xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision f7d84fa7)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	/*
40 	 * The order of the MMCR array is:
41 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43 	 */
44 	unsigned long mmcr[4];
45 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 
51 	unsigned int txn_flags;
52 	int n_txn_start;
53 
54 	/* BHRB bits */
55 	u64				bhrb_filter;	/* BHRB HW branch filter */
56 	unsigned int			bhrb_users;
57 	void				*bhrb_context;
58 	struct	perf_branch_stack	bhrb_stack;
59 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60 	u64				ic_init;
61 };
62 
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64 
65 static struct power_pmu *ppmu;
66 
67 /*
68  * Normally, to ignore kernel events we set the FCS (freeze counters
69  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70  * hypervisor bit set in the MSR, or if we are running on a processor
71  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72  * then we need to use the FCHV bit to ignore kernel events.
73  */
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
75 
76 /*
77  * 32-bit doesn't have MMCRA but does have an MMCR2,
78  * and a few other names are different.
79  */
80 #ifdef CONFIG_PPC32
81 
82 #define MMCR0_FCHV		0
83 #define MMCR0_PMCjCE		MMCR0_PMCnCE
84 #define MMCR0_FC56		0
85 #define MMCR0_PMAO		0
86 #define MMCR0_EBE		0
87 #define MMCR0_BHRBA		0
88 #define MMCR0_PMCC		0
89 #define MMCR0_PMCC_U6		0
90 
91 #define SPRN_MMCRA		SPRN_MMCR2
92 #define MMCRA_SAMPLE_ENABLE	0
93 
94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
95 {
96 	return 0;
97 }
98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
100 {
101 	return 0;
102 }
103 static inline void perf_read_regs(struct pt_regs *regs)
104 {
105 	regs->result = 0;
106 }
107 static inline int perf_intr_is_nmi(struct pt_regs *regs)
108 {
109 	return 0;
110 }
111 
112 static inline int siar_valid(struct pt_regs *regs)
113 {
114 	return 1;
115 }
116 
117 static bool is_ebb_event(struct perf_event *event) { return false; }
118 static int ebb_event_check(struct perf_event *event) { return 0; }
119 static void ebb_event_add(struct perf_event *event) { }
120 static void ebb_switch_out(unsigned long mmcr0) { }
121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122 {
123 	return cpuhw->mmcr[0];
124 }
125 
126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130 static void pmao_restore_workaround(bool ebb) { }
131 static bool use_ic(u64 event)
132 {
133 	return false;
134 }
135 #endif /* CONFIG_PPC32 */
136 
137 static bool regs_use_siar(struct pt_regs *regs)
138 {
139 	/*
140 	 * When we take a performance monitor exception the regs are setup
141 	 * using perf_read_regs() which overloads some fields, in particular
142 	 * regs->result to tell us whether to use SIAR.
143 	 *
144 	 * However if the regs are from another exception, eg. a syscall, then
145 	 * they have not been setup using perf_read_regs() and so regs->result
146 	 * is something random.
147 	 */
148 	return ((TRAP(regs) == 0xf00) && regs->result);
149 }
150 
151 /*
152  * Things that are specific to 64-bit implementations.
153  */
154 #ifdef CONFIG_PPC64
155 
156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
157 {
158 	unsigned long mmcra = regs->dsisr;
159 
160 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
162 		if (slot > 1)
163 			return 4 * (slot - 1);
164 	}
165 
166 	return 0;
167 }
168 
169 /*
170  * The user wants a data address recorded.
171  * If we're not doing instruction sampling, give them the SDAR
172  * (sampled data address).  If we are doing instruction sampling, then
173  * only give them the SDAR if it corresponds to the instruction
174  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
176  */
177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
178 {
179 	unsigned long mmcra = regs->dsisr;
180 	bool sdar_valid;
181 
182 	if (ppmu->flags & PPMU_HAS_SIER)
183 		sdar_valid = regs->dar & SIER_SDAR_VALID;
184 	else {
185 		unsigned long sdsync;
186 
187 		if (ppmu->flags & PPMU_SIAR_VALID)
188 			sdsync = POWER7P_MMCRA_SDAR_VALID;
189 		else if (ppmu->flags & PPMU_ALT_SIPR)
190 			sdsync = POWER6_MMCRA_SDSYNC;
191 		else if (ppmu->flags & PPMU_NO_SIAR)
192 			sdsync = MMCRA_SAMPLE_ENABLE;
193 		else
194 			sdsync = MMCRA_SDSYNC;
195 
196 		sdar_valid = mmcra & sdsync;
197 	}
198 
199 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 		*addrp = mfspr(SPRN_SDAR);
201 }
202 
203 static bool regs_sihv(struct pt_regs *regs)
204 {
205 	unsigned long sihv = MMCRA_SIHV;
206 
207 	if (ppmu->flags & PPMU_HAS_SIER)
208 		return !!(regs->dar & SIER_SIHV);
209 
210 	if (ppmu->flags & PPMU_ALT_SIPR)
211 		sihv = POWER6_MMCRA_SIHV;
212 
213 	return !!(regs->dsisr & sihv);
214 }
215 
216 static bool regs_sipr(struct pt_regs *regs)
217 {
218 	unsigned long sipr = MMCRA_SIPR;
219 
220 	if (ppmu->flags & PPMU_HAS_SIER)
221 		return !!(regs->dar & SIER_SIPR);
222 
223 	if (ppmu->flags & PPMU_ALT_SIPR)
224 		sipr = POWER6_MMCRA_SIPR;
225 
226 	return !!(regs->dsisr & sipr);
227 }
228 
229 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
230 {
231 	if (regs->msr & MSR_PR)
232 		return PERF_RECORD_MISC_USER;
233 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
234 		return PERF_RECORD_MISC_HYPERVISOR;
235 	return PERF_RECORD_MISC_KERNEL;
236 }
237 
238 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
239 {
240 	bool use_siar = regs_use_siar(regs);
241 
242 	if (!use_siar)
243 		return perf_flags_from_msr(regs);
244 
245 	/*
246 	 * If we don't have flags in MMCRA, rather than using
247 	 * the MSR, we intuit the flags from the address in
248 	 * SIAR which should give slightly more reliable
249 	 * results
250 	 */
251 	if (ppmu->flags & PPMU_NO_SIPR) {
252 		unsigned long siar = mfspr(SPRN_SIAR);
253 		if (is_kernel_addr(siar))
254 			return PERF_RECORD_MISC_KERNEL;
255 		return PERF_RECORD_MISC_USER;
256 	}
257 
258 	/* PR has priority over HV, so order below is important */
259 	if (regs_sipr(regs))
260 		return PERF_RECORD_MISC_USER;
261 
262 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263 		return PERF_RECORD_MISC_HYPERVISOR;
264 
265 	return PERF_RECORD_MISC_KERNEL;
266 }
267 
268 /*
269  * Overload regs->dsisr to store MMCRA so we only need to read it once
270  * on each interrupt.
271  * Overload regs->dar to store SIER if we have it.
272  * Overload regs->result to specify whether we should use the MSR (result
273  * is zero) or the SIAR (result is non zero).
274  */
275 static inline void perf_read_regs(struct pt_regs *regs)
276 {
277 	unsigned long mmcra = mfspr(SPRN_MMCRA);
278 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
279 	int use_siar;
280 
281 	regs->dsisr = mmcra;
282 
283 	if (ppmu->flags & PPMU_HAS_SIER)
284 		regs->dar = mfspr(SPRN_SIER);
285 
286 	/*
287 	 * If this isn't a PMU exception (eg a software event) the SIAR is
288 	 * not valid. Use pt_regs.
289 	 *
290 	 * If it is a marked event use the SIAR.
291 	 *
292 	 * If the PMU doesn't update the SIAR for non marked events use
293 	 * pt_regs.
294 	 *
295 	 * If the PMU has HV/PR flags then check to see if they
296 	 * place the exception in userspace. If so, use pt_regs. In
297 	 * continuous sampling mode the SIAR and the PMU exception are
298 	 * not synchronised, so they may be many instructions apart.
299 	 * This can result in confusing backtraces. We still want
300 	 * hypervisor samples as well as samples in the kernel with
301 	 * interrupts off hence the userspace check.
302 	 */
303 	if (TRAP(regs) != 0xf00)
304 		use_siar = 0;
305 	else if ((ppmu->flags & PPMU_NO_SIAR))
306 		use_siar = 0;
307 	else if (marked)
308 		use_siar = 1;
309 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
310 		use_siar = 0;
311 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
312 		use_siar = 0;
313 	else
314 		use_siar = 1;
315 
316 	regs->result = use_siar;
317 }
318 
319 /*
320  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
321  * it as an NMI.
