the IMC PMU. 759 * If no events are currently in use, then we have to take a 760 * mutex to ensure that we don't race with another task doing 761 * enable or disable the core counters. 762 */ 763 core_id = event->cpu / threads_per_core; 764 765 /* Take the mutex lock and decrement the refernce count for this core */ 766 ref = &core_imc_refc[core_id]; 767 if (!ref) 768 return; 769 770 mutex_lock(&ref->lock); 771 if (ref->refc == 0) { 772 /* 773 * The scenario where this is true is, when perf session is 774 * started, followed by offlining of all cpus in a given core. 775 * 776 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 777 * function set the ref->count to zero, if the cpu which is 778 * about to offline is the last cpu in a given core and make 779 * an OPAL call to disable the engine in that core. 780 * 781 */ 782 mutex_unlock(&ref->lock); 783 return; 784 } 785 ref->refc--; 786 if (ref->refc == 0) { 787 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 788 get_hard_smp_processor_id(event->cpu)); 789 if (rc) { 790 mutex_unlock(&ref->lock); 791 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 792 return; 793 } 794 } else if (ref->refc < 0) { 795 WARN(1, "core-imc: Invalid event reference count\n"); 796 ref->refc = 0; 797 } 798 mutex_unlock(&ref->lock); 799 800 reset_global_refc(event); 801 } 802 803 static int core_imc_event_init(struct perf_event *event) 804 { 805 int core_id, rc; 806 u64 config = event->attr.config; 807 struct imc_mem_info *pcmi; 808 struct imc_pmu *pmu; 809 struct imc_pmu_ref *ref; 810 811 if (event->attr.type != event->pmu->type) 812 return -ENOENT; 813 814 /* Sampling not supported */ 815 if (event->hw.sample_period) 816 return -EINVAL; 817 818 if (event->cpu < 0) 819 return -EINVAL; 820 821 event->hw.idx = -1; 822 pmu = imc_event_to_pmu(event); 823 824 /* Sanity check for config (event offset) */ 825 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 826 return -EINVAL; 827 828 if (!is_core_imc_mem_inited(event->cpu)) 829 return -ENODEV; 830 831 core_id = event->cpu / threads_per_core; 832 pcmi = &core_imc_pmu->mem_info[core_id]; 833 if ((!pcmi->vbase)) 834 return -ENODEV; 835 836 /* Get the core_imc mutex for this core */ 837 ref = &core_imc_refc[core_id]; 838 if (!ref) 839 return -EINVAL; 840 841 /* 842 * Core pmu units are enabled only when it is used. 843 * See if this is triggered for the first time. 844 * If yes, take the mutex lock and enable the core counters. 845 * If not, just increment the count in core_imc_refc struct. 846 */ 847 mutex_lock(&ref->lock); 848 if (ref->refc == 0) { 849 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 850 get_hard_smp_processor_id(event->cpu)); 851 if (rc) { 852 mutex_unlock(&ref->lock); 853 pr_err("core-imc: Unable to start the counters for core %d\n", 854 core_id); 855 return rc; 856 } 857 } 858 ++ref->refc; 859 mutex_unlock(&ref->lock); 860 861 /* 862 * Since the system can run either in accumulation or trace-mode 863 * of IMC at a time, core-imc events are allowed only if no other 864 * trace/thread imc events are enabled/monitored. 865 * 866 * Take the global lock, and check the refc.id 867 * to know whether any other trace/thread imc 868 * events are running. 869 */ 870 mutex_lock(&imc_global_refc.lock); 871 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) { 872 /* 873 * No other trace/thread imc events are running in 874 * the system, so set the refc.id to core-imc. 875 */ 876 imc_global_refc.id = IMC_DOMAIN_CORE; 877 imc_global_refc.refc++; 878 } else { 879 mutex_unlock(&imc_global_refc.lock); 880 return -EBUSY; 881 } 882 mutex_unlock(&imc_global_refc.lock); 883 884 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 885 event->destroy = core_imc_counters_release; 886 return 0; 887 } 888 889 /* 890 * Allocates a page of memory for each of the online cpus, and load 891 * LDBAR with 0. 