1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 /* 40 * The order of the MMCR array is: 41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 42 * - 32-bit, MMCR0, MMCR1, MMCR2 43 */ 44 unsigned long mmcr[4]; 45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 51 unsigned int txn_flags; 52 int n_txn_start; 53 54 /* BHRB bits */ 55 u64 bhrb_filter; /* BHRB HW branch filter */ 56 unsigned int bhrb_users; 57 void *bhrb_context; 58 struct perf_branch_stack bhrb_stack; 59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 60 u64 ic_init; 61 }; 62 63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 64 65 static struct power_pmu *ppmu; 66 67 /* 68 * Normally, to ignore kernel events we set the FCS (freeze counters 69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 70 * hypervisor bit set in the MSR, or if we are running on a processor 71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 72 * then we need to use the FCHV bit to ignore kernel events. 73 */ 74 static unsigned int freeze_events_kernel = MMCR0_FCS; 75 76 /* 77 * 32-bit doesn't have MMCRA but does have an MMCR2, 78 * and a few other names are different. 79 */ 80 #ifdef CONFIG_PPC32 81 82 #define MMCR0_FCHV 0 83 #define MMCR0_PMCjCE MMCR0_PMCnCE 84 #define MMCR0_FC56 0 85 #define MMCR0_PMAO 0 86 #define MMCR0_EBE 0 87 #define MMCR0_BHRBA 0 88 #define MMCR0_PMCC 0 89 #define MMCR0_PMCC_U6 0 90 91 #define SPRN_MMCRA SPRN_MMCR2 92 #define MMCRA_SAMPLE_ENABLE 0 93 94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 95 { 96 return 0; 97 } 98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 99 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 100 { 101 return 0; 102 } 103 static inline void perf_read_regs(struct pt_regs *regs) 104 { 105 regs->result = 0; 106 } 107 static inline int perf_intr_is_nmi(struct pt_regs *regs) 108 { 109 return 0; 110 } 111 112 static inline int siar_valid(struct pt_regs *regs) 113 { 114 return 1; 115 } 116 117 static bool is_ebb_event(struct perf_event *event) { return false; } 118 static int ebb_event_check(struct perf_event *event) { return 0; } 119 static void ebb_event_add(struct perf_event *event) { } 120 static void ebb_switch_out(unsigned long mmcr0) { } 121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 122 { 123 return cpuhw->mmcr[0]; 124 } 125 126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 130 static void pmao_restore_workaround(bool ebb) { } 131 static bool use_ic(u64 event) 132 { 133 return false; 134 } 135 #endif /* CONFIG_PPC32 */ 136 137 static bool regs_use_siar(struct pt_regs *regs) 138 { 139 /* 140 * When we take a performance monitor exception the regs are setup 141 * using perf_read_regs() which overloads some fields, in particular 142 * regs->result to tell us whether to use SIAR. 143 * 144 * However if the regs are from another exception, eg. a syscall, then 145 * they have not been setup using perf_read_regs() and so regs->result 146 * is something random. 147 */ 148 return ((TRAP(regs) == 0xf00) && regs->result); 149 } 150 151 /* 152 * Things that are specific to 64-bit implementations. 153 */ 154 #ifdef CONFIG_PPC64 155 156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 157 { 158 unsigned long mmcra = regs->dsisr; 159 160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 162 if (slot > 1) 163 return 4 * (slot - 1); 164 } 165 166 return 0; 167 } 168 169 /* 170 * The user wants a data address recorded. 171 * If we're not doing instruction sampling, give them the SDAR 172 * (sampled data address). If we are doing instruction sampling, then 173 * only give them the SDAR if it corresponds to the instruction 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 176 */ 177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 178 { 179 unsigned long mmcra = regs->dsisr; 180 bool sdar_valid; 181 182 if (ppmu->flags & PPMU_HAS_SIER) 183 sdar_valid = regs->dar & SIER_SDAR_VALID; 184 else { 185 unsigned long sdsync; 186 187 if (ppmu->flags & PPMU_SIAR_VALID) 188 sdsync = POWER7P_MMCRA_SDAR_VALID; 189 else if (ppmu->flags & PPMU_ALT_SIPR) 190 sdsync = POWER6_MMCRA_SDSYNC; 191 else if (ppmu->flags & PPMU_NO_SIAR) 192 sdsync = MMCRA_SAMPLE_ENABLE; 193 else 194 sdsync = MMCRA_SDSYNC; 195 196 sdar_valid = mmcra & sdsync; 197 } 198 199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 200 *addrp = mfspr(SPRN_SDAR); 201 } 202 203 static bool regs_sihv(struct pt_regs *regs) 204 { 205 unsigned long sihv = MMCRA_SIHV; 206 207 if (ppmu->flags & PPMU_HAS_SIER) 208 return !!(regs->dar & SIER_SIHV); 209 210 if (ppmu->flags & PPMU_ALT_SIPR) 211 sihv = POWER6_MMCRA_SIHV; 212 213 return !!(regs->dsisr & sihv); 214 } 215 216 static bool regs_sipr(struct pt_regs *regs) 217 { 218 unsigned long sipr = MMCRA_SIPR; 219 220 if (ppmu->flags & PPMU_HAS_SIER) 221 return !!(regs->dar & SIER_SIPR); 222 223 if (ppmu->flags & PPMU_ALT_SIPR) 224 sipr = POWER6_MMCRA_SIPR; 225 226 return !!(regs->dsisr & sipr); 227 } 228 229 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 230 { 231 if (regs->msr & MSR_PR) 232 return PERF_RECORD_MISC_USER; 233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 234 return PERF_RECORD_MISC_HYPERVISOR; 235 return PERF_RECORD_MISC_KERNEL; 236 } 237 238 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 239 { 240 bool use_siar = regs_use_siar(regs); 241 242 if (!use_siar) 243 return perf_flags_from_msr(regs); 244 245 /* 246 * If we don't have flags in MMCRA, rather than using 247 * the MSR, we intuit the flags from the address in 248 * SIAR which should give slightly more reliable 249 * results 250 */ 251 if (ppmu->flags & PPMU_NO_SIPR) { 252 unsigned long siar = mfspr(SPRN_SIAR); 253 if (is_kernel_addr(siar)) 254 return PERF_RECORD_MISC_KERNEL; 255 return PERF_RECORD_MISC_USER; 256 } 257 258 /* PR has priority over HV, so order below is important */ 259 if (regs_sipr(regs)) 260 return PERF_RECORD_MISC_USER; 261 262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 263 return PERF_RECORD_MISC_HYPERVISOR; 264 265 return PERF_RECORD_MISC_KERNEL; 266 } 267 268 /* 269 * Overload regs->dsisr to store MMCRA so we only need to read it once 270 * on each interrupt. 271 * Overload regs->dar to store SIER if we have it. 272 * Overload regs->result to specify whether we should use the MSR (result 273 * is zero) or the SIAR (result is non zero). 274 */ 275 static inline void perf_read_regs(struct pt_regs *regs) 276 { 277 unsigned long mmcra = mfspr(SPRN_MMCRA); 278 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 279 int use_siar; 280 281 regs->dsisr = mmcra; 282 283 if (ppmu->flags & PPMU_HAS_SIER) 284 regs->dar = mfspr(SPRN_SIER); 285 286 /* 287 * If this isn't a PMU exception (eg a software event) the SIAR is 288 * not valid. Use pt_regs. 289 * 290 * If it is a marked event use the SIAR. 291 * 292 * If the PMU doesn't update the SIAR for non marked events use 293 * pt_regs. 294 * 295 * If the PMU has HV/PR flags then check to see if they 296 * place the exception in userspace. If so, use pt_regs. In 297 * continuous sampling mode the SIAR and the PMU exception are 298 * not synchronised, so they may be many instructions apart. 299 * This can result in confusing backtraces. We still want 300 * hypervisor samples as well as samples in the kernel with 301 * interrupts off hence the userspace check. 302 */ 303 if (TRAP(regs) != 0xf00) 304 use_siar = 0; 305 else if ((ppmu->flags & PPMU_NO_SIAR)) 306 use_siar = 0; 307 else if (marked) 308 use_siar = 1; 309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 310 use_siar = 0; 311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 312 use_siar = 0; 313 else 314 use_siar = 1; 315 316 regs->result = use_siar; 317 } 318 319 /* 320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 321 * it as an NMI. 322 */ 323 static inline int perf_intr_is_nmi(struct pt_regs *regs) 324 { 325 return !regs->softe; 326 } 327 328 /* 329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 330 * must be sampled only if the SIAR-valid bit is set. 331 * 332 * For unmarked instructions and for processors that don't have the SIAR-Valid 333 * bit, assume that SIAR is valid. 