322  */
323 static inline int perf_intr_is_nmi(struct pt_regs *regs)
324 {
325 	return !regs->softe;
326 }
327 
328 /*
329  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
330  * must be sampled only if the SIAR-valid bit is set.
331  *
332  * For unmarked instructions and for processors that don't have the SIAR-Valid
333  * bit, assume that SIAR is valid.
334  */
335 static inline int siar_valid(struct pt_regs *regs)
336 {
337 	unsigned long mmcra = regs->dsisr;
338 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
339 
340 	if (marked) {
341 		if (ppmu->flags & PPMU_HAS_SIER)
342 			return regs->dar & SIER_SIAR_VALID;
343 
344 		if (ppmu->flags & PPMU_SIAR_VALID)
345 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
346 	}
347 
348 	return 1;
349 }
350 
351 
352 /* Reset all possible BHRB entries */
353 static void power_pmu_bhrb_reset(void)
354 {
355 	asm volatile(PPC_CLRBHRB);
356 }
357 
358 static void power_pmu_bhrb_enable(struct perf_event *event)
359 {
360 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
361 
362 	if (!ppmu->bhrb_nr)
363 		return;
364 
365 	/* Clear BHRB if we changed task context to avoid data leaks */
366 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
367 		power_pmu_bhrb_reset();
368 		cpuhw->bhrb_context = event->ctx;
369 	}
370 	cpuhw->bhrb_users++;
371 	perf_sched_cb_inc(event->ctx->pmu);
372 }
373 
374 static void power_pmu_bhrb_disable(struct perf_event *event)
375 {
376 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
377 
378 	if (!ppmu->bhrb_nr)
379 		return;
380 
381 	WARN_ON_ONCE(!cpuhw->bhrb_users);
382 	cpuhw->bhrb_users--;
383 	perf_sched_cb_dec(event->ctx->pmu);
384 
385 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
386 		/* BHRB cannot be turned off when other
387 		 * events are active on the PMU.
388 		 */
389 
390 		/* avoid stale pointer */
391 		cpuhw->bhrb_context = NULL;
392 	}
393 }
394 
395 /* Called from ctxsw to prevent one process's branch entries to
396  * mingle with the other process's entries during context switch.
397  */
398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
399 {
400 	if (!ppmu->bhrb_nr)
401 		return;
402 
403 	if (sched_in)
404 		power_pmu_bhrb_reset();
405 }
406 /* Calculate the to address for a branch */
407 static __u64 power_pmu_bhrb_to(u64 addr)
408 {
409 	unsigned int instr;
410 	int ret;
411 	__u64 target;
412 
413 	if (is_kernel_addr(addr))
414 		return branch_target((unsigned int *)addr);
415 
416 	/* Userspace: need copy instruction here then translate it */
417 	pagefault_disable();
418 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
419 	if (ret) {
420 		pagefault_enable();
421 		return 0;
422 	}
423 	pagefault_enable();
424 
425 	target = branch_target(&instr);
426 	if ((!target) || (instr & BRANCH_ABSOLUTE))
427 		return target;
428 
429 	/* Translate relative branch target from kernel to user address */
430 	return target - (unsigned long)&instr + addr;
431 }
432 
433 /* Processing BHRB entries */
434 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
435 {
436 	u64 val;
437 	u64 addr;
438 	int r_index, u_index, pred;
439 
440 	r_index = 0;
441 	u_index = 0;
442 	while (r_index < ppmu->bhrb_nr) {
443 		/* Assembly read function */
444 		val = read_bhrb(r_index++);
445 		if (!val)
446 			/* Terminal marker: End of valid BHRB entries */
447 			break;
448 		else {
449 			addr = val & BHRB_EA;
450 			pred = val & BHRB_PREDICTION;
451 
452 			if (!addr)
453 				/* invalid entry */
454 				continue;
455 
456 			/* Branches are read most recent first (ie. mfbhrb 0 is
457 			 * the most recent branch).
458 			 * There are two types of valid entries:
459 			 * 1) a target entry which is the to address of a
460 			 *    computed goto like a blr,bctr,btar.  The next
461 			 *    entry read from the bhrb will be branch
462 			 *    corresponding to this target (ie. the actual
463 			 *    blr/bctr/btar instruction).
464 			 * 2) a from address which is an actual branch.  If a
465 			 *    target entry proceeds this, then this is the
466 			 *    matching branch for that target.  If this is not
467 			 *    following a target entry, then this is a branch
468 			 *    where the target is given as an immediate field
469 			 *    in the instruction (ie. an i or b form branch).
470 			 *    In this case we need to read the instruction from
471 			 *    memory to determine the target/to address.
472 			 */
473 
474 			if (val & BHRB_TARGET) {
475 				/* Target branches use two entries
476 				 * (ie. computed gotos/XL form)
477 				 */
478 				cpuhw->bhrb_entries[u_index].to = addr;
479 				cpuhw->bhrb_entries[u_index].mispred = pred;
480 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
481 
482 				/* Get from address in next entry */
483 				val = read_bhrb(r_index++);
484 				addr = val & BHRB_EA;
485 				if (val & BHRB_TARGET) {
486 					/* Shouldn't have two targets in a
487 					   row.. Reset index and try again */
488 					r_index--;
489 					addr = 0;
490 				}
491 				cpuhw->bhrb_entries[u_index].from = addr;
492 			} else {
493 				/* Branches to immediate field
494 				   (ie I or B form) */
495 				cpuhw->bhrb_entries[u_index].from = addr;
496 				cpuhw->bhrb_entries[u_index].to =
497 					power_pmu_bhrb_to(addr);
498 				cpuhw->bhrb_entries[u_index].mispred = pred;
499 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
500 			}
501 			u_index++;
502 
503 		}
504 	}
505 	cpuhw->bhrb_stack.nr = u_index;
506 	return;
507 }
508 
509 static bool is_ebb_event(struct perf_event *event)
510 {
511 	/*
512 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
513 	 * check that the PMU supports EBB, meaning those that don't can still
514 	 * use bit 63 of the event code for something else if they wish.
515 	 */
516 	return (ppmu->flags & PPMU_ARCH_207S) &&
517 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
518 }
519 
520 static int ebb_event_check(struct perf_event *event)
521 {
522 	struct perf_event *leader = event->group_leader;
523 
524 	/* Event and group leader must agree on EBB */
525 	if (is_ebb_event(leader) != is_ebb_event(event))
526 		return -EINVAL;
527 
528 	if (is_ebb_event(event)) {
529 		if (!(event->attach_state & PERF_ATTACH_TASK))
530 			return -EINVAL;
531 
532 		if (!leader->attr.pinned || !leader->attr.exclusive)
533 			return -EINVAL;
534 
535 		if (event->attr.freq ||
536 		    event->attr.inherit ||
537 		    event->attr.sample_type ||
538 		    event->attr.sample_period ||
539 		    event->attr.enable_on_exec)
540 			return -EINVAL;
541 	}
542 
543 	return 0;
544 }
545 
546 static void ebb_event_add(struct perf_event *event)
547 {
548 	if (!is_ebb_event(event) || current->thread.used_ebb)
549 		return;
550 
551 	/*
552 	 * IFF this is the first time we've added an EBB event, set
553 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
554 	 * userspace. We need this so that we can context switch while
555 	 * userspace is in the EBB handler (where PMXE is 0).
556 	 */
557 	current->thread.used_ebb = 1;
558 	current->thread.mmcr0 |= MMCR0_PMXE;
559 }
560 
561 static void ebb_switch_out(unsigned long mmcr0)
562 {
563 	if (!(mmcr0 & MMCR0_EBE))
564 		return;
565 
566 	current->thread.siar  = mfspr(SPRN_SIAR);
567 	current->thread.sier  = mfspr(SPRN_SIER);
568 	current->thread.sdar  = mfspr(SPRN_SDAR);
569 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
570 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
571 }
572 
573 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
574 {
575 	unsigned long mmcr0 = cpuhw->mmcr[0];
576 
577 	if (!ebb)
578 		goto out;
579 
580 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
581 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
582 
583 	/*
584 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
585 	 * with pmao_restore_workaround() because we may add PMAO but we never
586 	 * clear it here.
587 	 */
588 	mmcr0 |= current->thread.mmcr0;
589 
590 	/*
591 	 * Be careful not to set PMXE if userspace had it cleared. This is also
592 	 * compatible with pmao_restore_workaround() because it has already
593 	 * cleared PMXE and we leave PMAO alone.
594 	 */
595 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
596 		mmcr0 &= ~MMCR0_PMXE;
597 
598 	mtspr(SPRN_SIAR, current->thread.siar);
599 	mtspr(SPRN_SIER, current->thread.sier);
600 	mtspr(SPRN_SDAR, current->thread.sdar);
601 
602 	/*
603 	 * Merge the kernel & user values of MMCR2. The semantics we implement
604 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
605 	 * but not clear bits. If a task wants to be able to clear bits, ie.