892 * The physical base address of the page allocated for a cpu will be 893 * written to the LDBAR for that cpu, when the thread-imc event 894 * is added. 895 * 896 * LDBAR Register Layout: 897 * 898 * 0 4 8 12 16 20 24 28 899 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 900 * | | [ ] [ Counter Address [8:50] 901 * | * Mode | 902 * | * PB Scope 903 * * Enable/Disable 904 * 905 * 32 36 40 44 48 52 56 60 906 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 907 * Counter Address [8:50] ] 908 * 909 */ 910 static int thread_imc_mem_alloc(int cpu_id, int size) 911 { 912 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 913 int nid = cpu_to_node(cpu_id); 914 915 if (!local_mem) { 916 struct page *page; 917 /* 918 * This case could happen only once at start, since we dont 919 * free the memory in cpu offline path. 920 */ 921 page = alloc_pages_node(nid, 922 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 923 __GFP_NOWARN, get_order(size)); 924 if (!page) 925 return -ENOMEM; 926 local_mem = page_address(page); 927 928 per_cpu(thread_imc_mem, cpu_id) = local_mem; 929 } 930 931 mtspr(SPRN_LDBAR, 0); 932 return 0; 933 } 934 935 static int ppc_thread_imc_cpu_online(unsigned int cpu) 936 { 937 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 938 } 939 940 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 941 { 942 /* 943 * Set the bit 0 of LDBAR to zero. 944 * 945 * If bit 0 of LDBAR is unset, it will stop posting 946 * the counter data to memory. 947 * For thread-imc, bit 0 of LDBAR will be set to 1 in the 948 * event_add function. So reset this bit here, to stop the updates 949 * to memory in the cpu_offline path. 950 */ 951 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 952 953 /* Reduce the refc if thread-imc event running on this cpu */ 954 mutex_lock(&imc_global_refc.lock); 955 if (imc_global_refc.id == IMC_DOMAIN_THREAD) 956 imc_global_refc.refc--; 957 mutex_unlock(&imc_global_refc.lock); 958 959 return 0; 960 } 961 962 static int thread_imc_cpu_init(void) 963 { 964 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 965 "perf/powerpc/imc_thread:online", 966 ppc_thread_imc_cpu_online, 967 ppc_thread_imc_cpu_offline); 968 } 969 970 static int thread_imc_event_init(struct perf_event *event) 971 { 972 u32 config = event->attr.config; 973 struct task_struct *target; 974 struct imc_pmu *pmu; 975 976 if (event->attr.type != event->pmu->type) 977 return -ENOENT; 978 979 if (!capable(CAP_SYS_ADMIN)) 980 return -EACCES; 981 982 /* Sampling not supported */ 983 if (event->hw.sample_period) 984 return -EINVAL; 985 986 event->hw.idx = -1; 987 pmu = imc_event_to_pmu(event); 988 989 /* Sanity check for config offset */ 990 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 991 return -EINVAL; 992 993 target = event->hw.target; 994 if (!target) 995 return -EINVAL; 996 997 mutex_lock(&imc_global_refc.lock); 998 /* 999 * Check if any other trace/core imc events are running in the 1000 * system, if not set the global id to thread-imc. 1001 */ 1002 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) { 1003 imc_global_refc.id = IMC_DOMAIN_THREAD; 1004 imc_global_refc.refc++; 1005 } else { 1006 mutex_unlock(&imc_global_refc.lock); 1007 return -EBUSY; 1008 } 1009 mutex_unlock(&imc_global_refc.lock); 1010 1011 event->pmu->task_ctx_nr = perf_sw_context; 1012 event->destroy = reset_global_refc; 1013 return 0; 1014 } 1015 1016 static bool is_thread_imc_pmu(struct perf_event *event) 1017 { 1018 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 1019 return true; 1020 1021 return false; 1022 } 1023 1024 static u64 * get_event_base_addr(struct perf_event *event) 1025 { 1026 u64 addr; 1027 1028 if (is_thread_imc_pmu(event)) { 