334 */ 335 static inline int siar_valid(struct pt_regs *regs) 336 { 337 unsigned long mmcra = regs->dsisr; 338 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 339 340 if (marked) { 341 if (ppmu->flags & PPMU_HAS_SIER) 342 return regs->dar & SIER_SIAR_VALID; 343 344 if (ppmu->flags & PPMU_SIAR_VALID) 345 return mmcra & POWER7P_MMCRA_SIAR_VALID; 346 } 347 348 return 1; 349 } 350 351 352 /* Reset all possible BHRB entries */ 353 static void power_pmu_bhrb_reset(void) 354 { 355 asm volatile(PPC_CLRBHRB); 356 } 357 358 static void power_pmu_bhrb_enable(struct perf_event *event) 359 { 360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 361 362 if (!ppmu->bhrb_nr) 363 return; 364 365 /* Clear BHRB if we changed task context to avoid data leaks */ 366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 367 power_pmu_bhrb_reset(); 368 cpuhw->bhrb_context = event->ctx; 369 } 370 cpuhw->bhrb_users++; 371 perf_sched_cb_inc(event->ctx->pmu); 372 } 373 374 static void power_pmu_bhrb_disable(struct perf_event *event) 375 { 376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 377 378 if (!ppmu->bhrb_nr) 379 return; 380 381 WARN_ON_ONCE(!cpuhw->bhrb_users); 382 cpuhw->bhrb_users--; 383 perf_sched_cb_dec(event->ctx->pmu); 384 385 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 386 /* BHRB cannot be turned off when other 387 * events are active on the PMU. 388 */ 389 390 /* avoid stale pointer */ 391 cpuhw->bhrb_context = NULL; 392 } 393 } 394 395 /* Called from ctxsw to prevent one process's branch entries to 396 * mingle with the other process's entries during context switch. 397 */ 398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 399 { 400 if (!ppmu->bhrb_nr) 401 return; 402 403 if (sched_in) 404 power_pmu_bhrb_reset(); 405 } 406 /* Calculate the to address for a branch */ 407 static __u64 power_pmu_bhrb_to(u64 addr) 408 { 409 unsigned int instr; 410 int ret; 411 __u64 target; 412 413 if (is_kernel_addr(addr)) 414 return branch_target((unsigned int *)addr); 415 416 /* Userspace: need copy instruction here then translate it */ 417 pagefault_disable(); 418 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 419 if (ret) { 420 pagefault_enable(); 421 return 0; 422 } 423 pagefault_enable(); 424 425 target = branch_target(&instr); 426 if ((!target) || (instr & BRANCH_ABSOLUTE)) 427 return target; 428 429 /* Translate relative branch target from kernel to user address */ 430 return target - (unsigned long)&instr + addr; 431 } 432 433 /* Processing BHRB entries */ 434 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 435 { 436 u64 val; 437 u64 addr; 438 int r_index, u_index, pred; 439 440 r_index = 0; 441 u_index = 0; 442 while (r_index < ppmu->bhrb_nr) { 443 /* Assembly read function */ 444 val = read_bhrb(r_index++); 445 if (!val) 446 /* Terminal marker: End of valid BHRB entries */ 447 break; 448 else { 449 addr = val & BHRB_EA; 450 pred = val & BHRB_PREDICTION; 451 452 if (!addr) 453 /* invalid entry */ 454 continue; 455 456 /* Branches are read most recent first (ie. mfbhrb 0 is 457 * the most recent branch). 458 * There are two types of valid entries: 459 * 1) a target entry which is the to address of a 460 * computed goto like a blr,bctr,btar. The next 461 * entry read from the bhrb will be branch 462 * corresponding to this target (ie. the actual 463 * blr/bctr/btar instruction). 464 * 2) a from address which is an actual branch. If a 465 * target entry proceeds this, then this is the 466 * matching branch for that target. If this is not 467 * following a target entry, then this is a branch 468 * where the target is given as an immediate field 469 * in the instruction (ie. an i or b form branch). 470 * In this case we need to read the instruction from 471 * memory to determine the target/to address. 472 */ 473 474 if (val & BHRB_TARGET) { 475 /* Target branches use two entries 476 * (ie. computed gotos/XL form) 477 */ 478 cpuhw->bhrb_entries[u_index].to = addr; 479 cpuhw->bhrb_entries[u_index].mispred = pred; 480 cpuhw->bhrb_entries[u_index].predicted = ~pred; 481 482 /* Get from address in next entry */ 483 val = read_bhrb(r_index++); 484 addr = val & BHRB_EA; 485 if (val & BHRB_TARGET) { 486 /* Shouldn't have two targets in a 487 row.. Reset index and try again */ 488 r_index--; 489 addr = 0; 490 } 491 cpuhw->bhrb_entries[u_index].from = addr; 492 } else { 493 /* Branches to immediate field 494 (ie I or B form) */ 495 cpuhw->bhrb_entries[u_index].from = addr; 496 cpuhw->bhrb_entries[u_index].to = 497 power_pmu_bhrb_to(addr); 498 cpuhw->bhrb_entries[u_index].mispred = pred; 499 cpuhw->bhrb_entries[u_index].predicted = ~pred; 500 } 501 u_index++; 502 503 } 504 } 505 cpuhw->bhrb_stack.nr = u_index; 506 return; 507 } 508 509 static bool is_ebb_event(struct perf_event *event) 510 { 511 /* 512 * This could be a per-PMU callback, but we'd rather avoid the cost. We 513 * check that the PMU supports EBB, meaning those that don't can still 514 * use bit 63 of the event code for something else if they wish. 515 */ 516 return (ppmu->flags & PPMU_ARCH_207S) && 517 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 518 } 519 520 static int ebb_event_check(struct perf_event *event) 521 { 522 struct perf_event *leader = event->group_leader; 523 524 /* Event and group leader must agree on EBB */ 525 if (is_ebb_event(leader) != is_ebb_event(event)) 526 return -EINVAL; 527 528 if (is_ebb_event(event)) { 529 if (!(event->attach_state & PERF_ATTACH_TASK)) 530 return -EINVAL; 531 532 if (!leader->attr.pinned || !leader->attr.exclusive) 533 return -EINVAL; 534 535 if (event->attr.freq || 536 event->attr.inherit || 537 event->attr.sample_type || 538 event->attr.sample_period || 539 event->attr.enable_on_exec) 540 return -EINVAL; 541 } 542 543 return 0; 544 } 545 546 static void ebb_event_add(struct perf_event *event) 547 { 548 if (!is_ebb_event(event) || current->thread.used_ebb) 549 return; 550 551 /* 552 * IFF this is the first time we've added an EBB event, set 553 * PMXE in the user MMCR0 so we can detect when it's cleared by 554 * userspace. We need this so that we can context switch while 555 * userspace is in the EBB handler (where PMXE is 0). 556 */ 557 current->thread.used_ebb = 1; 558 current->thread.mmcr0 |= MMCR0_PMXE; 559 } 560 561 static void ebb_switch_out(unsigned long mmcr0) 562 { 563 if (!(mmcr0 & MMCR0_EBE)) 564 return; 565 566 current->thread.siar = mfspr(SPRN_SIAR); 567 current->thread.sier = mfspr(SPRN_SIER); 568 current->thread.sdar = mfspr(SPRN_SDAR); 569 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 570 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 571 } 572 573 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 574 { 575 unsigned long mmcr0 = cpuhw->mmcr[0]; 576 577 if (!ebb) 578 goto out; 579 580 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 581 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 582 583 /* 584 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 585 * with pmao_restore_workaround() because we may add PMAO but we never 586 * clear it here. 587 */ 588 mmcr0 |= current->thread.mmcr0; 589 590 /* 591 * Be careful not to set PMXE if userspace had it cleared. This is also 592 * compatible with pmao_restore_workaround() because it has already 593 * cleared PMXE and we leave PMAO alone. 