xref: /openbmc/linux/arch/powerpc/perf/core-fsl-emb.c (revision c819e2cf)
1 /*
2  * Performance event support - Freescale Embedded Performance Monitor
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  * Copyright 2010 Freescale Semiconductor, Inc.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu.h>
16 #include <linux/hardirq.h>
17 #include <asm/reg_fsl_emb.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 
23 struct cpu_hw_events {
24 	int n_events;
25 	int disabled;
26 	u8  pmcs_enabled;
27 	struct perf_event *event[MAX_HWEVENTS];
28 };
29 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
30 
31 static struct fsl_emb_pmu *ppmu;
32 
33 /* Number of perf_events counting hardware events */
34 static atomic_t num_events;
35 /* Used to avoid races in calling reserve/release_pmc_hardware */
36 static DEFINE_MUTEX(pmc_reserve_mutex);
37 
38 /*
39  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
40  * it as an NMI.
41  */
42 static inline int perf_intr_is_nmi(struct pt_regs *regs)
43 {
44 #ifdef __powerpc64__
45 	return !regs->softe;
46 #else
47 	return 0;
48 #endif
49 }
50 
51 static void perf_event_interrupt(struct pt_regs *regs);
52 
53 /*
54  * Read one performance monitor counter (PMC).
55  */
56 static unsigned long read_pmc(int idx)
57 {
58 	unsigned long val;
59 
60 	switch (idx) {
61 	case 0:
62 		val = mfpmr(PMRN_PMC0);
63 		break;
64 	case 1:
65 		val = mfpmr(PMRN_PMC1);
66 		break;
67 	case 2:
68 		val = mfpmr(PMRN_PMC2);
69 		break;
70 	case 3:
71 		val = mfpmr(PMRN_PMC3);
72 		break;
73 	case 4:
74 		val = mfpmr(PMRN_PMC4);
75 		break;
76 	case 5:
77 		val = mfpmr(PMRN_PMC5);
78 		break;
79 	default:
80 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
81 		val = 0;
82 	}
83 	return val;
84 }
85 
86 /*
87  * Write one PMC.
88  */
89 static void write_pmc(int idx, unsigned long val)
90 {
91 	switch (idx) {
92 	case 0:
93 		mtpmr(PMRN_PMC0, val);
94 		break;
95 	case 1:
96 		mtpmr(PMRN_PMC1, val);
97 		break;
98 	case 2:
99 		mtpmr(PMRN_PMC2, val);
100 		break;
101 	case 3:
102 		mtpmr(PMRN_PMC3, val);
103 		break;
104 	case 4:
105 		mtpmr(PMRN_PMC4, val);
106 		break;
107 	case 5:
108 		mtpmr(PMRN_PMC5, val);
109 		break;
110 	default:
111 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
112 	}
113 
114 	isync();
115 }
116 
117 /*
118  * Write one local control A register
119  */
120 static void write_pmlca(int idx, unsigned long val)
121 {
122 	switch (idx) {
123 	case 0:
124 		mtpmr(PMRN_PMLCA0, val);
125 		break;
126 	case 1:
127 		mtpmr(PMRN_PMLCA1, val);
128 		break;
129 	case 2:
130 		mtpmr(PMRN_PMLCA2, val);
131 		break;
132 	case 3:
133 		mtpmr(PMRN_PMLCA3, val);
134 		break;
135 	case 4:
136 		mtpmr(PMRN_PMLCA4, val);
137 		break;
138 	case 5:
139 		mtpmr(PMRN_PMLCA5, val);
140 		break;
141 	default:
142 		printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
143 	}
144 
145 	isync();
146 }
147 
148 /*
149  * Write one local control B register
150  */
151 static void write_pmlcb(int idx, unsigned long val)
152 {
153 	switch (idx) {
154 	case 0:
155 		mtpmr(PMRN_PMLCB0, val);
156 		break;
157 	case 1:
158 		mtpmr(PMRN_PMLCB1, val);
159 		break;
160 	case 2:
161 		mtpmr(PMRN_PMLCB2, val);
162 		break;
163 	case 3:
164 		mtpmr(PMRN_PMLCB3, val);
165 		break;
166 	case 4:
167 		mtpmr(PMRN_PMLCB4, val);
168 		break;
169 	case 5:
170 		mtpmr(PMRN_PMLCB5, val);
171 		break;
172 	default:
173 		printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
174 	}
175 
176 	isync();
177 }
178 
179 static void fsl_emb_pmu_read(struct perf_event *event)
180 {
181 	s64 val, delta, prev;
182 
183 	if (event->hw.state & PERF_HES_STOPPED)
184 		return;
185 
186 	/*
187 	 * Performance monitor interrupts come even when interrupts
188 	 * are soft-disabled, as long as interrupts are hard-enabled.