606 	 * unfreeze counters, it should not set exclude_xxx in its events and
607 	 * instead manage the MMCR2 entirely by itself.
608 	 */
609 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
610 out:
611 	return mmcr0;
612 }
613 
614 static void pmao_restore_workaround(bool ebb)
615 {
616 	unsigned pmcs[6];
617 
618 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
619 		return;
620 
621 	/*
622 	 * On POWER8E there is a hardware defect which affects the PMU context
623 	 * switch logic, ie. power_pmu_disable/enable().
624 	 *
625 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
626 	 * by the hardware. Sometime later the actual PMU exception is
627 	 * delivered.
628 	 *
629 	 * If we context switch, or simply disable/enable, the PMU prior to the
630 	 * exception arriving, the exception will be lost when we clear PMAO.
631 	 *
632 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
633 	 * set, and this _should_ generate an exception. However because of the
634 	 * defect no exception is generated when we write PMAO, and we get
635 	 * stuck with no counters counting but no exception delivered.
636 	 *
637 	 * The workaround is to detect this case and tweak the hardware to
638 	 * create another pending PMU exception.
639 	 *
640 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
641 	 * enabling the PMU. That causes a new exception to be generated in the
642 	 * chip, but we don't take it yet because we have interrupts hard
643 	 * disabled. We then write back the PMU state as we want it to be seen
644 	 * by the exception handler. When we reenable interrupts the exception
645 	 * handler will be called and see the correct state.
646 	 *
647 	 * The logic is the same for EBB, except that the exception is gated by
648 	 * us having interrupts hard disabled as well as the fact that we are
649 	 * not in userspace. The exception is finally delivered when we return
650 	 * to userspace.
651 	 */
652 
653 	/* Only if PMAO is set and PMAO_SYNC is clear */
654 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
655 		return;
656 
657 	/* If we're doing EBB, only if BESCR[GE] is set */
658 	if (ebb && !(current->thread.bescr & BESCR_GE))
659 		return;
660 
661 	/*
662 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
663 	 * disable to actually prevent the PMU exception from firing.
664 	 */
665 	hard_irq_disable();
666 
667 	/*
668 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
669 	 * Using read/write_pmc() in a for loop adds 12 function calls and
670 	 * almost doubles our code size.
671 	 */
672 	pmcs[0] = mfspr(SPRN_PMC1);
673 	pmcs[1] = mfspr(SPRN_PMC2);
674 	pmcs[2] = mfspr(SPRN_PMC3);
675 	pmcs[3] = mfspr(SPRN_PMC4);
676 	pmcs[4] = mfspr(SPRN_PMC5);
677 	pmcs[5] = mfspr(SPRN_PMC6);
678 
679 	/* Ensure all freeze bits are unset */
680 	mtspr(SPRN_MMCR2, 0);
681 
682 	/* Set up PMC6 to overflow in one cycle */
683 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
684 
685 	/* Enable exceptions and unfreeze PMC6 */
686 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
687 
688 	/* Now we need to refreeze and restore the PMCs */
689 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
690 
691 	mtspr(SPRN_PMC1, pmcs[0]);
692 	mtspr(SPRN_PMC2, pmcs[1]);
693 	mtspr(SPRN_PMC3, pmcs[2]);
694 	mtspr(SPRN_PMC4, pmcs[3]);
695 	mtspr(SPRN_PMC5, pmcs[4]);
696 	mtspr(SPRN_PMC6, pmcs[5]);
697 }
698 
699 static bool use_ic(u64 event)
700 {
701 	if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
702 			(event == 0x200f2 || event == 0x300f2))
703 		return true;
704 
705 	return false;
706 }
707 #endif /* CONFIG_PPC64 */
708 
709 static void perf_event_interrupt(struct pt_regs *regs);
710 
711 /*
712  * Read one performance monitor counter (PMC).
713  */
714 static unsigned long read_pmc(int idx)
715 {
716 	unsigned long val;
717 
718 	switch (idx) {
719 	case 1:
720 		val = mfspr(SPRN_PMC1);
721 		break;
722 	case 2:
723 		val = mfspr(SPRN_PMC2);
724 		break;
725 	case 3:
726 		val = mfspr(SPRN_PMC3);
727 		break;
728 	case 4:
729 		val = mfspr(SPRN_PMC4);
730 		break;
731 	case 5:
732 		val = mfspr(SPRN_PMC5);
733 		break;
734 	case 6:
735 		val = mfspr(SPRN_PMC6);
736 		break;
737 #ifdef CONFIG_PPC64
738 	case 7:
739 		val = mfspr(SPRN_PMC7);
740 		break;
741 	case 8:
742 		val = mfspr(SPRN_PMC8);
743 		break;
744 #endif /* CONFIG_PPC64 */
745 	default:
746 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
747 		val = 0;
748 	}
749 	return val;
750 }
751 
752 /*
753  * Write one PMC.
754  */
755 static void write_pmc(int idx, unsigned long val)
756 {
757 	switch (idx) {
758 	case 1:
759 		mtspr(SPRN_PMC1, val);
760 		break;
761 	case 2:
762 		mtspr(SPRN_PMC2, val);
763 		break;
764 	case 3:
765 		mtspr(SPRN_PMC3, val);
766 		break;
767 	case 4:
768 		mtspr(SPRN_PMC4, val);
769 		break;
770 	case 5:
771 		mtspr(SPRN_PMC5, val);
772 		break;
773 	case 6:
774 		mtspr(SPRN_PMC6, val);
775 		break;
776 #ifdef CONFIG_PPC64
777 	case 7:
778 		mtspr(SPRN_PMC7, val);
779 		break;
780 	case 8:
781 		mtspr(SPRN_PMC8, val);
782 		break;
783 #endif /* CONFIG_PPC64 */
784 	default:
785 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
786 	}
787 }
788 
789 /* Called from sysrq_handle_showregs() */
790 void perf_event_print_debug(void)
791 {
792 	unsigned long sdar, sier, flags;
793 	u32 pmcs[MAX_HWEVENTS];
794 	int i;
795 
796 	if (!ppmu->n_counter)
797 		return;
798 
799 	local_irq_save(flags);
800 
801 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
802 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
803 
804 	for (i = 0; i < ppmu->n_counter; i++)
805 		pmcs[i] = read_pmc(i + 1);
806 
807 	for (; i < MAX_HWEVENTS; i++)
808 		pmcs[i] = 0xdeadbeef;
809 
810 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
811 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
812 
813 	if (ppmu->n_counter > 4)
814 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
815 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
816 
817 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
818 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
819 
820 	sdar = sier = 0;
821 #ifdef CONFIG_PPC64
822 	sdar = mfspr(SPRN_SDAR);
823 
824 	if (ppmu->flags & PPMU_HAS_SIER)
825 		sier = mfspr(SPRN_SIER);
826 
827 	if (ppmu->flags & PPMU_ARCH_207S) {
828 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
829 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
830 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
831 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
832 	}
833 #endif
834 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
835 		mfspr(SPRN_SIAR), sdar, sier);
836 
837 	local_irq_restore(flags);
838 }
839 
840 /*
841  * Check if a set of events can all go on the PMU at once.
842  * If they can't, this will look at alternative codes for the events
843  * and see if any combination of alternative codes is feasible.
844  * The feasible set is returned in event_id[].
845  */
846 static int power_check_constraints(struct cpu_hw_events *cpuhw,
847 				   u64 event_id[], unsigned int cflags[],
848 				   int n_ev)
849 {
850 	unsigned long mask, value, nv;
851 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
852 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
853 	int i, j;
854 	unsigned long addf = ppmu->add_fields;
855 	unsigned long tadd = ppmu->test_adder;
856 
857 	if (n_ev > ppmu->n_counter)
858 		return -1;
859 
860 	/* First see if the events will go on as-is */
861 	for (i = 0; i < n_ev; ++i) {
862 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
863 		    && !ppmu->limited_pmc_event(event_id[i])) {
864 			ppmu->get_alternatives(event_id[i], cflags[i],
865 					       cpuhw->alternatives[i]);
866 			event_id[i] = cpuhw->alternatives[i][0];
867 		}
868 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
869 					 &cpuhw->avalues[i][0]))
870 			return -1;
871 	}
872 	value = mask = 0;
873 	for (i = 0; i < n_ev; ++i) {
874 		nv = (value | cpuhw->avalues[i][0]) +
875 			(value & cpuhw->avalues[i][0] & addf);
876 		if ((((nv + tadd) ^ value) & mask) != 0 ||
877 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
878 		     cpuhw->amasks[i][0]) != 0)
879 			break;
880 		value = nv;
881 		mask |= cpuhw->amasks[i][0];
882 	}
883 	if (i == n_ev)
884 		return 0;	/* all OK */
885 
886 	/* doesn't work, gather alternatives... */
887 	if (!ppmu->get_alternatives)
888 		return -1;
889 	for (i = 0; i < n_ev; ++i) {
890 		choice[i] = 0;
891 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
892 						  cpuhw->alternatives[i]);
893 		for (j = 1; j < n_alt[i]; ++j)
894 			ppmu->get_constraint(cpuhw->alternatives[i][j],
895 					     &cpuhw->amasks[i][j],
896 					     &cpuhw->avalues[i][j]);
897 	}
898 
899 	/* enumerate all possibilities and see if any will work */
900 	i = 0;
901 	j = -1;
902 	value = mask = nv = 0;
903 	while (i < n_ev) {
904 		if (j >= 0) {
905 			/* we're backtracking, restore context */
906 			value = svalues[i];
907 			mask = smasks[i];
908 			j = choice[i];
909 		}
910 		/*
911 		 * See if any alternative k for event_id i,
912 		 * where k > j, will satisfy the constraints.
