xref: /openbmc/linux/arch/powerpc/perf/core-fsl-emb.c (revision 9d4fa1a1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - Freescale Embedded Performance Monitor
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  * Copyright 2010 Freescale Semiconductor, Inc.
7  */
8 #include <linux/kernel.h>
9 #include <linux/sched.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <asm/reg_fsl_emb.h>
14 #include <asm/pmc.h>
15 #include <asm/machdep.h>
16 #include <asm/firmware.h>
17 #include <asm/ptrace.h>
18 
19 struct cpu_hw_events {
20 	int n_events;
21 	int disabled;
22 	u8  pmcs_enabled;
23 	struct perf_event *event[MAX_HWEVENTS];
24 };
25 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
26 
27 static struct fsl_emb_pmu *ppmu;
28 
29 /* Number of perf_events counting hardware events */
30 static atomic_t num_events;
31 /* Used to avoid races in calling reserve/release_pmc_hardware */
32 static DEFINE_MUTEX(pmc_reserve_mutex);
33 
34 /*
35  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
36  * it as an NMI.
37  */
38 static inline int perf_intr_is_nmi(struct pt_regs *regs)
39 {
40 #ifdef __powerpc64__
41 	return (regs->softe & IRQS_DISABLED);
42 #else
43 	return 0;
44 #endif
45 }
46 
47 static void perf_event_interrupt(struct pt_regs *regs);
48 
49 /*
50  * Read one performance monitor counter (PMC).
51  */
52 static unsigned long read_pmc(int idx)
53 {
54 	unsigned long val;
55 
56 	switch (idx) {
57 	case 0:
58 		val = mfpmr(PMRN_PMC0);
59 		break;
60 	case 1:
61 		val = mfpmr(PMRN_PMC1);
62 		break;
63 	case 2:
64 		val = mfpmr(PMRN_PMC2);
65 		break;
66 	case 3:
67 		val = mfpmr(PMRN_PMC3);
68 		break;
69 	case 4:
70 		val = mfpmr(PMRN_PMC4);
71 		break;
72 	case 5:
73 		val = mfpmr(PMRN_PMC5);
74 		break;
75 	default:
76 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
77 		val = 0;
78 	}
79 	return val;
80 }
81 
82 /*
83  * Write one PMC.
84  */
85 static void write_pmc(int idx, unsigned long val)
86 {
87 	switch (idx) {
88 	case 0:
89 		mtpmr(PMRN_PMC0, val);
90 		break;
91 	case 1:
92 		mtpmr(PMRN_PMC1, val);
93 		break;
94 	case 2:
95 		mtpmr(PMRN_PMC2, val);
96 		break;
97 	case 3:
98 		mtpmr(PMRN_PMC3, val);
99 		break;
100 	case 4:
101 		mtpmr(PMRN_PMC4, val);
102 		break;
103 	case 5:
104 		mtpmr(PMRN_PMC5, val);
105 		break;
106 	default:
107 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
108 	}
109 
110 	isync();
111 }
112 
113 /*
114  * Write one local control A register
115  */
116 static void write_pmlca(int idx, unsigned long val)
117 {
118 	switch (idx) {
119 	case 0:
120 		mtpmr(PMRN_PMLCA0, val);
121 		break;
122 	case 1:
123 		mtpmr(PMRN_PMLCA1, val);
124 		break;
125 	case 2:
126 		mtpmr(PMRN_PMLCA2, val);
127 		break;
128 	case 3:
129 		mtpmr(PMRN_PMLCA3, val);
130 		break;
131 	case 4:
132 		mtpmr(PMRN_PMLCA4, val);
133 		break;
134 	case 5:
135 		mtpmr(PMRN_PMLCA5, val);
136 		break;
137 	default:
138 		printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
139 	}
140 
141 	isync();
142 }
143 
144 /*
145  * Write one local control B register
146  */
147 static void write_pmlcb(int idx, unsigned long val)
148 {
149 	switch (idx) {
150 	case 0:
151 		mtpmr(PMRN_PMLCB0, val);
152 		break;
153 	case 1:
154 		mtpmr(PMRN_PMLCB1, val);
155 		break;
156 	case 2:
157 		mtpmr(PMRN_PMLCB2, val);
158 		break;
159 	case 3:
160 		mtpmr(PMRN_PMLCB3, val);
161 		break;
162 	case 4:
163 		mtpmr(PMRN_PMLCB4, val);
164 		break;
165 	case 5:
166 		mtpmr(PMRN_PMLCB5, val);
167 		break;
168 	default:
169 		printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
170 	}
171 
172 	isync();
173 }
174 
175 static void fsl_emb_pmu_read(struct perf_event *event)
176 {
177 	s64 val, delta, prev;
178 
179 	if (event->hw.state & PERF_HES_STOPPED)
180 		return;
181 
182 	/*
183 	 * Performance monitor interrupts come even when interrupts
184 	 * are soft-disabled, as long as interrupts are hard-enabled.