189 	 * Therefore we treat them like NMIs.
190 	 */
191 	do {
192 		prev = local64_read(&event->hw.prev_count);
193 		barrier();
194 		val = read_pmc(event->hw.idx);
195 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
196 
197 	/* The counters are only 32 bits wide */
198 	delta = (val - prev) & 0xfffffffful;
199 	local64_add(delta, &event->count);
200 	local64_sub(delta, &event->hw.period_left);
201 }
202 
203 /*
204  * Disable all events to prevent PMU interrupts and to allow
205  * events to be added or removed.
206  */
207 static void fsl_emb_pmu_disable(struct pmu *pmu)
208 {
209 	struct cpu_hw_events *cpuhw;
210 	unsigned long flags;
211 
212 	local_irq_save(flags);
213 	cpuhw = this_cpu_ptr(&cpu_hw_events);
214 
215 	if (!cpuhw->disabled) {
216 		cpuhw->disabled = 1;
217 
218 		/*
219 		 * Check if we ever enabled the PMU on this cpu.
220 		 */
221 		if (!cpuhw->pmcs_enabled) {
222 			ppc_enable_pmcs();
223 			cpuhw->pmcs_enabled = 1;
224 		}
225 
226 		if (atomic_read(&num_events)) {
227 			/*
228 			 * Set the 'freeze all counters' bit, and disable
229 			 * interrupts.  The barrier is to make sure the
230 			 * mtpmr has been executed and the PMU has frozen
231 			 * the events before we return.
232 			 */
233 
234 			mtpmr(PMRN_PMGC0, PMGC0_FAC);
235 			isync();
236 		}
237 	}
238 	local_irq_restore(flags);
239 }
240 
241 /*
242  * Re-enable all events if disable == 0.
243  * If we were previously disabled and events were added, then
244  * put the new config on the PMU.
245  */
246 static void fsl_emb_pmu_enable(struct pmu *pmu)
247 {
248 	struct cpu_hw_events *cpuhw;
249 	unsigned long flags;
250 
251 	local_irq_save(flags);
252 	cpuhw = this_cpu_ptr(&cpu_hw_events);
253 	if (!cpuhw->disabled)
254 		goto out;
255 
256 	cpuhw->disabled = 0;
257 	ppc_set_pmu_inuse(cpuhw->n_events != 0);
258 
259 	if (cpuhw->n_events > 0) {
260 		mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
261 		isync();
262 	}
263 
264  out:
265 	local_irq_restore(flags);
266 }
267 
268 static int collect_events(struct perf_event *group, int max_count,
269 			  struct perf_event *ctrs[])
270 {
271 	int n = 0;
272 	struct perf_event *event;
273 
274 	if (!is_software_event(group)) {
275 		if (n >= max_count)
276 			return -1;
277 		ctrs[n] = group;
278 		n++;
279 	}
280 	list_for_each_entry(event, &group->sibling_list, group_entry) {
281 		if (!is_software_event(event) &&
282 		    event->state != PERF_EVENT_STATE_OFF) {
283 			if (n >= max_count)
284 				return -1;
285 			ctrs[n] = event;
286 			n++;
287 		}
288 	}
289 	return n;
290 }
291 
292 /* context locked on entry */
293 static int fsl_emb_pmu_add(struct perf_event *event, int flags)
294 {
295 	struct cpu_hw_events *cpuhw;
296 	int ret = -EAGAIN;
297 	int num_counters = ppmu->n_counter;
298 	u64 val;
299 	int i;
300 
301 	perf_pmu_disable(event->pmu);
302 	cpuhw = &get_cpu_var(cpu_hw_events);
303 
304 	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
305 		num_counters = ppmu->n_restricted;
306 
307 	/*
308 	 * Allocate counters from top-down, so that restricted-capable
309 	 * counters are kept free as long as possible.