913 		 */
914 		while (++j < n_alt[i]) {
915 			nv = (value | cpuhw->avalues[i][j]) +
916 				(value & cpuhw->avalues[i][j] & addf);
917 			if ((((nv + tadd) ^ value) & mask) == 0 &&
918 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
919 			     & cpuhw->amasks[i][j]) == 0)
920 				break;
921 		}
922 		if (j >= n_alt[i]) {
923 			/*
924 			 * No feasible alternative, backtrack
925 			 * to event_id i-1 and continue enumerating its
926 			 * alternatives from where we got up to.
927 			 */
928 			if (--i < 0)
929 				return -1;
930 		} else {
931 			/*
932 			 * Found a feasible alternative for event_id i,
933 			 * remember where we got up to with this event_id,
934 			 * go on to the next event_id, and start with
935 			 * the first alternative for it.
936 			 */
937 			choice[i] = j;
938 			svalues[i] = value;
939 			smasks[i] = mask;
940 			value = nv;
941 			mask |= cpuhw->amasks[i][j];
942 			++i;
943 			j = -1;
944 		}
945 	}
946 
947 	/* OK, we have a feasible combination, tell the caller the solution */
948 	for (i = 0; i < n_ev; ++i)
949 		event_id[i] = cpuhw->alternatives[i][choice[i]];
950 	return 0;
951 }
952 
953 /*
954  * Check if newly-added events have consistent settings for
955  * exclude_{user,kernel,hv} with each other and any previously
956  * added events.
957  */
958 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
959 			  int n_prev, int n_new)
960 {
961 	int eu = 0, ek = 0, eh = 0;
962 	int i, n, first;
963 	struct perf_event *event;
964 
965 	/*
966 	 * If the PMU we're on supports per event exclude settings then we
967 	 * don't need to do any of this logic. NB. This assumes no PMU has both
968 	 * per event exclude and limited PMCs.
969 	 */
970 	if (ppmu->flags & PPMU_ARCH_207S)
971 		return 0;
972 
973 	n = n_prev + n_new;
974 	if (n <= 1)
975 		return 0;
976 
977 	first = 1;
978 	for (i = 0; i < n; ++i) {
979 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
980 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
981 			continue;
982 		}
983 		event = ctrs[i];
984 		if (first) {
985 			eu = event->attr.exclude_user;
986 			ek = event->attr.exclude_kernel;
987 			eh = event->attr.exclude_hv;
988 			first = 0;
989 		} else if (event->attr.exclude_user != eu ||
990 			   event->attr.exclude_kernel != ek ||
991 			   event->attr.exclude_hv != eh) {
992 			return -EAGAIN;
993 		}
994 	}
995 
996 	if (eu || ek || eh)
997 		for (i = 0; i < n; ++i)
998 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
999 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1000 
1001 	return 0;
1002 }
1003 
1004 static u64 check_and_compute_delta(u64 prev, u64 val)
1005 {
1006 	u64 delta = (val - prev) & 0xfffffffful;
1007 
1008 	/*
1009 	 * POWER7 can roll back counter values, if the new value is smaller
1010 	 * than the previous value it will cause the delta and the counter to
1011 	 * have bogus values unless we rolled a counter over.  If a coutner is
1012 	 * rolled back, it will be smaller, but within 256, which is the maximum
1013 	 * number of events to rollback at once.  If we detect a rollback
1014 	 * return 0.  This can lead to a small lack of precision in the
1015 	 * counters.
1016 	 */
1017 	if (prev > val && (prev - val) < 256)
1018 		delta = 0;
1019 
1020 	return delta;
1021 }
1022 
1023 static void power_pmu_read(struct perf_event *event)
1024 {
1025 	s64 val, delta, prev;
1026 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1027 
1028 	if (event->hw.state & PERF_HES_STOPPED)
1029 		return;
1030 
1031 	if (!event->hw.idx)
1032 		return;
1033 
1034 	if (is_ebb_event(event)) {
1035 		val = read_pmc(event->hw.idx);
1036 		if (use_ic(event->attr.config)) {
1037 			val = mfspr(SPRN_IC);
1038 			if (val > cpuhw->ic_init)
1039 				val = val - cpuhw->ic_init;
1040 			else
1041 				val = val + (0 - cpuhw->ic_init);
1042 		}
1043 		local64_set(&event->hw.prev_count, val);
1044 		return;
1045 	}
1046 
1047 	/*
1048 	 * Performance monitor interrupts come even when interrupts
1049 	 * are soft-disabled, as long as interrupts are hard-enabled.
1050 	 * Therefore we treat them like NMIs.
1051 	 */
1052 	do {
1053 		prev = local64_read(&event->hw.prev_count);
1054 		barrier();
1055 		val = read_pmc(event->hw.idx);
1056 		if (use_ic(event->attr.config)) {
1057 			val = mfspr(SPRN_IC);
1058 			if (val > cpuhw->ic_init)
1059 				val = val - cpuhw->ic_init;
1060 			else
1061 				val = val + (0 - cpuhw->ic_init);
1062 		}
1063 		delta = check_and_compute_delta(prev, val);
1064 		if (!delta)
1065 			return;
1066 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1067 
1068 	local64_add(delta, &event->count);
1069 
1070 	/*
1071 	 * A number of places program the PMC with (0x80000000 - period_left).
1072 	 * We never want period_left to be less than 1 because we will program
1073 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1074 	 * roll around to 0 before taking an exception. We have seen this
1075 	 * on POWER8.
1076 	 *
1077 	 * To fix this, clamp the minimum value of period_left to 1.
1078 	 */
1079 	do {
1080 		prev = local64_read(&event->hw.period_left);
1081 		val = prev - delta;
1082 		if (val < 1)
1083 			val = 1;
1084 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1085 }
1086 
1087 /*
1088  * On some machines, PMC5 and PMC6 can't be written, don't respect
1089  * the freeze conditions, and don't generate interrupts.  This tells
1090  * us if `event' is using such a PMC.
1091  */
1092 static int is_limited_pmc(int pmcnum)
1093 {
1094 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1095 		&& (pmcnum == 5 || pmcnum == 6);
1096 }
1097 
1098 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1099 				    unsigned long pmc5, unsigned long pmc6)
1100 {
1101 	struct perf_event *event;
1102 	u64 val, prev, delta;
1103 	int i;
1104 
1105 	for (i = 0; i < cpuhw->n_limited; ++i) {
1106 		event = cpuhw->limited_counter[i];
1107 		if (!event->hw.idx)
1108 			continue;
1109 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1110 		prev = local64_read(&event->hw.prev_count);
1111 		event->hw.idx = 0;
1112 		delta = check_and_compute_delta(prev, val);
1113 		if (delta)
1114 			local64_add(delta, &event->count);
1115 	}
1116 }
1117 
1118 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1119 				  unsigned long pmc5, unsigned long pmc6)
1120 {
1121 	struct perf_event *event;
1122 	u64 val, prev;
1123 	int i;
1124 
1125 	for (i = 0; i < cpuhw->n_limited; ++i) {
1126 		event = cpuhw->limited_counter[i];
1127 		event->hw.idx = cpuhw->limited_hwidx[i];
1128 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1129 		prev = local64_read(&event->hw.prev_count);
1130 		if (check_and_compute_delta(prev, val))
1131 			local64_set(&event->hw.prev_count, val);
1132 		perf_event_update_userpage(event);
1133 	}
1134 }
1135 
1136 /*
1137  * Since limited events don't respect the freeze conditions, we
1138  * have to read them immediately after freezing or unfreezing the
1139  * other events.  We try to keep the values from the limited
1140  * events as consistent as possible by keeping the delay (in
1141  * cycles and instructions) between freezing/unfreezing and reading
1142  * the limited events as small and consistent as possible.