1029 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 1030 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 1031 } 1032 1033 return (u64 *)event->hw.event_base; 1034 } 1035 1036 static void thread_imc_pmu_start_txn(struct pmu *pmu, 1037 unsigned int txn_flags) 1038 { 1039 if (txn_flags & ~PERF_PMU_TXN_ADD) 1040 return; 1041 perf_pmu_disable(pmu); 1042 } 1043 1044 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 1045 { 1046 perf_pmu_enable(pmu); 1047 } 1048 1049 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 1050 { 1051 perf_pmu_enable(pmu); 1052 return 0; 1053 } 1054 1055 static u64 imc_read_counter(struct perf_event *event) 1056 { 1057 u64 *addr, data; 1058 1059 /* 1060 * In-Memory Collection (IMC) counters are free flowing counters. 1061 * So we take a snapshot of the counter value on enable and save it 1062 * to calculate the delta at later stage to present the event counter 1063 * value. 1064 */ 1065 addr = get_event_base_addr(event); 1066 data = be64_to_cpu(READ_ONCE(*addr)); 1067 local64_set(&event->hw.prev_count, data); 1068 1069 return data; 1070 } 1071 1072 static void imc_event_update(struct perf_event *event) 1073 { 1074 u64 counter_prev, counter_new, final_count; 1075 1076 counter_prev = local64_read(&event->hw.prev_count); 1077 counter_new = imc_read_counter(event); 1078 final_count = counter_new - counter_prev; 1079 1080 /* Update the delta to the event count */ 1081 local64_add(final_count, &event->count); 1082 } 1083 1084 static void imc_event_start(struct perf_event *event, int flags) 1085 { 1086 /* 1087 * In Memory Counters are free flowing counters. HW or the microcode 1088 * keeps adding to the counter offset in memory. To get event 1089 * counter value, we snapshot the value here and we calculate 1090 * delta at later point. 1091 */ 1092 imc_read_counter(event); 1093 } 1094 1095 static void imc_event_stop(struct perf_event *event, int flags) 1096 { 1097 /* 1098 * Take a snapshot and calculate the delta and update 1099 * the event counter values. 1100 */ 1101 imc_event_update(event); 1102 } 1103 1104 static int imc_event_add(struct perf_event *event, int flags) 1105 { 1106 if (flags & PERF_EF_START) 1107 imc_event_start(event, flags); 1108 1109 return 0; 1110 } 1111 1112 static int thread_imc_event_add(struct perf_event *event, int flags) 1113 { 1114 int core_id; 1115 struct imc_pmu_ref *ref; 1116 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1117 1118 if (flags & PERF_EF_START) 1119 imc_event_start(event, flags); 1120 1121 if (!is_core_imc_mem_inited(smp_processor_id())) 1122 return -EINVAL; 1123 1124 core_id = smp_processor_id() / threads_per_core; 1125 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1126 mtspr(SPRN_LDBAR, ldbar_value); 1127 1128 /* 1129 * imc pmus are enabled only when it is used. 1130 * See if this is triggered for the first time. 1131 * If yes, take the mutex lock and enable the counters. 1132 * If not, just increment the count in ref count struct. 1133 */ 1134 ref = &core_imc_refc[core_id]; 1135 if (!ref) 1136 return -EINVAL; 1137 1138 mutex_lock(&ref->lock); 1139 if (ref->refc == 0) { 1140 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1141 get_hard_smp_processor_id(smp_processor_id()))) { 1142 mutex_unlock(&ref->lock); 1143 pr_err("thread-imc: Unable to start the counter\ 1144 for core %d\n", core_id); 1145 return -EINVAL; 1146 } 1147 } 1148 ++ref->refc; 1149 mutex_unlock(&ref->lock); 1150 return 0; 1151 } 1152 1153 static void thread_imc_event_del(struct perf_event *event, int flags) 1154 { 1155 1156 int core_id; 1157 struct imc_pmu_ref *ref; 1158 1159 core_id = smp_processor_id() / threads_per_core; 1160 ref = &core_imc_refc[core_id]; 1161 if (!ref) { 1162 pr_debug("imc: Failed to get event reference count\n"); 