185 	 * Therefore we treat them like NMIs.
186 	 */
187 	do {
188 		prev = local64_read(&event->hw.prev_count);
189 		barrier();
190 		val = read_pmc(event->hw.idx);
191 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
192 
193 	/* The counters are only 32 bits wide */
194 	delta = (val - prev) & 0xfffffffful;
195 	local64_add(delta, &event->count);
196 	local64_sub(delta, &event->hw.period_left);
197 }
198 
199 /*
200  * Disable all events to prevent PMU interrupts and to allow
201  * events to be added or removed.
202  */
203 static void fsl_emb_pmu_disable(struct pmu *pmu)
204 {
205 	struct cpu_hw_events *cpuhw;
206 	unsigned long flags;
207 
208 	local_irq_save(flags);
209 	cpuhw = this_cpu_ptr(&cpu_hw_events);
210 
211 	if (!cpuhw->disabled) {
212 		cpuhw->disabled = 1;
213 
214 		/*
215 		 * Check if we ever enabled the PMU on this cpu.
216 		 */
217 		if (!cpuhw->pmcs_enabled) {
218 			ppc_enable_pmcs();
219 			cpuhw->pmcs_enabled = 1;
220 		}
221 
222 		if (atomic_read(&num_events)) {
223 			/*
224 			 * Set the 'freeze all counters' bit, and disable
225 			 * interrupts.  The barrier is to make sure the
226 			 * mtpmr has been executed and the PMU has frozen
227 			 * the events before we return.
228 			 */
229 
230 			mtpmr(PMRN_PMGC0, PMGC0_FAC);
231 			isync();
232 		}
233 	}
234 	local_irq_restore(flags);
235 }
236 
237 /*
238  * Re-enable all events if disable == 0.
239  * If we were previously disabled and events were added, then
240  * put the new config on the PMU.
241  */
242 static void fsl_emb_pmu_enable(struct pmu *pmu)
243 {
244 	struct cpu_hw_events *cpuhw;
245 	unsigned long flags;
246 
247 	local_irq_save(flags);
248 	cpuhw = this_cpu_ptr(&cpu_hw_events);
249 	if (!cpuhw->disabled)
250 		goto out;
251 
252 	cpuhw->disabled = 0;
253 	ppc_set_pmu_inuse(cpuhw->n_events != 0);
254 
255 	if (cpuhw->n_events > 0) {
256 		mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
257 		isync();
258 	}
259 
260  out:
261 	local_irq_restore(flags);
262 }
263 
264 static int collect_events(struct perf_event *group, int max_count,
265 			  struct perf_event *ctrs[])
266 {
267 	int n = 0;
268 	struct perf_event *event;
269 
270 	if (!is_software_event(group)) {
271 		if (n >= max_count)
272 			return -1;
273 		ctrs[n] = group;
274 		n++;
275 	}
276 	for_each_sibling_event(event, group) {
277 		if (!is_software_event(event) &&
278 		    event->state != PERF_EVENT_STATE_OFF) {
279 			if (n >= max_count)
280 				return -1;
281 			ctrs[n] = event;
282 			n++;
283 		}
284 	}
285 	return n;
286 }
287 
288 /* context locked on entry */
289 static int fsl_emb_pmu_add(struct perf_event *event, int flags)
290 {
291 	struct cpu_hw_events *cpuhw;
292 	int ret = -EAGAIN;
293 	int num_counters = ppmu->n_counter;
294 	u64 val;
295 	int i;
296 
297 	perf_pmu_disable(event->pmu);
298 	cpuhw = &get_cpu_var(cpu_hw_events);
299 
300 	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
301 		num_counters = ppmu->n_restricted;
302 
303 	/*
304 	 * Allocate counters from top-down, so that restricted-capable
305 	 * counters are kept free as long as possible.