1143  * Therefore, if any limited events are in use, we read them
1144  * both, and always in the same order, to minimize variability,
1145  * and do it inside the same asm that writes MMCR0.
1146  */
1147 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1148 {
1149 	unsigned long pmc5, pmc6;
1150 
1151 	if (!cpuhw->n_limited) {
1152 		mtspr(SPRN_MMCR0, mmcr0);
1153 		return;
1154 	}
1155 
1156 	/*
1157 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1158 	 * To ensure we don't get a performance monitor interrupt
1159 	 * between writing MMCR0 and freezing/thawing the limited
1160 	 * events, we first write MMCR0 with the event overflow
1161 	 * interrupt enable bits turned off.
1162 	 */
1163 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1164 		     : "=&r" (pmc5), "=&r" (pmc6)
1165 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1166 		       "i" (SPRN_MMCR0),
1167 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1168 
1169 	if (mmcr0 & MMCR0_FC)
1170 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1171 	else
1172 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1173 
1174 	/*
1175 	 * Write the full MMCR0 including the event overflow interrupt
1176 	 * enable bits, if necessary.
1177 	 */
1178 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1179 		mtspr(SPRN_MMCR0, mmcr0);
1180 }
1181 
1182 /*
1183  * Disable all events to prevent PMU interrupts and to allow
1184  * events to be added or removed.
1185  */
1186 static void power_pmu_disable(struct pmu *pmu)
1187 {
1188 	struct cpu_hw_events *cpuhw;
1189 	unsigned long flags, mmcr0, val;
1190 
1191 	if (!ppmu)
1192 		return;
1193 	local_irq_save(flags);
1194 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1195 
1196 	if (!cpuhw->disabled) {
1197 		/*
1198 		 * Check if we ever enabled the PMU on this cpu.
1199 		 */
1200 		if (!cpuhw->pmcs_enabled) {
1201 			ppc_enable_pmcs();
1202 			cpuhw->pmcs_enabled = 1;
1203 		}
1204 
1205 		/*
1206 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1207 		 */
1208 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1209 		val |= MMCR0_FC;
1210 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1211 			 MMCR0_FC56);
1212 
1213 		/*
1214 		 * The barrier is to make sure the mtspr has been
1215 		 * executed and the PMU has frozen the events etc.
1216 		 * before we return.
1217 		 */
1218 		write_mmcr0(cpuhw, val);
1219 		mb();
1220 
1221 		/*
1222 		 * Disable instruction sampling if it was enabled
1223 		 */
1224 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1225 			mtspr(SPRN_MMCRA,
1226 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1227 			mb();
1228 		}
1229 
1230 		cpuhw->disabled = 1;
1231 		cpuhw->n_added = 0;
1232 
1233 		ebb_switch_out(mmcr0);
1234 	}
1235 
1236 	local_irq_restore(flags);
1237 }
1238 
1239 /*
1240  * Re-enable all events if disable == 0.
1241  * If we were previously disabled and events were added, then
1242  * put the new config on the PMU.
1243  */
1244 static void power_pmu_enable(struct pmu *pmu)
1245 {
1246 	struct perf_event *event;
1247 	struct cpu_hw_events *cpuhw;
1248 	unsigned long flags;
1249 	long i;
1250 	unsigned long val, mmcr0;
1251 	s64 left;
1252 	unsigned int hwc_index[MAX_HWEVENTS];
1253 	int n_lim;
1254 	int idx;
1255 	bool ebb;
1256 
1257 	if (!ppmu)
1258 		return;
1259 	local_irq_save(flags);
1260 
1261 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1262 	if (!cpuhw->disabled)
1263 		goto out;
1264 
1265 	if (cpuhw->n_events == 0) {
1266 		ppc_set_pmu_inuse(0);
1267 		goto out;
1268 	}
1269 
1270 	cpuhw->disabled = 0;
1271 
1272 	/*
1273 	 * EBB requires an exclusive group and all events must have the EBB
1274 	 * flag set, or not set, so we can just check a single event. Also we
1275 	 * know we have at least one event.
1276 	 */
1277 	ebb = is_ebb_event(cpuhw->event[0]);
1278 
1279 	/*
1280 	 * If we didn't change anything, or only removed events,
1281 	 * no need to recalculate MMCR* settings and reset the PMCs.
1282 	 * Just reenable the PMU with the current MMCR* settings
1283 	 * (possibly updated for removal of events).
1284 	 */
1285 	if (!cpuhw->n_added) {
1286 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1287 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1288 		goto out_enable;
1289 	}
1290 
1291 	/*
1292 	 * Clear all MMCR settings and recompute them for the new set of events.
1293 	 */
1294 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1295 
1296 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1297 			       cpuhw->mmcr, cpuhw->event)) {
1298 		/* shouldn't ever get here */
1299 		printk(KERN_ERR "oops compute_mmcr failed\n");
1300 		goto out;
1301 	}
1302 
1303 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1304 		/*
1305 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1306 		 * bits for the first event. We have already checked that all
1307 		 * events have the same value for these bits as the first event.
1308 		 */
1309 		event = cpuhw->event[0];
1310 		if (event->attr.exclude_user)
1311 			cpuhw->mmcr[0] |= MMCR0_FCP;
1312 		if (event->attr.exclude_kernel)
1313 			cpuhw->mmcr[0] |= freeze_events_kernel;
1314 		if (event->attr.exclude_hv)
1315 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1316 	}
1317 
1318 	/*
1319 	 * Write the new configuration to MMCR* with the freeze
1320 	 * bit set and set the hardware events to their initial values.
1321 	 * Then unfreeze the events.
1322 	 */
1323 	ppc_set_pmu_inuse(1);
1324 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1326 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1327 				| MMCR0_FC);
1328 	if (ppmu->flags & PPMU_ARCH_207S)
1329 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1330 
1331 	/*
1332 	 * Read off any pre-existing events that need to move
1333 	 * to another PMC.
1334 	 */
1335 	for (i = 0; i < cpuhw->n_events; ++i) {
1336 		event = cpuhw->event[i];
1337 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1338 			power_pmu_read(event);
1339 			write_pmc(event->hw.idx, 0);
1340 			event->hw.idx = 0;
1341 		}
1342 	}
1343 
1344 	/*
1345 	 * Initialize the PMCs for all the new and moved events.
1346 	 */
1347 	cpuhw->n_limited = n_lim = 0;
1348 	for (i = 0; i < cpuhw->n_events; ++i) {
1349 		event = cpuhw->event[i];
1350 		if (event->hw.idx)
1351 			continue;
1352 		idx = hwc_index[i] + 1;
1353 		if (is_limited_pmc(idx)) {
1354 			cpuhw->limited_counter[n_lim] = event;
1355 			cpuhw->limited_hwidx[n_lim] = idx;
1356 			++n_lim;
1357 			continue;
1358 		}
1359 
1360 		if (ebb)
1361 			val = local64_read(&event->hw.prev_count);
1362 		else {
1363 			val = 0;
1364 			if (event->hw.sample_period) {
1365 				left = local64_read(&event->hw.period_left);
1366 				if (left < 0x80000000L)
1367 					val = 0x80000000L - left;
1368 			}
1369 			local64_set(&event->hw.prev_count, val);
1370 		}
1371 
1372 		event->hw.idx = idx;
1373 		if (event->hw.state & PERF_HES_STOPPED)
1374 			val = 0;
1375 		write_pmc(idx, val);
1376 
1377 		perf_event_update_userpage(event);
1378 	}
1379 	cpuhw->n_limited = n_lim;
1380 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1381 
1382  out_enable:
1383 	pmao_restore_workaround(ebb);
1384 
1385 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1386 
1387 	mb();
1388 	if (cpuhw->bhrb_users)
1389 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1390 
1391 	write_mmcr0(cpuhw, mmcr0);
1392 
1393 	/*
1394 	 * Enable instruction sampling if necessary
1395 	 */
1396 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1397 		mb();
1398 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1399 	}
1400 
1401  out:
1402 
1403 	local_irq_restore(flags);
1404 }
1405 
1406 static int collect_events(struct perf_event *group, int max_count,
1407 			  struct perf_event *ctrs[], u64 *events,
1408 			  unsigned int *flags)
1409 {
1410 	int n = 0;
1411 	struct perf_event *event;
1412 
1413 	if (!is_software_event(group)) {
1414 		if (n >= max_count)
1415 			return -1;
1416 		ctrs[n] = group;
1417 		flags[n] = group->hw.event_base;
1418 		events[n++] = group->hw.config;
1419 	}
1420 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1421 		if (!is_software_event(event) &&
1422 		    event->state != PERF_EVENT_STATE_OFF) {
1423 			if (n >= max_count)
1424 				return -1;
1425 			ctrs[n] = event;
1426 			flags[n] = event->hw.event_base;
1427 			events[n++] = event->hw.config;
1428 		}
1429 	}
1430 	return n;
1431 }
1432 
1433 /*
1434  * Add a event to the PMU.