1163 return; 1164 } 1165 1166 mutex_lock(&ref->lock); 1167 ref->refc--; 1168 if (ref->refc == 0) { 1169 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1170 get_hard_smp_processor_id(smp_processor_id()))) { 1171 mutex_unlock(&ref->lock); 1172 pr_err("thread-imc: Unable to stop the counters\ 1173 for core %d\n", core_id); 1174 return; 1175 } 1176 } else if (ref->refc < 0) { 1177 ref->refc = 0; 1178 } 1179 mutex_unlock(&ref->lock); 1180 1181 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */ 1182 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1183 1184 /* 1185 * Take a snapshot and calculate the delta and update 1186 * the event counter values. 1187 */ 1188 imc_event_update(event); 1189 } 1190 1191 /* 1192 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1193 */ 1194 static int trace_imc_mem_alloc(int cpu_id, int size) 1195 { 1196 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1197 int phys_id = cpu_to_node(cpu_id), rc = 0; 1198 int core_id = (cpu_id / threads_per_core); 1199 1200 if (!local_mem) { 1201 struct page *page; 1202 1203 page = alloc_pages_node(phys_id, 1204 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1205 __GFP_NOWARN, get_order(size)); 1206 if (!page) 1207 return -ENOMEM; 1208 local_mem = page_address(page); 1209 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1210 1211 /* Initialise the counters for trace mode */ 1212 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1213 get_hard_smp_processor_id(cpu_id)); 1214 if (rc) { 1215 pr_info("IMC:opal init failed for trace imc\n"); 1216 return rc; 1217 } 1218 } 1219 1220 /* Init the mutex, if not already */ 1221 trace_imc_refc[core_id].id = core_id; 1222 mutex_init(&trace_imc_refc[core_id].lock); 1223 1224 mtspr(SPRN_LDBAR, 0); 1225 return 0; 1226 } 1227 1228 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1229 { 1230 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1231 } 1232 1233 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1234 { 1235 /* 1236 * No need to set bit 0 of LDBAR to zero, as 1237 * it is set to zero for imc trace-mode 1238 * 1239 * Reduce the refc if any trace-imc event running 1240 * on this cpu. 1241 */ 1242 mutex_lock(&imc_global_refc.lock); 1243 if (imc_global_refc.id == IMC_DOMAIN_TRACE) 1244 imc_global_refc.refc--; 1245 mutex_unlock(&imc_global_refc.lock); 1246 1247 return 0; 1248 } 1249 1250 static int trace_imc_cpu_init(void) 1251 { 1252 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1253 "perf/powerpc/imc_trace:online", 1254 ppc_trace_imc_cpu_online, 1255 ppc_trace_imc_cpu_offline); 1256 } 1257 1258 static u64 get_trace_imc_event_base_addr(void) 1259 { 1260 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1261 } 1262 1263 /* 1264 * Function to parse trace-imc data obtained 1265 * and to prepare the perf sample. 1266 */ 1267 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1268 struct perf_sample_data *data, 1269 u64 *prev_tb, 1270 struct perf_event_header *header, 1271 struct perf_event *event) 1272 { 1273 /* Sanity checks for a valid record */ 1274 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1275 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1276 else 1277 return -EINVAL; 1278 1279 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1280 be64_to_cpu(READ_ONCE(mem->tb2))) 1281 return -EINVAL; 1282 1283 /* Prepare perf sample */ 1284 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1285 data->period = event->hw.last_period; 1286 1287 header->type = PERF_RECORD_SAMPLE; 1288 header->size = sizeof(*header) + event->header_size; 1289 header->misc = 0; 1290 1291 if (is_kernel_addr(data->ip)) 1292 header->misc |= PERF_RECORD_MISC_KERNEL; 1293 else 1294 header->misc |= PERF_RECORD_MISC_USER; 1295 1296 perf_event_header__init_id(header, data, event); 