310 	 */
311 	for (i = num_counters - 1; i >= 0; i--) {
312 		if (cpuhw->event[i])
313 			continue;
314 
315 		break;
316 	}
317 
318 	if (i < 0)
319 		goto out;
320 
321 	event->hw.idx = i;
322 	cpuhw->event[i] = event;
323 	++cpuhw->n_events;
324 
325 	val = 0;
326 	if (event->hw.sample_period) {
327 		s64 left = local64_read(&event->hw.period_left);
328 		if (left < 0x80000000L)
329 			val = 0x80000000L - left;
330 	}
331 	local64_set(&event->hw.prev_count, val);
332 
333 	if (!(flags & PERF_EF_START)) {
334 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
335 		val = 0;
336 	}
337 
338 	write_pmc(i, val);
339 	perf_event_update_userpage(event);
340 
341 	write_pmlcb(i, event->hw.config >> 32);
342 	write_pmlca(i, event->hw.config_base);
343 
344 	ret = 0;
345  out:
346 	put_cpu_var(cpu_hw_events);
347 	perf_pmu_enable(event->pmu);
348 	return ret;
349 }
350 
351 /* context locked on entry */
352 static void fsl_emb_pmu_del(struct perf_event *event, int flags)
353 {
354 	struct cpu_hw_events *cpuhw;
355 	int i = event->hw.idx;
356 
357 	perf_pmu_disable(event->pmu);
358 	if (i < 0)
359 		goto out;
360 
361 	fsl_emb_pmu_read(event);
362 
363 	cpuhw = &get_cpu_var(cpu_hw_events);
364 
365 	WARN_ON(event != cpuhw->event[event->hw.idx]);
366 
367 	write_pmlca(i, 0);
368 	write_pmlcb(i, 0);
369 	write_pmc(i, 0);
370 
371 	cpuhw->event[i] = NULL;
372 	event->hw.idx = -1;
373 
374 	/*
375 	 * TODO: if at least one restricted event exists, and we
376 	 * just freed up a non-restricted-capable counter, and
377 	 * there is a restricted-capable counter occupied by
378 	 * a non-restricted event, migrate that event to the
379 	 * vacated counter.
380 	 */
381 
382 	cpuhw->n_events--;
383 
384  out:
385 	perf_pmu_enable(event->pmu);
386 	put_cpu_var(cpu_hw_events);
387 }
388 
389 static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
390 {
391 	unsigned long flags;
392 	s64 left;
393 
394 	if (event->hw.idx < 0 || !event->hw.sample_period)
395 		return;
396 
397 	if (!(event->hw.state & PERF_HES_STOPPED))
398 		return;
399 
400 	if (ef_flags & PERF_EF_RELOAD)
401 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
402 
403 	local_irq_save(flags);
404 	perf_pmu_disable(event->pmu);
405 
406 	event->hw.state = 0;
407 	left = local64_read(&event->hw.period_left);
408 	write_pmc(event->hw.idx, left);
409 
410 	perf_event_update_userpage(event);
411 	perf_pmu_enable(event->pmu);
412 	local_irq_restore(flags);
413 }
414 
415 static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
416 {
417 	unsigned long flags;
418 
419 	if (event->hw.idx < 0 || !event->hw.sample_period)
420 		return;
421 
422 	if (event->hw.state & PERF_HES_STOPPED)
423 		return;
424 
425 	local_irq_save(flags);
426 	perf_pmu_disable(event->pmu);
427 
428 	fsl_emb_pmu_read(event);
429 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
430 	write_pmc(event->hw.idx, 0);
431 
432 	perf_event_update_userpage(event);
433 	perf_pmu_enable(event->pmu);
434 	local_irq_restore(flags);
435 }
436 
437 /*
438  * Release the PMU if this is the last perf_event.
439  */
440 static void hw_perf_event_destroy(struct perf_event *event)
441 {
442 	if (!atomic_add_unless(&num_events, -1, 1)) {
443 		mutex_lock(&pmc_reserve_mutex);
444 		if (atomic_dec_return(&num_events) == 0)
445 			release_pmc_hardware();
446 		mutex_unlock(&pmc_reserve_mutex);
447 	}
448 }
449 
450 /*
451  * Translate a generic cache event_id config to a raw event_id code.