1435  * If all events are not already frozen, then we disable and
1436  * re-enable the PMU in order to get hw_perf_enable to do the
1437  * actual work of reconfiguring the PMU.
1438  */
1439 static int power_pmu_add(struct perf_event *event, int ef_flags)
1440 {
1441 	struct cpu_hw_events *cpuhw;
1442 	unsigned long flags;
1443 	int n0;
1444 	int ret = -EAGAIN;
1445 
1446 	local_irq_save(flags);
1447 	perf_pmu_disable(event->pmu);
1448 
1449 	/*
1450 	 * Add the event to the list (if there is room)
1451 	 * and check whether the total set is still feasible.
1452 	 */
1453 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1454 	n0 = cpuhw->n_events;
1455 	if (n0 >= ppmu->n_counter)
1456 		goto out;
1457 	cpuhw->event[n0] = event;
1458 	cpuhw->events[n0] = event->hw.config;
1459 	cpuhw->flags[n0] = event->hw.event_base;
1460 
1461 	/*
1462 	 * This event may have been disabled/stopped in record_and_restart()
1463 	 * because we exceeded the ->event_limit. If re-starting the event,
1464 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1465 	 * notification is re-enabled.
1466 	 */
1467 	if (!(ef_flags & PERF_EF_START))
1468 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1469 	else
1470 		event->hw.state = 0;
1471 
1472 	/*
1473 	 * If group events scheduling transaction was started,
1474 	 * skip the schedulability test here, it will be performed
1475 	 * at commit time(->commit_txn) as a whole
1476 	 */
1477 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1478 		goto nocheck;
1479 
1480 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1481 		goto out;
1482 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1483 		goto out;
1484 	event->hw.config = cpuhw->events[n0];
1485 
1486 nocheck:
1487 	ebb_event_add(event);
1488 
1489 	++cpuhw->n_events;
1490 	++cpuhw->n_added;
1491 
1492 	ret = 0;
1493  out:
1494 	if (has_branch_stack(event)) {
1495 		power_pmu_bhrb_enable(event);
1496 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1497 					event->attr.branch_sample_type);
1498 	}
1499 
1500 	/*
1501 	 * Workaround for POWER9 DD1 to use the Instruction Counter
1502 	 * register value for instruction counting
1503 	 */
1504 	if (use_ic(event->attr.config))
1505 		cpuhw->ic_init = mfspr(SPRN_IC);
1506 
1507 	perf_pmu_enable(event->pmu);
1508 	local_irq_restore(flags);
1509 	return ret;
1510 }
1511 
1512 /*
1513  * Remove a event from the PMU.
1514  */
1515 static void power_pmu_del(struct perf_event *event, int ef_flags)
1516 {
1517 	struct cpu_hw_events *cpuhw;
1518 	long i;
1519 	unsigned long flags;
1520 
1521 	local_irq_save(flags);
1522 	perf_pmu_disable(event->pmu);
1523 
1524 	power_pmu_read(event);
1525 
1526 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1527 	for (i = 0; i < cpuhw->n_events; ++i) {
1528 		if (event == cpuhw->event[i]) {
1529 			while (++i < cpuhw->n_events) {
1530 				cpuhw->event[i-1] = cpuhw->event[i];
1531 				cpuhw->events[i-1] = cpuhw->events[i];
1532 				cpuhw->flags[i-1] = cpuhw->flags[i];
1533 			}
1534 			--cpuhw->n_events;
1535 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1536 			if (event->hw.idx) {
1537 				write_pmc(event->hw.idx, 0);
1538 				event->hw.idx = 0;
1539 			}
1540 			perf_event_update_userpage(event);
1541 			break;
1542 		}
1543 	}
1544 	for (i = 0; i < cpuhw->n_limited; ++i)
1545 		if (event == cpuhw->limited_counter[i])
1546 			break;
1547 	if (i < cpuhw->n_limited) {
1548 		while (++i < cpuhw->n_limited) {
1549 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1550 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1551 		}
1552 		--cpuhw->n_limited;
1553 	}
1554 	if (cpuhw->n_events == 0) {
1555 		/* disable exceptions if no events are running */
1556 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1557 	}
1558 
1559 	if (has_branch_stack(event))
1560 		power_pmu_bhrb_disable(event);
1561 
1562 	perf_pmu_enable(event->pmu);
1563 	local_irq_restore(flags);
1564 }
1565 
1566 /*
1567  * POWER-PMU does not support disabling individual counters, hence
1568  * program their cycle counter to their max value and ignore the interrupts.
1569  */
1570 
1571 static void power_pmu_start(struct perf_event *event, int ef_flags)
1572 {
1573 	unsigned long flags;
1574 	s64 left;
1575 	unsigned long val;
1576 
1577 	if (!event->hw.idx || !event->hw.sample_period)
1578 		return;
1579 
1580 	if (!(event->hw.state & PERF_HES_STOPPED))
1581 		return;
1582 
1583 	if (ef_flags & PERF_EF_RELOAD)
1584 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1585 
1586 	local_irq_save(flags);
1587 	perf_pmu_disable(event->pmu);
1588 
1589 	event->hw.state = 0;
1590 	left = local64_read(&event->hw.period_left);
1591 
1592 	val = 0;
1593 	if (left < 0x80000000L)
1594 		val = 0x80000000L - left;
1595 
1596 	write_pmc(event->hw.idx, val);
1597 
1598 	perf_event_update_userpage(event);
1599 	perf_pmu_enable(event->pmu);
1600 	local_irq_restore(flags);
1601 }
1602 
1603 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1604 {
1605 	unsigned long flags;
1606 
1607 	if (!event->hw.idx || !event->hw.sample_period)
1608 		return;
1609 
1610 	if (event->hw.state & PERF_HES_STOPPED)
1611 		return;
1612 
1613 	local_irq_save(flags);
1614 	perf_pmu_disable(event->pmu);
1615 
1616 	power_pmu_read(event);
1617 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1618 	write_pmc(event->hw.idx, 0);
1619 
1620 	perf_event_update_userpage(event);
1621 	perf_pmu_enable(event->pmu);
1622 	local_irq_restore(flags);
1623 }
1624 
1625 /*
1626  * Start group events scheduling transaction
1627  * Set the flag to make pmu::enable() not perform the
1628  * schedulability test, it will be performed at commit time
1629  *
1630  * We only support PERF_PMU_TXN_ADD transactions. Save the
1631  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1632  * transactions.
1633  */
1634 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1635 {
1636 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1637 
1638 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1639 
1640 	cpuhw->txn_flags = txn_flags;
1641 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1642 		return;
1643 
1644 	perf_pmu_disable(pmu);
1645 	cpuhw->n_txn_start = cpuhw->n_events;
1646 }
1647 
1648 /*
1649  * Stop group events scheduling transaction
1650  * Clear the flag and pmu::enable() will perform the
1651  * schedulability test.
1652  */
1653 static void power_pmu_cancel_txn(struct pmu *pmu)
1654 {
1655 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1656 	unsigned int txn_flags;
1657 
1658 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1659 
1660 	txn_flags = cpuhw->txn_flags;
1661 	cpuhw->txn_flags = 0;
1662 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1663 		return;
1664 
1665 	perf_pmu_enable(pmu);
1666 }
1667 
1668 /*
1669  * Commit group events scheduling transaction
1670  * Perform the group schedulability test as a whole
1671  * Return 0 if success
1672  */
1673 static int power_pmu_commit_txn(struct pmu *pmu)
1674 {
1675 	struct cpu_hw_events *cpuhw;
1676 	long i, n;
1677 
1678 	if (!ppmu)
1679 		return -EAGAIN;
1680 
1681 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1682 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1683 
1684 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1685 		cpuhw->txn_flags = 0;
1686 		return 0;
1687 	}
1688 
1689 	n = cpuhw->n_events;
1690 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1691 		return -EAGAIN;
1692 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1693 	if (i < 0)
1694 		return -EAGAIN;
1695 
1696 	for (i = cpuhw->n_txn_start; i < n; ++i)
1697 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1698 
1699 	cpuhw->txn_flags = 0;
1700 	perf_pmu_enable(pmu);
1701 	return 0;
1702 }
1703 
1704 /*
1705  * Return 1 if we might be able to put event on a limited PMC,
1706  * or 0 if not.
1707  * A event can only go on a limited PMC if it counts something
1708  * that a limited PMC can count, doesn't require interrupts, and
1709  * doesn't exclude any processor mode.