594 */ 595 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 596 mmcr0 &= ~MMCR0_PMXE; 597 598 mtspr(SPRN_SIAR, current->thread.siar); 599 mtspr(SPRN_SIER, current->thread.sier); 600 mtspr(SPRN_SDAR, current->thread.sdar); 601 602 /* 603 * Merge the kernel & user values of MMCR2. The semantics we implement 604 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 605 * but not clear bits. If a task wants to be able to clear bits, ie. 606 * unfreeze counters, it should not set exclude_xxx in its events and 607 * instead manage the MMCR2 entirely by itself. 608 */ 609 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 610 out: 611 return mmcr0; 612 } 613 614 static void pmao_restore_workaround(bool ebb) 615 { 616 unsigned pmcs[6]; 617 618 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 619 return; 620 621 /* 622 * On POWER8E there is a hardware defect which affects the PMU context 623 * switch logic, ie. power_pmu_disable/enable(). 624 * 625 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 626 * by the hardware. Sometime later the actual PMU exception is 627 * delivered. 628 * 629 * If we context switch, or simply disable/enable, the PMU prior to the 630 * exception arriving, the exception will be lost when we clear PMAO. 631 * 632 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 633 * set, and this _should_ generate an exception. However because of the 634 * defect no exception is generated when we write PMAO, and we get 635 * stuck with no counters counting but no exception delivered. 636 * 637 * The workaround is to detect this case and tweak the hardware to 638 * create another pending PMU exception. 639 * 640 * We do that by setting up PMC6 (cycles) for an imminent overflow and 641 * enabling the PMU. That causes a new exception to be generated in the 642 * chip, but we don't take it yet because we have interrupts hard 643 * disabled. We then write back the PMU state as we want it to be seen 644 * by the exception handler. When we reenable interrupts the exception 645 * handler will be called and see the correct state. 646 * 647 * The logic is the same for EBB, except that the exception is gated by 648 * us having interrupts hard disabled as well as the fact that we are 649 * not in userspace. The exception is finally delivered when we return 650 * to userspace. 651 */ 652 653 /* Only if PMAO is set and PMAO_SYNC is clear */ 654 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 655 return; 656 657 /* If we're doing EBB, only if BESCR[GE] is set */ 658 if (ebb && !(current->thread.bescr & BESCR_GE)) 659 return; 660 661 /* 662 * We are already soft-disabled in power_pmu_enable(). We need to hard 663 * disable to actually prevent the PMU exception from firing. 664 */ 665 hard_irq_disable(); 666 667 /* 668 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 669 * Using read/write_pmc() in a for loop adds 12 function calls and 670 * almost doubles our code size. 671 */ 672 pmcs[0] = mfspr(SPRN_PMC1); 673 pmcs[1] = mfspr(SPRN_PMC2); 674 pmcs[2] = mfspr(SPRN_PMC3); 675 pmcs[3] = mfspr(SPRN_PMC4); 676 pmcs[4] = mfspr(SPRN_PMC5); 677 pmcs[5] = mfspr(SPRN_PMC6); 678 679 /* Ensure all freeze bits are unset */ 680 mtspr(SPRN_MMCR2, 0); 681 682 /* Set up PMC6 to overflow in one cycle */ 683 mtspr(SPRN_PMC6, 0x7FFFFFFE); 684 685 /* Enable exceptions and unfreeze PMC6 */ 686 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 687 688 /* Now we need to refreeze and restore the PMCs */ 689 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 690 691 mtspr(SPRN_PMC1, pmcs[0]); 692 mtspr(SPRN_PMC2, pmcs[1]); 693 mtspr(SPRN_PMC3, pmcs[2]); 694 mtspr(SPRN_PMC4, pmcs[3]); 695 mtspr(SPRN_PMC5, pmcs[4]); 696 mtspr(SPRN_PMC6, pmcs[5]); 697 } 698 699 static bool use_ic(u64 event) 700 { 701 if (cpu_has_feature(CPU_FTR_POWER9_DD1) && 702 (event == 0x200f2 || event == 0x300f2)) 703 return true; 704 705 return false; 706 } 707 #endif /* CONFIG_PPC64 */ 708 709 static void perf_event_interrupt(struct pt_regs *regs); 710 711 /* 712 * Read one performance monitor counter (PMC). 713 */ 714 static unsigned long read_pmc(int idx) 715 { 716 unsigned long val; 717 718 switch (idx) { 719 case 1: 720 val = mfspr(SPRN_PMC1); 721 break; 722 case 2: 723 val = mfspr(SPRN_PMC2); 724 break; 725 case 3: 726 val = mfspr(SPRN_PMC3); 727 break; 728 case 4: 729 val = mfspr(SPRN_PMC4); 730 break; 731 case 5: 732 val = mfspr(SPRN_PMC5); 733 break; 734 case 6: 735 val = mfspr(SPRN_PMC6); 736 break; 737 #ifdef CONFIG_PPC64 738 case 7: 739 val = mfspr(SPRN_PMC7); 740 break; 741 case 8: 742 val = mfspr(SPRN_PMC8); 743 break; 744 #endif /* CONFIG_PPC64 */ 745 default: 746 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 747 val = 0; 748 } 749 return val; 750 } 751 752 /* 753 * Write one PMC. 754 */ 755 static void write_pmc(int idx, unsigned long val) 756 { 757 switch (idx) { 758 case 1: 759 mtspr(SPRN_PMC1, val); 760 break; 761 case 2: 762 mtspr(SPRN_PMC2, val); 763 break; 764 case 3: 765 mtspr(SPRN_PMC3, val); 766 break; 767 case 4: 768 mtspr(SPRN_PMC4, val); 769 break; 770 case 5: 771 mtspr(SPRN_PMC5, val); 772 break; 773 case 6: 774 mtspr(SPRN_PMC6, val); 775 break; 776 #ifdef CONFIG_PPC64 777 case 7: 778 mtspr(SPRN_PMC7, val); 779 break; 780 case 8: 781 mtspr(SPRN_PMC8, val); 782 break; 783 #endif /* CONFIG_PPC64 */ 784 default: 785 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 786 } 787 } 788 789 /* Called from sysrq_handle_showregs() */ 790 void perf_event_print_debug(void) 791 { 792 unsigned long sdar, sier, flags; 793 u32 pmcs[MAX_HWEVENTS]; 794 int i; 795 796 if (!ppmu->n_counter) 797 return; 798 799 local_irq_save(flags); 800 801 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 802 smp_processor_id(), ppmu->name, ppmu->n_counter); 803 804 for (i = 0; i < ppmu->n_counter; i++) 805 pmcs[i] = read_pmc(i + 1); 806 807 for (; i < MAX_HWEVENTS; i++) 808 pmcs[i] = 0xdeadbeef; 809 810 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 811 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 812 813 if (ppmu->n_counter > 4) 814 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 815 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 816 817 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 818 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 819 820 sdar = sier = 0; 821 #ifdef CONFIG_PPC64 822 sdar = mfspr(SPRN_SDAR); 823 824 if (ppmu->flags & PPMU_HAS_SIER) 825 sier = mfspr(SPRN_SIER); 826 827 if (ppmu->flags & PPMU_ARCH_207S) { 828 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 829 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 830 pr_info("EBBRR: %016lx BESCR: %016lx\n", 831 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 832 } 833 #endif 834 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 835 mfspr(SPRN_SIAR), sdar, sier); 836 837 local_irq_restore(flags); 838 } 839 840 /* 841 * Check if a set of events can all go on the PMU at once. 842 * If they can't, this will look at alternative codes for the events 843 * and see if any combination of alternative codes is feasible. 844 * The feasible set is returned in event_id[]. 