452  */
453 static int hw_perf_cache_event(u64 config, u64 *eventp)
454 {
455 	unsigned long type, op, result;
456 	int ev;
457 
458 	if (!ppmu->cache_events)
459 		return -EINVAL;
460 
461 	/* unpack config */
462 	type = config & 0xff;
463 	op = (config >> 8) & 0xff;
464 	result = (config >> 16) & 0xff;
465 
466 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
467 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
468 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
469 		return -EINVAL;
470 
471 	ev = (*ppmu->cache_events)[type][op][result];
472 	if (ev == 0)
473 		return -EOPNOTSUPP;
474 	if (ev == -1)
475 		return -EINVAL;
476 	*eventp = ev;
477 	return 0;
478 }
479 
480 static int fsl_emb_pmu_event_init(struct perf_event *event)
481 {
482 	u64 ev;
483 	struct perf_event *events[MAX_HWEVENTS];
484 	int n;
485 	int err;
486 	int num_restricted;
487 	int i;
488 
489 	if (ppmu->n_counter > MAX_HWEVENTS) {
490 		WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n",
491 			ppmu->n_counter, MAX_HWEVENTS);
492 		ppmu->n_counter = MAX_HWEVENTS;
493 	}
494 
495 	switch (event->attr.type) {
496 	case PERF_TYPE_HARDWARE:
497 		ev = event->attr.config;
498 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
499 			return -EOPNOTSUPP;
500 		ev = ppmu->generic_events[ev];
501 		break;
502 
503 	case PERF_TYPE_HW_CACHE:
504 		err = hw_perf_cache_event(event->attr.config, &ev);
505 		if (err)
506 			return err;
507 		break;
508 
509 	case PERF_TYPE_RAW:
510 		ev = event->attr.config;
511 		break;
512 
513 	default:
514 		return -ENOENT;
515 	}
516 
517 	event->hw.config = ppmu->xlate_event(ev);
518 	if (!(event->hw.config & FSL_EMB_EVENT_VALID))
519 		return -EINVAL;
520 
521 	/*
522 	 * If this is in a group, check if it can go on with all the
523 	 * other hardware events in the group.  We assume the event
524 	 * hasn't been linked into its leader's sibling list at this point.
525 	 */
526 	n = 0;
527 	if (event->group_leader != event) {
528 		n = collect_events(event->group_leader,
529 		                   ppmu->n_counter - 1, events);
530 		if (n < 0)
531 			return -EINVAL;
532 	}
533 
534 	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
535 		num_restricted = 0;
536 		for (i = 0; i < n; i++) {
537 			if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
538 				num_restricted++;
539 		}
540 
541 		if (num_restricted >= ppmu->n_restricted)
542 			return -EINVAL;
543 	}
544 
545 	event->hw.idx = -1;
546 
547 	event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
548 	                        (u32)((ev << 16) & PMLCA_EVENT_MASK);
549 
550 	if (event->attr.exclude_user)
551 		event->hw.config_base |= PMLCA_FCU;
552 	if (event->attr.exclude_kernel)
553 		event->hw.config_base |= PMLCA_FCS;
554 	if (event->attr.exclude_idle)
555 		return -ENOTSUPP;
556 
557 	event->hw.last_period = event->hw.sample_period;
558 	local64_set(&event->hw.period_left, event->hw.last_period);
559 
560 	/*
561 	 * See if we need to reserve the PMU.
562 	 * If no events are currently in use, then we have to take a
563 	 * mutex to ensure that we don't race with another task doing
564 	 * reserve_pmc_hardware or release_pmc_hardware.