306 	 */
307 	for (i = num_counters - 1; i >= 0; i--) {
308 		if (cpuhw->event[i])
309 			continue;
310 
311 		break;
312 	}
313 
314 	if (i < 0)
315 		goto out;
316 
317 	event->hw.idx = i;
318 	cpuhw->event[i] = event;
319 	++cpuhw->n_events;
320 
321 	val = 0;
322 	if (event->hw.sample_period) {
323 		s64 left = local64_read(&event->hw.period_left);
324 		if (left < 0x80000000L)
325 			val = 0x80000000L - left;
326 	}
327 	local64_set(&event->hw.prev_count, val);
328 
329 	if (unlikely(!(flags & PERF_EF_START))) {
330 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
331 		val = 0;
332 	} else {
333 		event->hw.state &= ~(PERF_HES_STOPPED | PERF_HES_UPTODATE);
334 	}
335 
336 	write_pmc(i, val);
337 	perf_event_update_userpage(event);
338 
339 	write_pmlcb(i, event->hw.config >> 32);
340 	write_pmlca(i, event->hw.config_base);
341 
342 	ret = 0;
343  out:
344 	put_cpu_var(cpu_hw_events);
345 	perf_pmu_enable(event->pmu);
346 	return ret;
347 }
348 
349 /* context locked on entry */
350 static void fsl_emb_pmu_del(struct perf_event *event, int flags)
351 {
352 	struct cpu_hw_events *cpuhw;
353 	int i = event->hw.idx;
354 
355 	perf_pmu_disable(event->pmu);
356 	if (i < 0)
357 		goto out;
358 
359 	fsl_emb_pmu_read(event);
360 
361 	cpuhw = &get_cpu_var(cpu_hw_events);
362 
363 	WARN_ON(event != cpuhw->event[event->hw.idx]);
364 
365 	write_pmlca(i, 0);
366 	write_pmlcb(i, 0);
367 	write_pmc(i, 0);
368 
369 	cpuhw->event[i] = NULL;
370 	event->hw.idx = -1;
371 
372 	/*
373 	 * TODO: if at least one restricted event exists, and we
374 	 * just freed up a non-restricted-capable counter, and
375 	 * there is a restricted-capable counter occupied by
376 	 * a non-restricted event, migrate that event to the
377 	 * vacated counter.
378 	 */
379 
380 	cpuhw->n_events--;
381 
382  out:
383 	perf_pmu_enable(event->pmu);
384 	put_cpu_var(cpu_hw_events);
385 }
386 
387 static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
388 {
389 	unsigned long flags;
390 	unsigned long val;
391 	s64 left;
392 
393 	if (event->hw.idx < 0 || !event->hw.sample_period)
394 		return;
395 
396 	if (!(event->hw.state & PERF_HES_STOPPED))
397 		return;
398 
399 	if (ef_flags & PERF_EF_RELOAD)
400 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
401 
402 	local_irq_save(flags);
403 	perf_pmu_disable(event->pmu);
404 
405 	event->hw.state = 0;
406 	left = local64_read(&event->hw.period_left);
407 	val = 0;
408 	if (left < 0x80000000L)
409 		val = 0x80000000L - left;
410 	write_pmc(event->hw.idx, val);
411 
412 	perf_event_update_userpage(event);
413 	perf_pmu_enable(event->pmu);
414 	local_irq_restore(flags);
415 }
416 
417 static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
418 {
419 	unsigned long flags;
420 
421 	if (event->hw.idx < 0 || !event->hw.sample_period)
422 		return;
423 
424 	if (event->hw.state & PERF_HES_STOPPED)
425 		return;
426 
427 	local_irq_save(flags);
428 	perf_pmu_disable(event->pmu);
429 
430 	fsl_emb_pmu_read(event);
431 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
432 	write_pmc(event->hw.idx, 0);
433 
434 	perf_event_update_userpage(event);
435 	perf_pmu_enable(event->pmu);
436 	local_irq_restore(flags);
437 }
438 
439 /*
440  * Release the PMU if this is the last perf_event.