1297 1298 return 0; 1299 } 1300 1301 static void dump_trace_imc_data(struct perf_event *event) 1302 { 1303 struct trace_imc_data *mem; 1304 int i, ret; 1305 u64 prev_tb = 0; 1306 1307 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1308 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1309 i++, mem++) { 1310 struct perf_sample_data data; 1311 struct perf_event_header header; 1312 1313 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1314 if (ret) /* Exit, if not a valid record */ 1315 break; 1316 else { 1317 /* If this is a valid record, create the sample */ 1318 struct perf_output_handle handle; 1319 1320 if (perf_output_begin(&handle, event, header.size)) 1321 return; 1322 1323 perf_output_sample(&handle, &header, &data, event); 1324 perf_output_end(&handle); 1325 } 1326 } 1327 } 1328 1329 static int trace_imc_event_add(struct perf_event *event, int flags) 1330 { 1331 int core_id = smp_processor_id() / threads_per_core; 1332 struct imc_pmu_ref *ref = NULL; 1333 u64 local_mem, ldbar_value; 1334 1335 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1336 local_mem = get_trace_imc_event_base_addr(); 1337 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1338 1339 /* trace-imc reference count */ 1340 if (trace_imc_refc) 1341 ref = &trace_imc_refc[core_id]; 1342 if (!ref) { 1343 pr_debug("imc: Failed to get the event reference count\n"); 1344 return -EINVAL; 1345 } 1346 1347 mtspr(SPRN_LDBAR, ldbar_value); 1348 mutex_lock(&ref->lock); 1349 if (ref->refc == 0) { 1350 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1351 get_hard_smp_processor_id(smp_processor_id()))) { 1352 mutex_unlock(&ref->lock); 1353 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1354 return -EINVAL; 1355 } 1356 } 1357 ++ref->refc; 1358 mutex_unlock(&ref->lock); 1359 return 0; 1360 } 1361 1362 static void trace_imc_event_read(struct perf_event *event) 1363 { 1364 return; 1365 } 1366 1367 static void trace_imc_event_stop(struct perf_event *event, int flags) 1368 { 1369 u64 local_mem = get_trace_imc_event_base_addr(); 1370 dump_trace_imc_data(event); 1371 memset((void *)local_mem, 0, sizeof(u64)); 1372 } 1373 1374 static void trace_imc_event_start(struct perf_event *event, int flags) 1375 { 1376 return; 1377 } 1378 1379 static void trace_imc_event_del(struct perf_event *event, int flags) 1380 { 1381 int core_id = smp_processor_id() / threads_per_core; 1382 struct imc_pmu_ref *ref = NULL; 1383 1384 if (trace_imc_refc) 1385 ref = &trace_imc_refc[core_id]; 1386 if (!ref) { 1387 pr_debug("imc: Failed to get event reference count\n"); 1388 return; 1389 } 1390 1391 mutex_lock(&ref->lock); 1392 ref->refc--; 1393 if (ref->refc == 0) { 1394 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1395 get_hard_smp_processor_id(smp_processor_id()))) { 1396 mutex_unlock(&ref->lock); 1397 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1398 return; 1399 } 1400 } else if (ref->refc < 0) { 1401 ref->refc = 0; 1402 } 1403 mutex_unlock(&ref->lock); 1404 1405 trace_imc_event_stop(event, flags); 1406 } 1407 1408 static int trace_imc_event_init(struct perf_event *event) 1409 { 1410 struct task_struct *target; 1411 1412 if (event->attr.type != event->pmu->type) 1413 return -ENOENT; 1414 1415 if (!capable(CAP_SYS_ADMIN)) 1416 return -EACCES; 1417 1418 /* Return if this is a couting event */ 1419 if (event->attr.sample_period == 0) 1420 return -ENOENT; 1421 1422 /* 1423 * Take the global lock, and make sure 1424 * no other thread is running any core/thread imc 1425 * events 1426 */ 1427 mutex_lock(&imc_global_refc.lock); 1428 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) { 1429 /* 1430 * No core/thread imc events are running in the 1431 * system, so set the refc.id to trace-imc. 1432 */ 1433 imc_global_refc.id = IMC_DOMAIN_TRACE; 