565 	 */
566 	err = 0;
567 	if (!atomic_inc_not_zero(&num_events)) {
568 		mutex_lock(&pmc_reserve_mutex);
569 		if (atomic_read(&num_events) == 0 &&
570 		    reserve_pmc_hardware(perf_event_interrupt))
571 			err = -EBUSY;
572 		else
573 			atomic_inc(&num_events);
574 		mutex_unlock(&pmc_reserve_mutex);
575 
576 		mtpmr(PMRN_PMGC0, PMGC0_FAC);
577 		isync();
578 	}
579 	event->destroy = hw_perf_event_destroy;
580 
581 	return err;
582 }
583 
584 static struct pmu fsl_emb_pmu = {
585 	.pmu_enable	= fsl_emb_pmu_enable,
586 	.pmu_disable	= fsl_emb_pmu_disable,
587 	.event_init	= fsl_emb_pmu_event_init,
588 	.add		= fsl_emb_pmu_add,
589 	.del		= fsl_emb_pmu_del,
590 	.start		= fsl_emb_pmu_start,
591 	.stop		= fsl_emb_pmu_stop,
592 	.read		= fsl_emb_pmu_read,
593 };
594 
595 /*
596  * A counter has overflowed; update its count and record
597  * things if requested.  Note that interrupts are hard-disabled
598  * here so there is no possibility of being interrupted.
599  */
600 static void record_and_restart(struct perf_event *event, unsigned long val,
601 			       struct pt_regs *regs)
602 {
603 	u64 period = event->hw.sample_period;
604 	s64 prev, delta, left;
605 	int record = 0;
606 
607 	if (event->hw.state & PERF_HES_STOPPED) {
608 		write_pmc(event->hw.idx, 0);
609 		return;
610 	}
611 
612 	/* we don't have to worry about interrupts here */
613 	prev = local64_read(&event->hw.prev_count);
614 	delta = (val - prev) & 0xfffffffful;
615 	local64_add(delta, &event->count);
616 
617 	/*
618 	 * See if the total period for this event has expired,
619 	 * and update for the next period.
620 	 */
621 	val = 0;
622 	left = local64_read(&event->hw.period_left) - delta;
623 	if (period) {
624 		if (left <= 0) {
625 			left += period;
626 			if (left <= 0)
627 				left = period;
628 			record = 1;
629 			event->hw.last_period = event->hw.sample_period;
630 		}
631 		if (left < 0x80000000LL)
632 			val = 0x80000000LL - left;
633 	}
634 
635 	write_pmc(event->hw.idx, val);
636 	local64_set(&event->hw.prev_count, val);
637 	local64_set(&event->hw.period_left, left);
638 	perf_event_update_userpage(event);
639 
640 	/*
641 	 * Finally record data if requested.
642 	 */
643 	if (record) {
644 		struct perf_sample_data data;
645 
646 		perf_sample_data_init(&data, 0, event->hw.last_period);
647 
648 		if (perf_event_overflow(event, &data, regs))
649 			fsl_emb_pmu_stop(event, 0);
650 	}
651 }
652 
653 static void perf_event_interrupt(struct pt_regs *regs)
654 {
655 	int i;
656 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
657 	struct perf_event *event;
658 	unsigned long val;
659 	int found = 0;
660 	int nmi;
661 
662 	nmi = perf_intr_is_nmi(regs);
663 	if (nmi)
664 		nmi_enter();
665 	else
666 		irq_enter();
667 
668 	for (i = 0; i < ppmu->n_counter; ++i) {
669 		event = cpuhw->event[i];
670 
671 		val = read_pmc(i);
672 		if ((int)val < 0) {
673 			if (event) {
674 				/* event has overflowed */
675 				found = 1;
676 				record_and_restart(event, val, regs);
677 			} else {
678 				/*
679 				 * Disabled counter is negative,
680 				 * reset it just in case.
681 				 */
682 				write_pmc(i, 0);
683 			}
684 		}
685 	}
686 
687 	/* PMM will keep counters frozen until we return from the interrupt. */
688 	mtmsr(mfmsr() | MSR_PMM);
689 	mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
690 	isync();
691 
692 	if (nmi)
693 		nmi_exit();
694 	else
695 		irq_exit();
696 }
697 
698 void hw_perf_event_setup(int cpu)
699 {
700 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
701 
702 	memset(cpuhw, 0, sizeof(*cpuhw));
703 }
704 
705 int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
706 {
707 	if (ppmu)
708 		return -EBUSY;		/* something's already registered */
709 
710 	ppmu = pmu;
711 	pr_info("%s performance monitor hardware support registered\n",
712 		pmu->name);
713 
714 	perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
715 
716 	return 0;
717 }
718