845 */ 846 static int power_check_constraints(struct cpu_hw_events *cpuhw, 847 u64 event_id[], unsigned int cflags[], 848 int n_ev) 849 { 850 unsigned long mask, value, nv; 851 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 852 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 853 int i, j; 854 unsigned long addf = ppmu->add_fields; 855 unsigned long tadd = ppmu->test_adder; 856 857 if (n_ev > ppmu->n_counter) 858 return -1; 859 860 /* First see if the events will go on as-is */ 861 for (i = 0; i < n_ev; ++i) { 862 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 863 && !ppmu->limited_pmc_event(event_id[i])) { 864 ppmu->get_alternatives(event_id[i], cflags[i], 865 cpuhw->alternatives[i]); 866 event_id[i] = cpuhw->alternatives[i][0]; 867 } 868 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 869 &cpuhw->avalues[i][0])) 870 return -1; 871 } 872 value = mask = 0; 873 for (i = 0; i < n_ev; ++i) { 874 nv = (value | cpuhw->avalues[i][0]) + 875 (value & cpuhw->avalues[i][0] & addf); 876 if ((((nv + tadd) ^ value) & mask) != 0 || 877 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 878 cpuhw->amasks[i][0]) != 0) 879 break; 880 value = nv; 881 mask |= cpuhw->amasks[i][0]; 882 } 883 if (i == n_ev) 884 return 0; /* all OK */ 885 886 /* doesn't work, gather alternatives... */ 887 if (!ppmu->get_alternatives) 888 return -1; 889 for (i = 0; i < n_ev; ++i) { 890 choice[i] = 0; 891 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 892 cpuhw->alternatives[i]); 893 for (j = 1; j < n_alt[i]; ++j) 894 ppmu->get_constraint(cpuhw->alternatives[i][j], 895 &cpuhw->amasks[i][j], 896 &cpuhw->avalues[i][j]); 897 } 898 899 /* enumerate all possibilities and see if any will work */ 900 i = 0; 901 j = -1; 902 value = mask = nv = 0; 903 while (i < n_ev) { 904 if (j >= 0) { 905 /* we're backtracking, restore context */ 906 value = svalues[i]; 907 mask = smasks[i]; 908 j = choice[i]; 909 } 910 /* 911 * See if any alternative k for event_id i, 912 * where k > j, will satisfy the constraints. 913 */ 914 while (++j < n_alt[i]) { 915 nv = (value | cpuhw->avalues[i][j]) + 916 (value & cpuhw->avalues[i][j] & addf); 917 if ((((nv + tadd) ^ value) & mask) == 0 && 918 (((nv + tadd) ^ cpuhw->avalues[i][j]) 919 & cpuhw->amasks[i][j]) == 0) 920 break; 921 } 922 if (j >= n_alt[i]) { 923 /* 924 * No feasible alternative, backtrack 925 * to event_id i-1 and continue enumerating its 926 * alternatives from where we got up to. 927 */ 928 if (--i < 0) 929 return -1; 930 } else { 931 /* 932 * Found a feasible alternative for event_id i, 933 * remember where we got up to with this event_id, 934 * go on to the next event_id, and start with 935 * the first alternative for it. 936 */ 937 choice[i] = j; 938 svalues[i] = value; 939 smasks[i] = mask; 940 value = nv; 941 mask |= cpuhw->amasks[i][j]; 942 ++i; 943 j = -1; 944 } 945 } 946 947 /* OK, we have a feasible combination, tell the caller the solution */ 948 for (i = 0; i < n_ev; ++i) 949 event_id[i] = cpuhw->alternatives[i][choice[i]]; 950 return 0; 951 } 952 953 /* 954 * Check if newly-added events have consistent settings for 955 * exclude_{user,kernel,hv} with each other and any previously 956 * added events. 957 */ 958 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 959 int n_prev, int n_new) 960 { 961 int eu = 0, ek = 0, eh = 0; 962 int i, n, first; 963 struct perf_event *event; 964 965 /* 966 * If the PMU we're on supports per event exclude settings then we 967 * don't need to do any of this logic. NB. This assumes no PMU has both 968 * per event exclude and limited PMCs. 969 */ 970 if (ppmu->flags & PPMU_ARCH_207S) 971 return 0; 972 973 n = n_prev + n_new; 974 if (n <= 1) 975 return 0; 976 977 first = 1; 978 for (i = 0; i < n; ++i) { 979 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 980 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 981 continue; 982 } 983 event = ctrs[i]; 984 if (first) { 985 eu = event->attr.exclude_user; 986 ek = event->attr.exclude_kernel; 987 eh = event->attr.exclude_hv; 988 first = 0; 989 } else if (event->attr.exclude_user != eu || 990 event->attr.exclude_kernel != ek || 991 event->attr.exclude_hv != eh) { 992 return -EAGAIN; 993 } 994 } 995 996 if (eu || ek || eh) 997 for (i = 0; i < n; ++i) 998 if (cflags[i] & PPMU_LIMITED_PMC_OK) 999 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1000 1001 return 0; 1002 } 1003 1004 static u64 check_and_compute_delta(u64 prev, u64 val) 1005 { 1006 u64 delta = (val - prev) & 0xfffffffful; 1007 1008 /* 1009 * POWER7 can roll back counter values, if the new value is smaller 1010 * than the previous value it will cause the delta and the counter to 1011 * have bogus values unless we rolled a counter over. If a coutner is 1012 * rolled back, it will be smaller, but within 256, which is the maximum 1013 * number of events to rollback at once. If we detect a rollback 1014 * return 0. This can lead to a small lack of precision in the 1015 * counters. 1016 */ 1017 if (prev > val && (prev - val) < 256) 1018 delta = 0; 1019 1020 return delta; 1021 } 1022 1023 static void power_pmu_read(struct perf_event *event) 1024 { 1025 s64 val, delta, prev; 1026 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1027 1028 if (event->hw.state & PERF_HES_STOPPED) 1029 return; 1030 1031 if (!event->hw.idx) 1032 return; 1033 1034 if (is_ebb_event(event)) { 1035 val = read_pmc(event->hw.idx); 1036 if (use_ic(event->attr.config)) { 1037 val = mfspr(SPRN_IC); 1038 if (val > cpuhw->ic_init) 1039 val = val - cpuhw->ic_init; 1040 else 1041 val = val + (0 - cpuhw->ic_init); 1042 } 1043 local64_set(&event->hw.prev_count, val); 1044 return; 1045 } 1046 1047 /* 1048 * Performance monitor interrupts come even when interrupts 1049 * are soft-disabled, as long as interrupts are hard-enabled. 1050 * Therefore we treat them like NMIs. 1051 */ 1052 do { 1053 prev = local64_read(&event->hw.prev_count); 1054 barrier(); 1055 val = read_pmc(event->hw.idx); 1056 if (use_ic(event->attr.config)) { 1057 val = mfspr(SPRN_IC); 1058 if (val > cpuhw->ic_init) 1059 val = val - cpuhw->ic_init; 1060 else 1061 val = val + (0 - cpuhw->ic_init); 1062 } 1063 delta = check_and_compute_delta(prev, val); 1064 if (!delta) 1065 return; 1066 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1067 1068 local64_add(delta, &event->count); 1069 1070 /* 1071 * A number of places program the PMC with (0x80000000 - period_left). 1072 * We never want period_left to be less than 1 because we will program 1073 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1074 * roll around to 0 before taking an exception. We have seen this 1075 * on POWER8. 1076 * 1077 * To fix this, clamp the minimum value of period_left to 1. 1078 */ 1079 do { 1080 prev = local64_read(&event->hw.period_left); 1081 val = prev - delta; 1082 if (val < 1) 1083 val = 1; 1084 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1085 } 1086 1087 /* 1088 * On some machines, PMC5 and PMC6 can't be written, don't respect 1089 * the freeze conditions, and don't generate interrupts. This tells 1090 * us if `event' is using such a PMC. 1091 */ 1092 static int is_limited_pmc(int pmcnum) 1093 { 1094 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1095 && (pmcnum == 5 || pmcnum == 6); 1096 } 1097 1098 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1099 unsigned long pmc5, unsigned long pmc6) 1100 { 1101 struct perf_event *event; 1102 u64 val, prev, delta; 1103 int i; 1104 1105 for (i = 0; i < cpuhw->n_limited; ++i) { 1106 event = cpuhw->limited_counter[i]; 1107 if (!event->hw.idx) 1108 continue; 1109 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1110 prev = local64_read(&event->hw.prev_count); 1111 event->hw.idx = 0; 1112 delta = check_and_compute_delta(prev, val); 1113 if (delta) 1114 local64_add(delta, &event->count); 1115 } 1116 } 1117 1118 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1119 unsigned long pmc5, unsigned long pmc6) 1120 { 1121 struct perf_event *event; 1122 u64 val, prev; 1123 int i; 1124 1125 for (i = 0; i < cpuhw->n_limited; ++i) { 1126 event = cpuhw->limited_counter[i]; 1127 event->hw.idx = cpuhw->limited_hwidx[i]; 1128 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1129 prev = local64_read(&event->hw.prev_count); 1130 if (check_and_compute_delta(prev, val)) 1131 local64_set(&event->hw.prev_count, val); 1132 perf_event_update_userpage(event); 1133 } 1134 } 1135 1136 /* 1137 * Since limited events don't respect the freeze conditions, we 1138 * have to read them immediately after freezing or unfreezing the 1139 * other events. We try to keep the values from the limited 1140 * events as consistent as possible by keeping the delay (in 1141 * cycles and instructions) between freezing/unfreezing and reading 1142 * the limited events as small and consistent as possible. 