1434 imc_global_refc.refc++; 1435 } else { 1436 mutex_unlock(&imc_global_refc.lock); 1437 return -EBUSY; 1438 } 1439 mutex_unlock(&imc_global_refc.lock); 1440 1441 event->hw.idx = -1; 1442 target = event->hw.target; 1443 1444 event->pmu->task_ctx_nr = perf_hw_context; 1445 event->destroy = reset_global_refc; 1446 return 0; 1447 } 1448 1449 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1450 static int update_pmu_ops(struct imc_pmu *pmu) 1451 { 1452 pmu->pmu.task_ctx_nr = perf_invalid_context; 1453 pmu->pmu.add = imc_event_add; 1454 pmu->pmu.del = imc_event_stop; 1455 pmu->pmu.start = imc_event_start; 1456 pmu->pmu.stop = imc_event_stop; 1457 pmu->pmu.read = imc_event_update; 1458 pmu->pmu.attr_groups = pmu->attr_groups; 1459 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1460 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1461 1462 switch (pmu->domain) { 1463 case IMC_DOMAIN_NEST: 1464 pmu->pmu.event_init = nest_imc_event_init; 1465 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1466 break; 1467 case IMC_DOMAIN_CORE: 1468 pmu->pmu.event_init = core_imc_event_init; 1469 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1470 break; 1471 case IMC_DOMAIN_THREAD: 1472 pmu->pmu.event_init = thread_imc_event_init; 1473 pmu->pmu.add = thread_imc_event_add; 1474 pmu->pmu.del = thread_imc_event_del; 1475 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1476 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1477 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1478 break; 1479 case IMC_DOMAIN_TRACE: 1480 pmu->pmu.event_init = trace_imc_event_init; 1481 pmu->pmu.add = trace_imc_event_add; 1482 pmu->pmu.del = trace_imc_event_del; 1483 pmu->pmu.start = trace_imc_event_start; 1484 pmu->pmu.stop = trace_imc_event_stop; 1485 pmu->pmu.read = trace_imc_event_read; 1486 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1487 default: 1488 break; 1489 } 1490 1491 return 0; 1492 } 1493 1494 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1495 static int init_nest_pmu_ref(void) 1496 { 1497 int nid, i, cpu; 1498 1499 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1500 GFP_KERNEL); 1501 1502 if (!nest_imc_refc) 1503 return -ENOMEM; 1504 1505 i = 0; 1506 for_each_node(nid) { 1507 /* 1508 * Mutex lock to avoid races while tracking the number of 1509 * sessions using the chip's nest pmu units. 1510 */ 1511 mutex_init(&nest_imc_refc[i].lock); 1512 1513 /* 1514 * Loop to init the "id" with the node_id. Variable "i" initialized to 1515 * 0 and will be used as index to the array. "i" will not go off the 1516 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1517 * nodes only. 1518 */ 1519 nest_imc_refc[i++].id = nid; 1520 } 1521 1522 /* 1523 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1524 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1525 */ 1526 for_each_possible_cpu(cpu) { 1527 nid = cpu_to_node(cpu); 1528 for (i = 0; i < num_possible_nodes(); i++) { 1529 if (nest_imc_refc[i].id == nid) { 1530 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1531 break; 1532 } 1533 } 1534 } 1535 return 0; 1536 } 1537 1538 static void cleanup_all_core_imc_memory(void) 1539 { 1540 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1541 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1542 int size = core_imc_pmu->counter_mem_size; 1543 1544 /* mem_info will never be NULL */ 1545 for (i = 0; i < nr_cores; i++) { 1546 if (ptr[i].vbase) 1547 free_pages((u64)ptr[i].vbase, get_order(size)); 1548 } 1549 1550 kfree(ptr); 1551 kfree(core_imc_refc); 1552 } 1553 1554 static void thread_imc_ldbar_disable(void *dummy) 1555 { 1556 /* 1557 * By setting 0th bit of LDBAR to zero, we disable thread-imc 1558 * updates to memory. 