1710  */
1711 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1712 				 unsigned int flags)
1713 {
1714 	int n;
1715 	u64 alt[MAX_EVENT_ALTERNATIVES];
1716 
1717 	if (event->attr.exclude_user
1718 	    || event->attr.exclude_kernel
1719 	    || event->attr.exclude_hv
1720 	    || event->attr.sample_period)
1721 		return 0;
1722 
1723 	if (ppmu->limited_pmc_event(ev))
1724 		return 1;
1725 
1726 	/*
1727 	 * The requested event_id isn't on a limited PMC already;
1728 	 * see if any alternative code goes on a limited PMC.
1729 	 */
1730 	if (!ppmu->get_alternatives)
1731 		return 0;
1732 
1733 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1734 	n = ppmu->get_alternatives(ev, flags, alt);
1735 
1736 	return n > 0;
1737 }
1738 
1739 /*
1740  * Find an alternative event_id that goes on a normal PMC, if possible,
1741  * and return the event_id code, or 0 if there is no such alternative.
1742  * (Note: event_id code 0 is "don't count" on all machines.)
1743  */
1744 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1745 {
1746 	u64 alt[MAX_EVENT_ALTERNATIVES];
1747 	int n;
1748 
1749 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1750 	n = ppmu->get_alternatives(ev, flags, alt);
1751 	if (!n)
1752 		return 0;
1753 	return alt[0];
1754 }
1755 
1756 /* Number of perf_events counting hardware events */
1757 static atomic_t num_events;
1758 /* Used to avoid races in calling reserve/release_pmc_hardware */
1759 static DEFINE_MUTEX(pmc_reserve_mutex);
1760 
1761 /*
1762  * Release the PMU if this is the last perf_event.
1763  */
1764 static void hw_perf_event_destroy(struct perf_event *event)
1765 {
1766 	if (!atomic_add_unless(&num_events, -1, 1)) {
1767 		mutex_lock(&pmc_reserve_mutex);
1768 		if (atomic_dec_return(&num_events) == 0)
1769 			release_pmc_hardware();
1770 		mutex_unlock(&pmc_reserve_mutex);
1771 	}
1772 }
1773 
1774 /*
1775  * Translate a generic cache event_id config to a raw event_id code.
1776  */
1777 static int hw_perf_cache_event(u64 config, u64 *eventp)
1778 {
1779 	unsigned long type, op, result;
1780 	int ev;
1781 
1782 	if (!ppmu->cache_events)
1783 		return -EINVAL;
1784 
1785 	/* unpack config */
1786 	type = config & 0xff;
1787 	op = (config >> 8) & 0xff;
1788 	result = (config >> 16) & 0xff;
1789 
1790 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1791 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1792 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1793 		return -EINVAL;
1794 
1795 	ev = (*ppmu->cache_events)[type][op][result];
1796 	if (ev == 0)
1797 		return -EOPNOTSUPP;
1798 	if (ev == -1)
1799 		return -EINVAL;
1800 	*eventp = ev;
1801 	return 0;
1802 }
1803 
1804 static int power_pmu_event_init(struct perf_event *event)
1805 {
1806 	u64 ev;
1807 	unsigned long flags;
1808 	struct perf_event *ctrs[MAX_HWEVENTS];
1809 	u64 events[MAX_HWEVENTS];
1810 	unsigned int cflags[MAX_HWEVENTS];
1811 	int n;
1812 	int err;
1813 	struct cpu_hw_events *cpuhw;
1814 
1815 	if (!ppmu)
1816 		return -ENOENT;
1817 
1818 	if (has_branch_stack(event)) {
1819 	        /* PMU has BHRB enabled */
1820 		if (!(ppmu->flags & PPMU_ARCH_207S))
1821 			return -EOPNOTSUPP;
1822 	}
1823 
1824 	switch (event->attr.type) {
1825 	case PERF_TYPE_HARDWARE:
1826 		ev = event->attr.config;
1827 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1828 			return -EOPNOTSUPP;
1829 		ev = ppmu->generic_events[ev];
1830 		break;
1831 	case PERF_TYPE_HW_CACHE:
1832 		err = hw_perf_cache_event(event->attr.config, &ev);
1833 		if (err)
1834 			return err;
1835 		break;
1836 	case PERF_TYPE_RAW:
1837 		ev = event->attr.config;
1838 		break;
1839 	default:
1840 		return -ENOENT;
1841 	}
1842 
1843 	event->hw.config_base = ev;
1844 	event->hw.idx = 0;
1845 
1846 	/*
1847 	 * If we are not running on a hypervisor, force the
1848 	 * exclude_hv bit to 0 so that we don't care what
1849 	 * the user set it to.
1850 	 */
1851 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1852 		event->attr.exclude_hv = 0;
1853 
1854 	/*
1855 	 * If this is a per-task event, then we can use
1856 	 * PM_RUN_* events interchangeably with their non RUN_*
1857 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1858 	 * XXX we should check if the task is an idle task.
1859 	 */
1860 	flags = 0;
1861 	if (event->attach_state & PERF_ATTACH_TASK)
1862 		flags |= PPMU_ONLY_COUNT_RUN;
1863 
1864 	/*
1865 	 * If this machine has limited events, check whether this
1866 	 * event_id could go on a limited event.
1867 	 */
1868 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1869 		if (can_go_on_limited_pmc(event, ev, flags)) {
1870 			flags |= PPMU_LIMITED_PMC_OK;
1871 		} else if (ppmu->limited_pmc_event(ev)) {
1872 			/*
1873 			 * The requested event_id is on a limited PMC,
1874 			 * but we can't use a limited PMC; see if any
1875 			 * alternative goes on a normal PMC.
1876 			 */
1877 			ev = normal_pmc_alternative(ev, flags);
1878 			if (!ev)
1879 				return -EINVAL;
1880 		}
1881 	}
1882 
1883 	/* Extra checks for EBB */
1884 	err = ebb_event_check(event);
1885 	if (err)
1886 		return err;
1887 
1888 	/*
1889 	 * If this is in a group, check if it can go on with all the
1890 	 * other hardware events in the group.  We assume the event
1891 	 * hasn't been linked into its leader's sibling list at this point.
1892 	 */
1893 	n = 0;
1894 	if (event->group_leader != event) {
1895 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1896 				   ctrs, events, cflags);
1897 		if (n < 0)
1898 			return -EINVAL;
1899 	}
1900 	events[n] = ev;
1901 	ctrs[n] = event;
1902 	cflags[n] = flags;
1903 	if (check_excludes(ctrs, cflags, n, 1))
1904 		return -EINVAL;
1905 
1906 	cpuhw = &get_cpu_var(cpu_hw_events);
1907 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1908 
1909 	if (has_branch_stack(event)) {
1910 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1911 					event->attr.branch_sample_type);
1912 
1913 		if (cpuhw->bhrb_filter == -1) {
1914 			put_cpu_var(cpu_hw_events);
1915 			return -EOPNOTSUPP;
1916 		}
1917 	}
1918 
1919 	put_cpu_var(cpu_hw_events);
1920 	if (err)
1921 		return -EINVAL;
1922 
1923 	event->hw.config = events[n];
1924 	event->hw.event_base = cflags[n];
1925 	event->hw.last_period = event->hw.sample_period;
1926 	local64_set(&event->hw.period_left, event->hw.last_period);
1927 
1928 	/*
1929 	 * For EBB events we just context switch the PMC value, we don't do any
1930 	 * of the sample_period logic. We use hw.prev_count for this.
1931 	 */
1932 	if (is_ebb_event(event))
1933 		local64_set(&event->hw.prev_count, 0);
1934 
1935 	/*
1936 	 * See if we need to reserve the PMU.
1937 	 * If no events are currently in use, then we have to take a
1938 	 * mutex to ensure that we don't race with another task doing
1939 	 * reserve_pmc_hardware or release_pmc_hardware.
1940 	 */
1941 	err = 0;
1942 	if (!atomic_inc_not_zero(&num_events)) {
1943 		mutex_lock(&pmc_reserve_mutex);
1944 		if (atomic_read(&num_events) == 0 &&
1945 		    reserve_pmc_hardware(perf_event_interrupt))
1946 			err = -EBUSY;
1947 		else
1948 			atomic_inc(&num_events);
1949 		mutex_unlock(&pmc_reserve_mutex);
1950 	}
1951 	event->destroy = hw_perf_event_destroy;
1952 
1953 	return err;
1954 }
1955 
1956 static int power_pmu_event_idx(struct perf_event *event)
1957 {
1958 	return event->hw.idx;
1959 }
1960 
1961 ssize_t power_events_sysfs_show(struct device *dev,
1962 				struct device_attribute *attr, char *page)
1963 {
1964 	struct perf_pmu_events_attr *pmu_attr;
1965 
1966 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1967 
1968 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1969 }
1970 
1971 static struct pmu power_pmu = {
1972 	.pmu_enable	= power_pmu_enable,
1973 	.pmu_disable	= power_pmu_disable,
1974 	.event_init	= power_pmu_event_init,
1975 	.add		= power_pmu_add,
1976 	.del		= power_pmu_del,
1977 	.start		= power_pmu_start,
1978 	.stop		= power_pmu_stop,
1979 	.read		= power_pmu_read,
1980 	.start_txn	= power_pmu_start_txn,
1981 	.cancel_txn	= power_pmu_cancel_txn,
1982 	.commit_txn	= power_pmu_commit_txn,
1983 	.event_idx	= power_pmu_event_idx,
1984 	.sched_task	= power_pmu_sched_task,
1985 };
1986 
1987 /*
1988  * A counter has overflowed; update its count and record
1989  * things if requested.  Note that interrupts are hard-disabled
1990  * here so there is no possibility of being interrupted.