1143 * Therefore, if any limited events are in use, we read them 1144 * both, and always in the same order, to minimize variability, 1145 * and do it inside the same asm that writes MMCR0. 1146 */ 1147 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1148 { 1149 unsigned long pmc5, pmc6; 1150 1151 if (!cpuhw->n_limited) { 1152 mtspr(SPRN_MMCR0, mmcr0); 1153 return; 1154 } 1155 1156 /* 1157 * Write MMCR0, then read PMC5 and PMC6 immediately. 1158 * To ensure we don't get a performance monitor interrupt 1159 * between writing MMCR0 and freezing/thawing the limited 1160 * events, we first write MMCR0 with the event overflow 1161 * interrupt enable bits turned off. 1162 */ 1163 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1164 : "=&r" (pmc5), "=&r" (pmc6) 1165 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1166 "i" (SPRN_MMCR0), 1167 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1168 1169 if (mmcr0 & MMCR0_FC) 1170 freeze_limited_counters(cpuhw, pmc5, pmc6); 1171 else 1172 thaw_limited_counters(cpuhw, pmc5, pmc6); 1173 1174 /* 1175 * Write the full MMCR0 including the event overflow interrupt 1176 * enable bits, if necessary. 1177 */ 1178 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1179 mtspr(SPRN_MMCR0, mmcr0); 1180 } 1181 1182 /* 1183 * Disable all events to prevent PMU interrupts and to allow 1184 * events to be added or removed. 1185 */ 1186 static void power_pmu_disable(struct pmu *pmu) 1187 { 1188 struct cpu_hw_events *cpuhw; 1189 unsigned long flags, mmcr0, val; 1190 1191 if (!ppmu) 1192 return; 1193 local_irq_save(flags); 1194 cpuhw = this_cpu_ptr(&cpu_hw_events); 1195 1196 if (!cpuhw->disabled) { 1197 /* 1198 * Check if we ever enabled the PMU on this cpu. 1199 */ 1200 if (!cpuhw->pmcs_enabled) { 1201 ppc_enable_pmcs(); 1202 cpuhw->pmcs_enabled = 1; 1203 } 1204 1205 /* 1206 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1207 */ 1208 val = mmcr0 = mfspr(SPRN_MMCR0); 1209 val |= MMCR0_FC; 1210 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1211 MMCR0_FC56); 1212 1213 /* 1214 * The barrier is to make sure the mtspr has been 1215 * executed and the PMU has frozen the events etc. 1216 * before we return. 1217 */ 1218 write_mmcr0(cpuhw, val); 1219 mb(); 1220 1221 /* 1222 * Disable instruction sampling if it was enabled 1223 */ 1224 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1225 mtspr(SPRN_MMCRA, 1226 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1227 mb(); 1228 } 1229 1230 cpuhw->disabled = 1; 1231 cpuhw->n_added = 0; 1232 1233 ebb_switch_out(mmcr0); 1234 } 1235 1236 local_irq_restore(flags); 1237 } 1238 1239 /* 1240 * Re-enable all events if disable == 0. 1241 * If we were previously disabled and events were added, then 1242 * put the new config on the PMU. 1243 */ 1244 static void power_pmu_enable(struct pmu *pmu) 1245 { 1246 struct perf_event *event; 1247 struct cpu_hw_events *cpuhw; 1248 unsigned long flags; 1249 long i; 1250 unsigned long val, mmcr0; 1251 s64 left; 1252 unsigned int hwc_index[MAX_HWEVENTS]; 1253 int n_lim; 1254 int idx; 1255 bool ebb; 1256 1257 if (!ppmu) 1258 return; 1259 local_irq_save(flags); 1260 1261 cpuhw = this_cpu_ptr(&cpu_hw_events); 1262 if (!cpuhw->disabled) 1263 goto out; 1264 1265 if (cpuhw->n_events == 0) { 1266 ppc_set_pmu_inuse(0); 1267 goto out; 1268 } 1269 1270 cpuhw->disabled = 0; 1271 1272 /* 1273 * EBB requires an exclusive group and all events must have the EBB 1274 * flag set, or not set, so we can just check a single event. Also we 1275 * know we have at least one event. 1276 */ 1277 ebb = is_ebb_event(cpuhw->event[0]); 1278 1279 /* 1280 * If we didn't change anything, or only removed events, 1281 * no need to recalculate MMCR* settings and reset the PMCs. 1282 * Just reenable the PMU with the current MMCR* settings 1283 * (possibly updated for removal of events). 1284 */ 1285 if (!cpuhw->n_added) { 1286 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1287 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1288 goto out_enable; 1289 } 1290 1291 /* 1292 * Clear all MMCR settings and recompute them for the new set of events. 1293 */ 1294 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1295 1296 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1297 cpuhw->mmcr, cpuhw->event)) { 1298 /* shouldn't ever get here */ 1299 printk(KERN_ERR "oops compute_mmcr failed\n"); 1300 goto out; 1301 } 1302 1303 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1304 /* 1305 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1306 * bits for the first event. We have already checked that all 1307 * events have the same value for these bits as the first event. 1308 */ 1309 event = cpuhw->event[0]; 1310 if (event->attr.exclude_user) 1311 cpuhw->mmcr[0] |= MMCR0_FCP; 1312 if (event->attr.exclude_kernel) 1313 cpuhw->mmcr[0] |= freeze_events_kernel; 1314 if (event->attr.exclude_hv) 1315 cpuhw->mmcr[0] |= MMCR0_FCHV; 1316 } 1317 1318 /* 1319 * Write the new configuration to MMCR* with the freeze 1320 * bit set and set the hardware events to their initial values. 1321 * Then unfreeze the events. 1322 */ 1323 ppc_set_pmu_inuse(1); 1324 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1325 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1326 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1327 | MMCR0_FC); 1328 if (ppmu->flags & PPMU_ARCH_207S) 1329 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1330 1331 /* 1332 * Read off any pre-existing events that need to move 1333 * to another PMC. 1334 */ 1335 for (i = 0; i < cpuhw->n_events; ++i) { 1336 event = cpuhw->event[i]; 1337 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1338 power_pmu_read(event); 1339 write_pmc(event->hw.idx, 0); 1340 event->hw.idx = 0; 1341 } 1342 } 1343 1344 /* 1345 * Initialize the PMCs for all the new and moved events. 1346 */ 1347 cpuhw->n_limited = n_lim = 0; 1348 for (i = 0; i < cpuhw->n_events; ++i) { 1349 event = cpuhw->event[i]; 1350 if (event->hw.idx) 1351 continue; 1352 idx = hwc_index[i] + 1; 1353 if (is_limited_pmc(idx)) { 1354 cpuhw->limited_counter[n_lim] = event; 1355 cpuhw->limited_hwidx[n_lim] = idx; 1356 ++n_lim; 1357 continue; 1358 } 1359 1360 if (ebb) 1361 val = local64_read(&event->hw.prev_count); 1362 else { 1363 val = 0; 1364 if (event->hw.sample_period) { 1365 left = local64_read(&event->hw.period_left); 1366 if (left < 0x80000000L) 1367 val = 0x80000000L - left; 1368 } 1369 local64_set(&event->hw.prev_count, val); 1370 } 1371 1372 event->hw.idx = idx; 1373 if (event->hw.state & PERF_HES_STOPPED) 1374 val = 0; 1375 write_pmc(idx, val); 1376 1377 perf_event_update_userpage(event); 1378 } 1379 cpuhw->n_limited = n_lim; 1380 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1381 1382 out_enable: 1383 pmao_restore_workaround(ebb); 1384 1385 mmcr0 = ebb_switch_in(ebb, cpuhw); 1386 1387 mb(); 1388 if (cpuhw->bhrb_users) 1389 ppmu->config_bhrb(cpuhw->bhrb_filter); 1390 1391 write_mmcr0(cpuhw, mmcr0); 1392 1393 /* 1394 * Enable instruction sampling if necessary 1395 */ 1396 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1397 mb(); 1398 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1399 } 1400 1401 out: 1402 1403 local_irq_restore(flags); 1404 } 1405 1406 static int collect_events(struct perf_event *group, int max_count, 1407 struct perf_event *ctrs[], u64 *events, 1408 unsigned int *flags) 1409 { 1410 int n = 0; 1411 struct perf_event *event; 1412 1413 if (!is_software_event(group)) { 1414 if (n >= max_count) 1415 return -1; 1416 ctrs[n] = group; 1417 flags[n] = group->hw.event_base; 1418 events[n++] = group->hw.config; 1419 } 1420 list_for_each_entry(event, &group->sibling_list, group_entry) { 1421 if (!is_software_event(event) && 1422 event->state != PERF_EVENT_STATE_OFF) { 1423 if (n >= max_count) 1424 return -1; 1425 ctrs[n] = event; 1426 flags[n] = event->hw.event_base; 1427 events[n++] = event->hw.config; 1428 } 1429 } 1430 return n; 1431 } 1432 1433 /* 1434 * Add a event to the PMU. 1435 * If all events are not already frozen, then we disable and 1436 * re-enable the PMU in order to get hw_perf_enable to do the 1437 * actual work of reconfiguring the PMU. 1438 */ 1439 static int power_pmu_add(struct perf_event *event, int ef_flags) 1440 { 1441 struct cpu_hw_events *cpuhw; 1442 unsigned long flags; 1443 int n0; 1444 int ret = -EAGAIN; 1445 1446 local_irq_save(flags); 1447 perf_pmu_disable(event->pmu); 1448 1449 /* 1450 * Add the event to the list (if there is room) 1451 * and check whether the total set is still feasible. 