1559 */ 1560 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1561 } 1562 1563 void thread_imc_disable(void) 1564 { 1565 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1566 } 1567 1568 static void cleanup_all_thread_imc_memory(void) 1569 { 1570 int i, order = get_order(thread_imc_mem_size); 1571 1572 for_each_online_cpu(i) { 1573 if (per_cpu(thread_imc_mem, i)) 1574 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1575 1576 } 1577 } 1578 1579 static void cleanup_all_trace_imc_memory(void) 1580 { 1581 int i, order = get_order(trace_imc_mem_size); 1582 1583 for_each_online_cpu(i) { 1584 if (per_cpu(trace_imc_mem, i)) 1585 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1586 1587 } 1588 kfree(trace_imc_refc); 1589 } 1590 1591 /* Function to free the attr_groups which are dynamically allocated */ 1592 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1593 { 1594 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1595 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1596 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1597 } 1598 1599 /* 1600 * Common function to unregister cpu hotplug callback and 1601 * free the memory. 1602 * TODO: Need to handle pmu unregistering, which will be 1603 * done in followup series. 1604 */ 1605 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1606 { 1607 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1608 mutex_lock(&nest_init_lock); 1609 if (nest_pmus == 1) { 1610 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1611 kfree(nest_imc_refc); 1612 kfree(per_nest_pmu_arr); 1613 per_nest_pmu_arr = NULL; 1614 } 1615 1616 if (nest_pmus > 0) 1617 nest_pmus--; 1618 mutex_unlock(&nest_init_lock); 1619 } 1620 1621 /* Free core_imc memory */ 1622 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1623 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1624 cleanup_all_core_imc_memory(); 1625 } 1626 1627 /* Free thread_imc memory */ 1628 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1629 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1630 cleanup_all_thread_imc_memory(); 1631 } 1632 1633 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1634 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1635 cleanup_all_trace_imc_memory(); 1636 } 1637 } 1638 1639 /* 1640 * Function to unregister thread-imc if core-imc 1641 * is not registered. 1642 */ 1643 void unregister_thread_imc(void) 1644 { 1645 imc_common_cpuhp_mem_free(thread_imc_pmu); 1646 imc_common_mem_free(thread_imc_pmu); 1647 perf_pmu_unregister(&thread_imc_pmu->pmu); 1648 } 1649 1650 /* 1651 * imc_mem_init : Function to support memory allocation for core imc. 1652 */ 1653 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1654 int pmu_index) 1655 { 1656 const char *s; 1657 int nr_cores, cpu, res = -ENOMEM; 1658 1659 if (of_property_read_string(parent, "name", &s)) 1660 return -ENODEV; 1661 1662 switch (pmu_ptr->domain) { 1663 case IMC_DOMAIN_NEST: 1664 /* Update the pmu name */ 1665 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1666 if (!pmu_ptr->pmu.name) 1667 goto err; 1668 1669 /* Needed for hotplug/migration */ 1670 if (!per_nest_pmu_arr) { 1671 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1672 sizeof(struct imc_pmu *), 1673 GFP_KERNEL); 1674 if (!per_nest_pmu_arr) 1675 goto err; 1676 } 1677 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1678 break; 1679 case IMC_DOMAIN_CORE: 1680 /* Update the pmu name */ 1681 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1682 if (!pmu_ptr->pmu.name) 1683 goto err; 1684 1685 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1686 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1687 GFP_KERNEL); 1688 1689 if (!pmu_ptr->mem_info) 1690 goto err; 1691 1692 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1693 GFP_KERNEL); 1694 1695 if (!core_imc_refc) { 1696 