441  */
442 static void hw_perf_event_destroy(struct perf_event *event)
443 {
444 	if (!atomic_add_unless(&num_events, -1, 1)) {
445 		mutex_lock(&pmc_reserve_mutex);
446 		if (atomic_dec_return(&num_events) == 0)
447 			release_pmc_hardware();
448 		mutex_unlock(&pmc_reserve_mutex);
449 	}
450 }
451 
452 /*
453  * Translate a generic cache event_id config to a raw event_id code.
454  */
455 static int hw_perf_cache_event(u64 config, u64 *eventp)
456 {
457 	unsigned long type, op, result;
458 	int ev;
459 
460 	if (!ppmu->cache_events)
461 		return -EINVAL;
462 
463 	/* unpack config */
464 	type = config & 0xff;
465 	op = (config >> 8) & 0xff;
466 	result = (config >> 16) & 0xff;
467 
468 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
469 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
470 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
471 		return -EINVAL;
472 
473 	ev = (*ppmu->cache_events)[type][op][result];
474 	if (ev == 0)
475 		return -EOPNOTSUPP;
476 	if (ev == -1)
477 		return -EINVAL;
478 	*eventp = ev;
479 	return 0;
480 }
481 
482 static int fsl_emb_pmu_event_init(struct perf_event *event)
483 {
484 	u64 ev;
485 	struct perf_event *events[MAX_HWEVENTS];
486 	int n;
487 	int err;
488 	int num_restricted;
489 	int i;
490 
491 	if (ppmu->n_counter > MAX_HWEVENTS) {
492 		WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n",
493 			ppmu->n_counter, MAX_HWEVENTS);
494 		ppmu->n_counter = MAX_HWEVENTS;
495 	}
496 
497 	switch (event->attr.type) {
498 	case PERF_TYPE_HARDWARE:
499 		ev = event->attr.config;
500 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
501 			return -EOPNOTSUPP;
502 		ev = ppmu->generic_events[ev];
503 		break;
504 
505 	case PERF_TYPE_HW_CACHE:
506 		err = hw_perf_cache_event(event->attr.config, &ev);
507 		if (err)
508 			return err;
509 		break;
510 
511 	case PERF_TYPE_RAW:
512 		ev = event->attr.config;
513 		break;
514 
515 	default:
516 		return -ENOENT;
517 	}
518 
519 	event->hw.config = ppmu->xlate_event(ev);
520 	if (!(event->hw.config & FSL_EMB_EVENT_VALID))
521 		return -EINVAL;
522 
523 	/*
524 	 * If this is in a group, check if it can go on with all the
525 	 * other hardware events in the group.  We assume the event
526 	 * hasn't been linked into its leader's sibling list at this point.
527 	 */
528 	n = 0;
529 	if (event->group_leader != event) {
530 		n = collect_events(event->group_leader,
531 		                   ppmu->n_counter - 1, events);
532 		if (n < 0)
533 			return -EINVAL;
534 	}
535 
536 	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
537 		num_restricted = 0;
538 		for (i = 0; i < n; i++) {
539 			if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
540 				num_restricted++;
541 		}
542 
543 		if (num_restricted >= ppmu->n_restricted)
544 			return -EINVAL;
545 	}
546 
547 	event->hw.idx = -1;
548 
549 	event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
550 	                        (u32)((ev << 16) & PMLCA_EVENT_MASK);
551 
552 	if (event->attr.exclude_user)
553 		event->hw.config_base |= PMLCA_FCU;
554 	if (event->attr.exclude_kernel)
555 		event->hw.config_base |= PMLCA_FCS;
556 	if (event->attr.exclude_idle)
557 		return -ENOTSUPP;
558 
559 	event->hw.last_period = event->hw.sample_period;
560 	local64_set(&event->hw.period_left, event->hw.last_period);
561 
562 	/*
563 	 * See if we need to reserve the PMU.
564 	 * If no events are currently in use, then we have to take a
565 	 * mutex to ensure that we don't race with another task doing
566 	 * reserve_pmc_hardware or release_pmc_hardware.