1452 */ 1453 cpuhw = this_cpu_ptr(&cpu_hw_events); 1454 n0 = cpuhw->n_events; 1455 if (n0 >= ppmu->n_counter) 1456 goto out; 1457 cpuhw->event[n0] = event; 1458 cpuhw->events[n0] = event->hw.config; 1459 cpuhw->flags[n0] = event->hw.event_base; 1460 1461 /* 1462 * This event may have been disabled/stopped in record_and_restart() 1463 * because we exceeded the ->event_limit. If re-starting the event, 1464 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1465 * notification is re-enabled. 1466 */ 1467 if (!(ef_flags & PERF_EF_START)) 1468 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1469 else 1470 event->hw.state = 0; 1471 1472 /* 1473 * If group events scheduling transaction was started, 1474 * skip the schedulability test here, it will be performed 1475 * at commit time(->commit_txn) as a whole 1476 */ 1477 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1478 goto nocheck; 1479 1480 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1481 goto out; 1482 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1483 goto out; 1484 event->hw.config = cpuhw->events[n0]; 1485 1486 nocheck: 1487 ebb_event_add(event); 1488 1489 ++cpuhw->n_events; 1490 ++cpuhw->n_added; 1491 1492 ret = 0; 1493 out: 1494 if (has_branch_stack(event)) { 1495 power_pmu_bhrb_enable(event); 1496 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1497 event->attr.branch_sample_type); 1498 } 1499 1500 /* 1501 * Workaround for POWER9 DD1 to use the Instruction Counter 1502 * register value for instruction counting 1503 */ 1504 if (use_ic(event->attr.config)) 1505 cpuhw->ic_init = mfspr(SPRN_IC); 1506 1507 perf_pmu_enable(event->pmu); 1508 local_irq_restore(flags); 1509 return ret; 1510 } 1511 1512 /* 1513 * Remove a event from the PMU. 1514 */ 1515 static void power_pmu_del(struct perf_event *event, int ef_flags) 1516 { 1517 struct cpu_hw_events *cpuhw; 1518 long i; 1519 unsigned long flags; 1520 1521 local_irq_save(flags); 1522 perf_pmu_disable(event->pmu); 1523 1524 power_pmu_read(event); 1525 1526 cpuhw = this_cpu_ptr(&cpu_hw_events); 1527 for (i = 0; i < cpuhw->n_events; ++i) { 1528 if (event == cpuhw->event[i]) { 1529 while (++i < cpuhw->n_events) { 1530 cpuhw->event[i-1] = cpuhw->event[i]; 1531 cpuhw->events[i-1] = cpuhw->events[i]; 1532 cpuhw->flags[i-1] = cpuhw->flags[i]; 1533 } 1534 --cpuhw->n_events; 1535 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1536 if (event->hw.idx) { 1537 write_pmc(event->hw.idx, 0); 1538 event->hw.idx = 0; 1539 } 1540 perf_event_update_userpage(event); 1541 break; 1542 } 1543 } 1544 for (i = 0; i < cpuhw->n_limited; ++i) 1545 if (event == cpuhw->limited_counter[i]) 1546 break; 1547 if (i < cpuhw->n_limited) { 1548 while (++i < cpuhw->n_limited) { 1549 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1550 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1551 } 1552 --cpuhw->n_limited; 1553 } 1554 if (cpuhw->n_events == 0) { 1555 /* disable exceptions if no events are running */ 1556 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1557 } 1558 1559 if (has_branch_stack(event)) 1560 power_pmu_bhrb_disable(event); 1561 1562 perf_pmu_enable(event->pmu); 1563 local_irq_restore(flags); 1564 } 1565 1566 /* 1567 * POWER-PMU does not support disabling individual counters, hence 1568 * program their cycle counter to their max value and ignore the interrupts. 1569 */ 1570 1571 static void power_pmu_start(struct perf_event *event, int ef_flags) 1572 { 1573 unsigned long flags; 1574 s64 left; 1575 unsigned long val; 1576 1577 if (!event->hw.idx || !event->hw.sample_period) 1578 return; 1579 1580 if (!(event->hw.state & PERF_HES_STOPPED)) 1581 return; 1582 1583 if (ef_flags & PERF_EF_RELOAD) 1584 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1585 1586 local_irq_save(flags); 1587 perf_pmu_disable(event->pmu); 1588 1589 event->hw.state = 0; 1590 left = local64_read(&event->hw.period_left); 1591 1592 val = 0; 1593 if (left < 0x80000000L) 1594 val = 0x80000000L - left; 1595 1596 write_pmc(event->hw.idx, val); 1597 1598 perf_event_update_userpage(event); 1599 perf_pmu_enable(event->pmu); 1600 local_irq_restore(flags); 1601 } 1602 1603 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1604 { 1605 unsigned long flags; 1606 1607 if (!event->hw.idx || !event->hw.sample_period) 1608 return; 1609 1610 if (event->hw.state & PERF_HES_STOPPED) 1611 return; 1612 1613 local_irq_save(flags); 1614 perf_pmu_disable(event->pmu); 1615 1616 power_pmu_read(event); 1617 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1618 write_pmc(event->hw.idx, 0); 1619 1620 perf_event_update_userpage(event); 1621 perf_pmu_enable(event->pmu); 1622 local_irq_restore(flags); 1623 } 1624 1625 /* 1626 * Start group events scheduling transaction 1627 * Set the flag to make pmu::enable() not perform the 1628 * schedulability test, it will be performed at commit time 1629 * 1630 * We only support PERF_PMU_TXN_ADD transactions. Save the 1631 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1632 * transactions. 1633 */ 1634 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1635 { 1636 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1637 1638 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1639 1640 cpuhw->txn_flags = txn_flags; 1641 if (txn_flags & ~PERF_PMU_TXN_ADD) 1642 return; 1643 1644 perf_pmu_disable(pmu); 1645 cpuhw->n_txn_start = cpuhw->n_events; 1646 } 1647 1648 /* 1649 * Stop group events scheduling transaction 1650 * Clear the flag and pmu::enable() will perform the 1651 * schedulability test. 1652 */ 1653 static void power_pmu_cancel_txn(struct pmu *pmu) 1654 { 1655 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1656 unsigned int txn_flags; 1657 1658 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1659 1660 txn_flags = cpuhw->txn_flags; 1661 cpuhw->txn_flags = 0; 1662 if (txn_flags & ~PERF_PMU_TXN_ADD) 1663 return; 1664 1665 perf_pmu_enable(pmu); 1666 } 1667 1668 /* 1669 * Commit group events scheduling transaction 1670 * Perform the group schedulability test as a whole 1671 * Return 0 if success 1672 */ 1673 static int power_pmu_commit_txn(struct pmu *pmu) 1674 { 1675 struct cpu_hw_events *cpuhw; 1676 long i, n; 1677 1678 if (!ppmu) 1679 return -EAGAIN; 1680 1681 cpuhw = this_cpu_ptr(&cpu_hw_events); 1682 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1683 1684 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1685 cpuhw->txn_flags = 0; 1686 return 0; 1687 } 1688 1689 n = cpuhw->n_events; 1690 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1691 return -EAGAIN; 1692 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1693 if (i < 0) 1694 return -EAGAIN; 1695 1696 for (i = cpuhw->n_txn_start; i < n; ++i) 1697 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1698 1699 cpuhw->txn_flags = 0; 1700 perf_pmu_enable(pmu); 1701 return 0; 1702 } 1703 1704 /* 1705 * Return 1 if we might be able to put event on a limited PMC, 1706 * or 0 if not. 1707 * A event can only go on a limited PMC if it counts something 1708 * that a limited PMC can count, doesn't require interrupts, and 1709 * doesn't exclude any processor mode. 1710 */ 1711 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1712 unsigned int flags) 1713 { 1714 int n; 1715 u64 alt[MAX_EVENT_ALTERNATIVES]; 1716 1717 if (event->attr.exclude_user 1718 || event->attr.exclude_kernel 1719 || event->attr.exclude_hv 1720 || event->attr.sample_period) 1721 return 0; 1722 1723 if (ppmu->limited_pmc_event(ev)) 1724 return 1; 1725 1726 /* 1727 * The requested event_id isn't on a limited PMC already; 1728 * see if any alternative code goes on a limited PMC. 1729 */ 1730 if (!ppmu->get_alternatives) 1731 return 0; 1732 1733 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1734 n = ppmu->get_alternatives(ev, flags, alt); 1735 1736 return n > 0; 1737 } 1738 1739 /* 1740 * Find an alternative event_id that goes on a normal PMC, if possible, 1741 * and return the event_id code, or 0 if there is no such alternative. 1742 * (Note: event_id code 0 is "don't count" on all machines.) 1743 */ 1744 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1745 { 1746 u64 alt[MAX_EVENT_ALTERNATIVES]; 1747 int n; 1748 1749 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1750 n = ppmu->get_alternatives(ev, flags, alt); 1751 if (!n) 1752 return 0; 1753 return alt[0]; 1754 } 1755 1756 /* Number of perf_events counting hardware events */ 1757 static atomic_t num_events; 1758 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1759 static DEFINE_MUTEX(pmc_reserve_mutex); 1760 1761 /* 1762 * Release the PMU if this is the last perf_event. 1763 */ 1764 static void hw_perf_event_destroy(struct perf_event *event) 1765 { 1766 if (!atomic_add_unless(&num_events, -1, 1)) { 1767 mutex_lock(&pmc_reserve_mutex); 1768 if (atomic_dec_return(&num_events) == 0) 1769 release_pmc_hardware(); 1770 mutex_unlock(&pmc_reserve_mutex); 1771 } 1772 } 1773 1774 /* 1775 * Translate a generic cache event_id config to a raw event_id code. 1776 */ 1777 static int hw_perf_cache_event(u64 config, u64 *eventp) 1778 { 1779 unsigned long type, op, result; 1780 int ev; 1781 1782 if (!ppmu->cache_events) 1783 return -EINVAL; 1784 1785 /* unpack config */ 1786 type = config & 0xff; 1787 op = (config >> 8) & 0xff; 1788 result = (config >> 16) & 0xff; 1789 1790 if (type >= PERF_COUNT_HW_CACHE_MAX || 1791 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1792 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1793 return -EINVAL; 1794 1795 ev = (*ppmu->cache_events)[type][op][result]; 1796 if (ev == 0) 1797 return -EOPNOTSUPP; 1798 if (ev == -1) 1799 return -EINVAL; 1800 *eventp = ev; 1801 return 0; 1802 } 1803 1804 static int power_pmu_event_init(struct perf_event *event) 1805 { 1806 u64 ev; 1807 unsigned long flags; 1808 struct perf_event *ctrs[MAX_HWEVENTS]; 1809 u64 events[MAX_HWEVENTS]; 1810 unsigned int cflags[MAX_HWEVENTS]; 1811 int n; 1812 int err; 1813 struct cpu_hw_events *cpuhw; 1814 1815 if (!ppmu) 1816 return -ENOENT; 1817 1818 if (has_branch_stack(event)) { 1819 /* PMU has BHRB enabled */ 1820 if (!(ppmu->flags & PPMU_ARCH_207S)) 1821 return -EOPNOTSUPP; 1822 } 1823 1824 switch (event->attr.type) { 1825 case PERF_TYPE_HARDWARE: 1826 ev = event->attr.config; 1827 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1828 return -EOPNOTSUPP; 1829 ev = ppmu->generic_events[ev]; 1830 break; 1831 case PERF_TYPE_HW_CACHE: 1832 err = hw_perf_cache_event(event->attr.config, &ev); 1833 if (err) 1834 return err; 1835 break; 1836 case PERF_TYPE_RAW: 1837 ev = event->attr.config; 1838 break; 1839 default: 1840 return -ENOENT; 1841 } 1842 1843 event->hw.config_base = ev; 1844 event->hw.idx = 0; 1845 1846 /* 1847 * If we are not running on a hypervisor, force the 1848 * exclude_hv bit to 0 so that we don't care what 1849 * the user set it to. 1850 */ 1851 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1852 event->attr.exclude_hv = 0; 1853 1854 /* 1855 * If this is a per-task event, then we can use 1856 * PM_RUN_* events interchangeably with their non RUN_* 1857 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1858 * XXX we should check if the task is an idle task. 1859 */ 1860 flags = 0; 1861 if (event->attach_state & PERF_ATTACH_TASK) 1862 flags |= PPMU_ONLY_COUNT_RUN; 1863 1864 /* 1865 * If this machine has limited events, check whether this 1866 * event_id could go on a limited event. 1867 */ 1868 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1869 if (can_go_on_limited_pmc(event, ev, flags)) { 1870 flags |= PPMU_LIMITED_PMC_OK; 1871 } else if (ppmu->limited_pmc_event(ev)) { 1872 /* 1873 * The requested event_id is on a limited PMC, 1874 * but we can't use a limited PMC; see if any 1875 * alternative goes on a normal PMC. 1876 */ 1877 ev = normal_pmc_alternative(ev, flags); 1878 if (!ev) 1879 return -EINVAL; 1880 } 1881 } 1882 1883 /* Extra checks for EBB */ 1884 err = ebb_event_check(event); 1885 if (err) 1886 return err; 1887 1888 /* 1889 * If this is in a group, check if it can go on with all the 1890 * other hardware events in the group. We assume the event 1891 * hasn't been linked into its leader's sibling list at this point. 1892 */ 1893 n = 0; 1894 if (event->group_leader != event) { 1895 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1896 ctrs, events, cflags); 1897 if (n < 0) 1898 return -EINVAL; 1899 } 1900 events[n] = ev; 1901 ctrs[n] = event; 1902 cflags[n] = flags; 1903 if (check_excludes(ctrs, cflags, n, 1)) 1904 return -EINVAL; 1905 1906 cpuhw = &get_cpu_var(cpu_hw_events); 1907 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1908 1909 if (has_branch_stack(event)) { 1910 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1911 event->attr.branch_sample_type); 1912 1913 if (cpuhw->bhrb_filter == -1) { 1914 put_cpu_var(cpu_hw_events); 1915 return -EOPNOTSUPP; 1916 } 1917 } 1918 1919 put_cpu_var(cpu_hw_events); 1920 if (err) 1921 return -EINVAL; 1922 1923 event->hw.config = events[n]; 1924 event->hw.event_base = cflags[n]; 1925 event->hw.last_period = event->hw.sample_period; 1926 local64_set(&event->hw.period_left, event->hw.last_period); 1927 1928 /* 1929 * For EBB events we just context switch the PMC value, we don't do any 1930 * of the sample_period logic. We use hw.prev_count for this. 1931 */ 1932 if (is_ebb_event(event)) 1933 local64_set(&event->hw.prev_count, 0); 1934 1935 /* 1936 * See if we need to reserve the PMU. 1937 * If no events are currently in use, then we have to take a 1938 * mutex to ensure that we don't race with another task doing 1939 * reserve_pmc_hardware or release_pmc_hardware. 1940 */ 1941 err = 0; 1942 if (!atomic_inc_not_zero(&num_events)) { 1943 mutex_lock(&pmc_reserve_mutex); 1944 if (atomic_read(&num_events) == 0 && 1945 reserve_pmc_hardware(perf_event_interrupt)) 1946 err = -EBUSY; 1947 else 1948 atomic_inc(&num_events); 1949 mutex_unlock(&pmc_reserve_mutex); 1950 } 1951 event->destroy = hw_perf_event_destroy; 1952 1953 return err; 1954 } 1955 1956 static int power_pmu_event_idx(struct perf_event *event) 1957 { 1958 return event->hw.idx; 1959 } 1960 1961 ssize_t power_events_sysfs_show(struct device *dev, 1962 struct device_attribute *attr, char *page) 1963 { 1964 struct perf_pmu_events_attr *pmu_attr; 1965 1966 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1967 1968 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1969 } 1970 1971 static struct pmu power_pmu = { 1972 .pmu_enable = power_pmu_enable, 1973 .pmu_disable = power_pmu_disable, 1974 .event_init = power_pmu_event_init, 1975 .add = power_pmu_add, 1976 .del = power_pmu_del, 1977 .start = power_pmu_start, 1978 .stop = power_pmu_stop, 1979 .read = power_pmu_read, 1980 .start_txn = power_pmu_start_txn, 1981 .cancel_txn = power_pmu_cancel_txn, 1982 .commit_txn = power_pmu_commit_txn, 1983 .event_idx = power_pmu_event_idx, 1984 .sched_task = power_pmu_sched_task, 1985 }; 1986 1987 /* 1988 * A counter has overflowed; update its count and record 1989 * things if requested. Note that interrupts are hard-disabled 1990 * here so there is no possibility of being interrupted. 