1991  */
1992 static void record_and_restart(struct perf_event *event, unsigned long val,
1993 			       struct pt_regs *regs)
1994 {
1995 	u64 period = event->hw.sample_period;
1996 	s64 prev, delta, left;
1997 	int record = 0;
1998 
1999 	if (event->hw.state & PERF_HES_STOPPED) {
2000 		write_pmc(event->hw.idx, 0);
2001 		return;
2002 	}
2003 
2004 	/* we don't have to worry about interrupts here */
2005 	prev = local64_read(&event->hw.prev_count);
2006 	delta = check_and_compute_delta(prev, val);
2007 	local64_add(delta, &event->count);
2008 
2009 	/*
2010 	 * See if the total period for this event has expired,
2011 	 * and update for the next period.
2012 	 */
2013 	val = 0;
2014 	left = local64_read(&event->hw.period_left) - delta;
2015 	if (delta == 0)
2016 		left++;
2017 	if (period) {
2018 		if (left <= 0) {
2019 			left += period;
2020 			if (left <= 0)
2021 				left = period;
2022 			record = siar_valid(regs);
2023 			event->hw.last_period = event->hw.sample_period;
2024 		}
2025 		if (left < 0x80000000LL)
2026 			val = 0x80000000LL - left;
2027 	}
2028 
2029 	write_pmc(event->hw.idx, val);
2030 	local64_set(&event->hw.prev_count, val);
2031 	local64_set(&event->hw.period_left, left);
2032 	perf_event_update_userpage(event);
2033 
2034 	/*
2035 	 * Finally record data if requested.
2036 	 */
2037 	if (record) {
2038 		struct perf_sample_data data;
2039 
2040 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2041 
2042 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2043 			perf_get_data_addr(regs, &data.addr);
2044 
2045 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2046 			struct cpu_hw_events *cpuhw;
2047 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2048 			power_pmu_bhrb_read(cpuhw);
2049 			data.br_stack = &cpuhw->bhrb_stack;
2050 		}
2051 
2052 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2053 						ppmu->get_mem_data_src)
2054 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2055 
2056 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2057 						ppmu->get_mem_weight)
2058 			ppmu->get_mem_weight(&data.weight);
2059 
2060 		if (perf_event_overflow(event, &data, regs))
2061 			power_pmu_stop(event, 0);
2062 	}
2063 }
2064 
2065 /*
2066  * Called from generic code to get the misc flags (i.e. processor mode)
2067  * for an event_id.
2068  */
2069 unsigned long perf_misc_flags(struct pt_regs *regs)
2070 {
2071 	u32 flags = perf_get_misc_flags(regs);
2072 
2073 	if (flags)
2074 		return flags;
2075 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2076 		PERF_RECORD_MISC_KERNEL;
2077 }
2078 
2079 /*
2080  * Called from generic code to get the instruction pointer
2081  * for an event_id.
2082  */
2083 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2084 {
2085 	bool use_siar = regs_use_siar(regs);
2086 
2087 	if (use_siar && siar_valid(regs))
2088 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2089 	else if (use_siar)
2090 		return 0;		// no valid instruction pointer
2091 	else
2092 		return regs->nip;
2093 }
2094 
2095 static bool pmc_overflow_power7(unsigned long val)
2096 {
2097 	/*
2098 	 * Events on POWER7 can roll back if a speculative event doesn't
2099 	 * eventually complete. Unfortunately in some rare cases they will
2100 	 * raise a performance monitor exception. We need to catch this to
2101 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2102 	 * cycles from overflow.
2103 	 *
2104 	 * We only do this if the first pass fails to find any overflowing
2105 	 * PMCs because a user might set a period of less than 256 and we
2106 	 * don't want to mistakenly reset them.
2107 	 */
2108 	if ((0x80000000 - val) <= 256)
2109 		return true;
2110 
2111 	return false;
2112 }
2113 
2114 static bool pmc_overflow(unsigned long val)
2115 {
2116 	if ((int)val < 0)
2117 		return true;
2118 
2119 	return false;
2120 }
2121 
2122 /*
2123  * Performance monitor interrupt stuff
2124  */
2125 static void perf_event_interrupt(struct pt_regs *regs)
2126 {
2127 	int i, j;
2128 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2129 	struct perf_event *event;
2130 	unsigned long val[8];
2131 	int found, active;
2132 	int nmi;
2133 
2134 	if (cpuhw->n_limited)
2135 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2136 					mfspr(SPRN_PMC6));
2137 
2138 	perf_read_regs(regs);
2139 
2140 	nmi = perf_intr_is_nmi(regs);
2141 	if (nmi)
2142 		nmi_enter();
2143 	else
2144 		irq_enter();
2145 
2146 	/* Read all the PMCs since we'll need them a bunch of times */
2147 	for (i = 0; i < ppmu->n_counter; ++i)
2148 		val[i] = read_pmc(i + 1);
2149 
2150 	/* Try to find what caused the IRQ */
2151 	found = 0;
2152 	for (i = 0; i < ppmu->n_counter; ++i) {
2153 		if (!pmc_overflow(val[i]))
2154 			continue;
2155 		if (is_limited_pmc(i + 1))
2156 			continue; /* these won't generate IRQs */
2157 		/*
2158 		 * We've found one that's overflowed.  For active
2159 		 * counters we need to log this.  For inactive
2160 		 * counters, we need to reset it anyway
2161 		 */
2162 		found = 1;
2163 		active = 0;
2164 		for (j = 0; j < cpuhw->n_events; ++j) {
2165 			event = cpuhw->event[j];
2166 			if (event->hw.idx == (i + 1)) {
2167 				active = 1;
2168 				record_and_restart(event, val[i], regs);
2169 				break;
2170 			}
2171 		}
2172 		if (!active)
2173 			/* reset non active counters that have overflowed */
2174 			write_pmc(i + 1, 0);
2175 	}
2176 	if (!found && pvr_version_is(PVR_POWER7)) {
2177 		/* check active counters for special buggy p7 overflow */
2178 		for (i = 0; i < cpuhw->n_events; ++i) {
2179 			event = cpuhw->event[i];
2180 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2181 				continue;
2182 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2183 				/* event has overflowed in a buggy way*/
2184 				found = 1;
2185 				record_and_restart(event,
2186 						   val[event->hw.idx - 1],
2187 						   regs);
2188 			}
2189 		}
2190 	}
2191 	if (!found && !nmi && printk_ratelimit())
2192 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2193 
2194 	/*
2195 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2196 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2197 	 * and thus allow interrupts to occur again.
2198 	 * XXX might want to use MSR.PM to keep the events frozen until
2199 	 * we get back out of this interrupt.
2200 	 */
2201 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2202 
2203 	if (nmi)
2204 		nmi_exit();
2205 	else
2206 		irq_exit();
2207 }
2208 
2209 static int power_pmu_prepare_cpu(unsigned int cpu)
2210 {
2211 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2212 
2213 	if (ppmu) {
2214 		memset(cpuhw, 0, sizeof(*cpuhw));
2215 		cpuhw->mmcr[0] = MMCR0_FC;
2216 	}
2217 	return 0;
2218 }
2219 
2220 int register_power_pmu(struct power_pmu *pmu)
2221 {
2222 	if (ppmu)
2223 		return -EBUSY;		/* something's already registered */
2224 
2225 	ppmu = pmu;
2226 	pr_info("%s performance monitor hardware support registered\n",
2227 		pmu->name);
2228 
2229 	power_pmu.attr_groups = ppmu->attr_groups;
2230 
2231 #ifdef MSR_HV
2232 	/*
2233 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2234 	 */
2235 	if (mfmsr() & MSR_HV)
2236 		freeze_events_kernel = MMCR0_FCHV;
2237 #endif /* CONFIG_PPC64 */
2238 
2239 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2240 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2241 			  power_pmu_prepare_cpu, NULL);
2242 	return 0;
2243 }
2244