567 	 */
568 	err = 0;
569 	if (!atomic_inc_not_zero(&num_events)) {
570 		mutex_lock(&pmc_reserve_mutex);
571 		if (atomic_read(&num_events) == 0 &&
572 		    reserve_pmc_hardware(perf_event_interrupt))
573 			err = -EBUSY;
574 		else
575 			atomic_inc(&num_events);
576 		mutex_unlock(&pmc_reserve_mutex);
577 
578 		mtpmr(PMRN_PMGC0, PMGC0_FAC);
579 		isync();
580 	}
581 	event->destroy = hw_perf_event_destroy;
582 
583 	return err;
584 }
585 
586 static struct pmu fsl_emb_pmu = {
587 	.pmu_enable	= fsl_emb_pmu_enable,
588 	.pmu_disable	= fsl_emb_pmu_disable,
589 	.event_init	= fsl_emb_pmu_event_init,
590 	.add		= fsl_emb_pmu_add,
591 	.del		= fsl_emb_pmu_del,
592 	.start		= fsl_emb_pmu_start,
593 	.stop		= fsl_emb_pmu_stop,
594 	.read		= fsl_emb_pmu_read,
595 };
596 
597 /*
598  * A counter has overflowed; update its count and record
599  * things if requested.  Note that interrupts are hard-disabled
600  * here so there is no possibility of being interrupted.
601  */
602 static void record_and_restart(struct perf_event *event, unsigned long val,
603 			       struct pt_regs *regs)
604 {
605 	u64 period = event->hw.sample_period;
606 	s64 prev, delta, left;
607 	int record = 0;
608 
609 	if (event->hw.state & PERF_HES_STOPPED) {
610 		write_pmc(event->hw.idx, 0);
611 		return;
612 	}
613 
614 	/* we don't have to worry about interrupts here */
615 	prev = local64_read(&event->hw.prev_count);
616 	delta = (val - prev) & 0xfffffffful;
617 	local64_add(delta, &event->count);
618 
619 	/*
620 	 * See if the total period for this event has expired,
621 	 * and update for the next period.
622 	 */
623 	val = 0;
624 	left = local64_read(&event->hw.period_left) - delta;
625 	if (period) {
626 		if (left <= 0) {
627 			left += period;
628 			if (left <= 0)
629 				left = period;
630 			record = 1;
631 			event->hw.last_period = event->hw.sample_period;
632 		}
633 		if (left < 0x80000000LL)
634 			val = 0x80000000LL - left;
635 	}
636 
637 	write_pmc(event->hw.idx, val);
638 	local64_set(&event->hw.prev_count, val);
639 	local64_set(&event->hw.period_left, left);
640 	perf_event_update_userpage(event);
641 
642 	/*
643 	 * Finally record data if requested.
644 	 */
645 	if (record) {
646 		struct perf_sample_data data;
647 
648 		perf_sample_data_init(&data, 0, event->hw.last_period);
649 
650 		if (perf_event_overflow(event, &data, regs))
651 			fsl_emb_pmu_stop(event, 0);
652 	}
653 }
654 
655 static void perf_event_interrupt(struct pt_regs *regs)
656 {
657 	int i;
658 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
659 	struct perf_event *event;
660 	unsigned long val;
661 	int found = 0;
662 	int nmi;
663 
664 	nmi = perf_intr_is_nmi(regs);
665 	if (nmi)
666 		nmi_enter();
667 	else
668 		irq_enter();
669 
670 	for (i = 0; i < ppmu->n_counter; ++i) {
671 		event = cpuhw->event[i];
672 
673 		val = read_pmc(i);
674 		if ((int)val < 0) {
675 			if (event) {
676 				/* event has overflowed */
677 				found = 1;
678 				record_and_restart(event, val, regs);
679 			} else {
680 				/*
681 				 * Disabled counter is negative,
682 				 * reset it just in case.
683 				 */
684 				write_pmc(i, 0);
685 			}
686 		}
687 	}
688 
689 	/* PMM will keep counters frozen until we return from the interrupt. */
690 	mtmsr(mfmsr() | MSR_PMM);
691 	mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
692 	isync();
693 
694 	if (nmi)
695 		nmi_exit();
696 	else
697 		irq_exit();
698 }
699 
700 void hw_perf_event_setup(int cpu)
701 {
702 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
703 
704 	memset(cpuhw, 0, sizeof(*cpuhw));
705 }
706 
707 int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
708 {
709 	if (ppmu)
710 		return -EBUSY;		/* something's already registered */
711 
712 	ppmu = pmu;
713 	pr_info("%s performance monitor hardware support registered\n",
714 		pmu->name);
715 
716 	perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
717 
718 	return 0;
719 }
720