1991 */ 1992 static void record_and_restart(struct perf_event *event, unsigned long val, 1993 struct pt_regs *regs) 1994 { 1995 u64 period = event->hw.sample_period; 1996 s64 prev, delta, left; 1997 int record = 0; 1998 1999 if (event->hw.state & PERF_HES_STOPPED) { 2000 write_pmc(event->hw.idx, 0); 2001 return; 2002 } 2003 2004 /* we don't have to worry about interrupts here */ 2005 prev = local64_read(&event->hw.prev_count); 2006 delta = check_and_compute_delta(prev, val); 2007 local64_add(delta, &event->count); 2008 2009 /* 2010 * See if the total period for this event has expired, 2011 * and update for the next period. 2012 */ 2013 val = 0; 2014 left = local64_read(&event->hw.period_left) - delta; 2015 if (delta == 0) 2016 left++; 2017 if (period) { 2018 if (left <= 0) { 2019 left += period; 2020 if (left <= 0) 2021 left = period; 2022 record = siar_valid(regs); 2023 event->hw.last_period = event->hw.sample_period; 2024 } 2025 if (left < 0x80000000LL) 2026 val = 0x80000000LL - left; 2027 } 2028 2029 write_pmc(event->hw.idx, val); 2030 local64_set(&event->hw.prev_count, val); 2031 local64_set(&event->hw.period_left, left); 2032 perf_event_update_userpage(event); 2033 2034 /* 2035 * Finally record data if requested. 2036 */ 2037 if (record) { 2038 struct perf_sample_data data; 2039 2040 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2041 2042 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 2043 perf_get_data_addr(regs, &data.addr); 2044 2045 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2046 struct cpu_hw_events *cpuhw; 2047 cpuhw = this_cpu_ptr(&cpu_hw_events); 2048 power_pmu_bhrb_read(cpuhw); 2049 data.br_stack = &cpuhw->bhrb_stack; 2050 } 2051 2052 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2053 ppmu->get_mem_data_src) 2054 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2055 2056 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2057 ppmu->get_mem_weight) 2058 ppmu->get_mem_weight(&data.weight); 2059 2060 if (perf_event_overflow(event, &data, regs)) 2061 power_pmu_stop(event, 0); 2062 } 2063 } 2064 2065 /* 2066 * Called from generic code to get the misc flags (i.e. processor mode) 2067 * for an event_id. 2068 */ 2069 unsigned long perf_misc_flags(struct pt_regs *regs) 2070 { 2071 u32 flags = perf_get_misc_flags(regs); 2072 2073 if (flags) 2074 return flags; 2075 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2076 PERF_RECORD_MISC_KERNEL; 2077 } 2078 2079 /* 2080 * Called from generic code to get the instruction pointer 2081 * for an event_id. 2082 */ 2083 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2084 { 2085 bool use_siar = regs_use_siar(regs); 2086 2087 if (use_siar && siar_valid(regs)) 2088 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2089 else if (use_siar) 2090 return 0; // no valid instruction pointer 2091 else 2092 return regs->nip; 2093 } 2094 2095 static bool pmc_overflow_power7(unsigned long val) 2096 { 2097 /* 2098 * Events on POWER7 can roll back if a speculative event doesn't 2099 * eventually complete. Unfortunately in some rare cases they will 2100 * raise a performance monitor exception. We need to catch this to 2101 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2102 * cycles from overflow. 2103 * 2104 * We only do this if the first pass fails to find any overflowing 2105 * PMCs because a user might set a period of less than 256 and we 2106 * don't want to mistakenly reset them. 2107 */ 2108 if ((0x80000000 - val) <= 256) 2109 return true; 2110 2111 return false; 2112 } 2113 2114 static bool pmc_overflow(unsigned long val) 2115 { 2116 if ((int)val < 0) 2117 return true; 2118 2119 return false; 2120 } 2121 2122 /* 2123 * Performance monitor interrupt stuff 2124 */ 2125 static void perf_event_interrupt(struct pt_regs *regs) 2126 { 2127 int i, j; 2128 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2129 struct perf_event *event; 2130 unsigned long val[8]; 2131 int found, active; 2132 int nmi; 2133 2134 if (cpuhw->n_limited) 2135 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2136 mfspr(SPRN_PMC6)); 2137 2138 perf_read_regs(regs); 2139 2140 nmi = perf_intr_is_nmi(regs); 2141 if (nmi) 2142 nmi_enter(); 2143 else 2144 irq_enter(); 2145 2146 /* Read all the PMCs since we'll need them a bunch of times */ 2147 for (i = 0; i < ppmu->n_counter; ++i) 2148 val[i] = read_pmc(i + 1); 2149 2150 /* Try to find what caused the IRQ */ 2151 found = 0; 2152 for (i = 0; i < ppmu->n_counter; ++i) { 2153 if (!pmc_overflow(val[i])) 2154 continue; 2155 if (is_limited_pmc(i + 1)) 2156 continue; /* these won't generate IRQs */ 2157 /* 2158 * We've found one that's overflowed. For active 2159 * counters we need to log this. For inactive 2160 * counters, we need to reset it anyway 2161 */ 2162 found = 1; 2163 active = 0; 2164 for (j = 0; j < cpuhw->n_events; ++j) { 2165 event = cpuhw->event[j]; 2166 if (event->hw.idx == (i + 1)) { 2167 active = 1; 2168 record_and_restart(event, val[i], regs); 2169 break; 2170 } 2171 } 2172 if (!active) 2173 /* reset non active counters that have overflowed */ 2174 write_pmc(i + 1, 0); 2175 } 2176 if (!found && pvr_version_is(PVR_POWER7)) { 2177 /* check active counters for special buggy p7 overflow */ 2178 for (i = 0; i < cpuhw->n_events; ++i) { 2179 event = cpuhw->event[i]; 2180 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2181 continue; 2182 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2183 /* event has overflowed in a buggy way*/ 2184 found = 1; 2185 record_and_restart(event, 2186 val[event->hw.idx - 1], 2187 regs); 2188 } 2189 } 2190 } 2191 if (!found && !nmi && printk_ratelimit()) 2192 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2193 2194 /* 2195 * Reset MMCR0 to its normal value. This will set PMXE and 2196 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2197 * and thus allow interrupts to occur again. 2198 * XXX might want to use MSR.PM to keep the events frozen until 2199 * we get back out of this interrupt. 2200 */ 2201 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2202 2203 if (nmi) 2204 nmi_exit(); 2205 else 2206 irq_exit(); 2207 } 2208 2209 static int power_pmu_prepare_cpu(unsigned int cpu) 2210 { 2211 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2212 2213 if (ppmu) { 2214 memset(cpuhw, 0, sizeof(*cpuhw)); 2215 cpuhw->mmcr[0] = MMCR0_FC; 2216 } 2217 return 0; 2218 } 2219 2220 int register_power_pmu(struct power_pmu *pmu) 2221 { 2222 if (ppmu) 2223 return -EBUSY; /* something's already registered */ 2224 2225 ppmu = pmu; 2226 pr_info("%s performance monitor hardware support registered\n", 2227 pmu->name); 2228 2229 power_pmu.attr_groups = ppmu->attr_groups; 2230 2231 #ifdef MSR_HV 2232 /* 2233 * Use FCHV to ignore kernel events if MSR.HV is set. 2234 */ 2235 if (mfmsr() & MSR_HV) 2236 freeze_events_kernel = MMCR0_FCHV; 2237 #endif /* CONFIG_PPC64 */ 2238 2239 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2240 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2241 power_pmu_prepare_cpu, NULL); 2242 return 0; 2243 } 2244