kfree(pmu_ptr->mem_info); 1697 goto err; 1698 } 1699 1700 core_imc_pmu = pmu_ptr; 1701 break; 1702 case IMC_DOMAIN_THREAD: 1703 /* Update the pmu name */ 1704 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1705 if (!pmu_ptr->pmu.name) 1706 goto err; 1707 1708 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1709 for_each_online_cpu(cpu) { 1710 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1711 if (res) { 1712 cleanup_all_thread_imc_memory(); 1713 goto err; 1714 } 1715 } 1716 1717 thread_imc_pmu = pmu_ptr; 1718 break; 1719 case IMC_DOMAIN_TRACE: 1720 /* Update the pmu name */ 1721 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1722 if (!pmu_ptr->pmu.name) 1723 return -ENOMEM; 1724 1725 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1726 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1727 GFP_KERNEL); 1728 if (!trace_imc_refc) 1729 return -ENOMEM; 1730 1731 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1732 for_each_online_cpu(cpu) { 1733 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1734 if (res) { 1735 cleanup_all_trace_imc_memory(); 1736 goto err; 1737 } 1738 } 1739 break; 1740 default: 1741 return -EINVAL; 1742 } 1743 1744 return 0; 1745 err: 1746 return res; 1747 } 1748 1749 /* 1750 * init_imc_pmu : Setup and register the IMC pmu device. 1751 * 1752 * @parent: Device tree unit node 1753 * @pmu_ptr: memory allocated for this pmu 1754 * @pmu_idx: Count of nest pmc registered 1755 * 1756 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1757 * Handles failure cases and accordingly frees memory. 1758 */ 1759 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1760 { 1761 int ret; 1762 1763 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1764 if (ret) 1765 goto err_free_mem; 1766 1767 switch (pmu_ptr->domain) { 1768 case IMC_DOMAIN_NEST: 1769 /* 1770 * Nest imc pmu need only one cpu per chip, we initialize the 1771 * cpumask for the first nest imc pmu and use the same for the 1772 * rest. To handle the cpuhotplug callback unregister, we track 1773 * the number of nest pmus in "nest_pmus". 1774 */ 1775 mutex_lock(&nest_init_lock); 1776 if (nest_pmus == 0) { 1777 ret = init_nest_pmu_ref(); 1778 if (ret) { 1779 mutex_unlock(&nest_init_lock); 1780 kfree(per_nest_pmu_arr); 1781 per_nest_pmu_arr = NULL; 1782 goto err_free_mem; 1783 } 1784 /* Register for cpu hotplug notification. */ 1785 ret = nest_pmu_cpumask_init(); 1786 if (ret) { 1787 mutex_unlock(&nest_init_lock); 1788 kfree(nest_imc_refc); 1789 kfree(per_nest_pmu_arr); 1790 per_nest_pmu_arr = NULL; 1791 goto err_free_mem; 1792 } 1793 } 1794 nest_pmus++; 1795 mutex_unlock(&nest_init_lock); 1796 break; 1797 case IMC_DOMAIN_CORE: 1798 ret = core_imc_pmu_cpumask_init(); 1799 if (ret) { 1800 cleanup_all_core_imc_memory(); 1801 goto err_free_mem; 1802 } 1803 1804 break; 1805 case IMC_DOMAIN_THREAD: 1806 ret = thread_imc_cpu_init(); 1807 if (ret) { 1808 cleanup_all_thread_imc_memory(); 1809 goto err_free_mem; 1810 } 1811 1812 break; 1813 case IMC_DOMAIN_TRACE: 1814 ret = trace_imc_cpu_init(); 1815 if (ret) { 1816 cleanup_all_trace_imc_memory(); 1817 goto err_free_mem; 1818 } 1819 1820 break; 1821 default: 1822 return -EINVAL; /* Unknown domain */ 1823 } 1824 1825 ret = update_events_in_group(parent, pmu_ptr); 1826 if (ret) 1827 goto err_free_cpuhp_mem; 1828 1829 ret = update_pmu_ops(pmu_ptr); 1830 if (ret) 1831 goto err_free_cpuhp_mem; 1832 1833 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1834 if (ret) 1835 goto err_free_cpuhp_mem; 1836 1837 pr_debug("%s performance monitor hardware support registered\n", 1838 pmu_ptr->pmu.name); 1839 1840 return 0; 1841 1842 err_free_cpuhp_mem: 1843 imc_common_cpuhp_mem_free(pmu_ptr); 1844 err_free_mem: 1845 imc_common_mem_free(pmu_ptr); 1846 return ret; 1847 } 1848