xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision e7f127b2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 #include <asm/hw_irq.h>
21 #include <asm/interrupt.h>
22 
23 #ifdef CONFIG_PPC64
24 #include "internal.h"
25 #endif
26 
27 #define BHRB_MAX_ENTRIES	32
28 #define BHRB_TARGET		0x0000000000000002
29 #define BHRB_PREDICTION		0x0000000000000001
30 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
31 
32 struct cpu_hw_events {
33 	int n_events;
34 	int n_percpu;
35 	int disabled;
36 	int n_added;
37 	int n_limited;
38 	u8  pmcs_enabled;
39 	struct perf_event *event[MAX_HWEVENTS];
40 	u64 events[MAX_HWEVENTS];
41 	unsigned int flags[MAX_HWEVENTS];
42 	struct mmcr_regs mmcr;
43 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
44 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
45 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 
49 	unsigned int txn_flags;
50 	int n_txn_start;
51 
52 	/* BHRB bits */
53 	u64				bhrb_filter;	/* BHRB HW branch filter */
54 	unsigned int			bhrb_users;
55 	void				*bhrb_context;
56 	struct	perf_branch_stack	bhrb_stack;
57 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
58 	u64				ic_init;
59 
60 	/* Store the PMC values */
61 	unsigned long pmcs[MAX_HWEVENTS];
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
81  * Define them as zero knowing that any code path accessing
82  * these registers (via mtspr/mfspr) are done under ppmu flag
83  * check for PPMU_ARCH_31 and we will not enter that code path
84  * for 32-bit.
85  */
86 #ifdef CONFIG_PPC32
87 
88 #define MMCR0_FCHV		0
89 #define MMCR0_PMCjCE		MMCR0_PMCnCE
90 #define MMCR0_FC56		0
91 #define MMCR0_PMAO		0
92 #define MMCR0_EBE		0
93 #define MMCR0_BHRBA		0
94 #define MMCR0_PMCC		0
95 #define MMCR0_PMCC_U6		0
96 
97 #define SPRN_MMCRA		SPRN_MMCR2
98 #define SPRN_MMCR3		0
99 #define SPRN_SIER2		0
100 #define SPRN_SIER3		0
101 #define MMCRA_SAMPLE_ENABLE	0
102 #define MMCRA_BHRB_DISABLE     0
103 #define MMCR0_PMCCEXT		0
104 
105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
106 {
107 	return 0;
108 }
109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
110 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
111 {
112 	return 0;
113 }
114 static inline void perf_read_regs(struct pt_regs *regs)
115 {
116 	regs->result = 0;
117 }
118 
119 static inline int siar_valid(struct pt_regs *regs)
120 {
121 	return 1;
122 }
123 
124 static bool is_ebb_event(struct perf_event *event) { return false; }
125 static int ebb_event_check(struct perf_event *event) { return 0; }
126 static void ebb_event_add(struct perf_event *event) { }
127 static void ebb_switch_out(unsigned long mmcr0) { }
128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
129 {
130 	return cpuhw->mmcr.mmcr0;
131 }
132 
133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
135 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
136 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
137 static void pmao_restore_workaround(bool ebb) { }
138 #endif /* CONFIG_PPC32 */
139 
140 bool is_sier_available(void)
141 {
142 	if (!ppmu)
143 		return false;
144 
145 	if (ppmu->flags & PPMU_HAS_SIER)
146 		return true;
147 
148 	return false;
149 }
150 
151 /*
152  * Return PMC value corresponding to the
153  * index passed.
154  */
155 unsigned long get_pmcs_ext_regs(int idx)
156 {
157 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
158 
159 	return cpuhw->pmcs[idx];
160 }
161 
162 static bool regs_use_siar(struct pt_regs *regs)
163 {
164 	/*
165 	 * When we take a performance monitor exception the regs are setup
166 	 * using perf_read_regs() which overloads some fields, in particular
167 	 * regs->result to tell us whether to use SIAR.
168 	 *
169 	 * However if the regs are from another exception, eg. a syscall, then
170 	 * they have not been setup using perf_read_regs() and so regs->result
171 	 * is something random.
172 	 */
173 	return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
174 }
175 
176 /*
177  * Things that are specific to 64-bit implementations.
178  */
179 #ifdef CONFIG_PPC64
180 
181 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
182 {
183 	unsigned long mmcra = regs->dsisr;
184 
185 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
186 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
187 		if (slot > 1)
188 			return 4 * (slot - 1);
189 	}
190 
191 	return 0;
192 }
193 
194 /*
195  * The user wants a data address recorded.
196  * If we're not doing instruction sampling, give them the SDAR
197  * (sampled data address).  If we are doing instruction sampling, then
198  * only give them the SDAR if it corresponds to the instruction
199  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
200  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
201  */
202 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
203 {
204 	unsigned long mmcra = regs->dsisr;
205 	bool sdar_valid;
206 
207 	if (ppmu->flags & PPMU_HAS_SIER)
208 		sdar_valid = regs->dar & SIER_SDAR_VALID;
209 	else {
210 		unsigned long sdsync;
211 
212 		if (ppmu->flags & PPMU_SIAR_VALID)
213 			sdsync = POWER7P_MMCRA_SDAR_VALID;
214 		else if (ppmu->flags & PPMU_ALT_SIPR)
215 			sdsync = POWER6_MMCRA_SDSYNC;
216 		else if (ppmu->flags & PPMU_NO_SIAR)
217 			sdsync = MMCRA_SAMPLE_ENABLE;
218 		else
219 			sdsync = MMCRA_SDSYNC;
220 
221 		sdar_valid = mmcra & sdsync;
222 	}
223 
224 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
225 		*addrp = mfspr(SPRN_SDAR);
226 
227 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
228 		*addrp = 0;
229 }
230 
231 static bool regs_sihv(struct pt_regs *regs)
232 {
233 	unsigned long sihv = MMCRA_SIHV;
234 
235 	if (ppmu->flags & PPMU_HAS_SIER)
236 		return !!(regs->dar & SIER_SIHV);
237 
238 	if (ppmu->flags & PPMU_ALT_SIPR)
239 		sihv = POWER6_MMCRA_SIHV;
240 
241 	return !!(regs->dsisr & sihv);
242 }
243 
244 static bool regs_sipr(struct pt_regs *regs)
245 {
246 	unsigned long sipr = MMCRA_SIPR;
247 
248 	if (ppmu->flags & PPMU_HAS_SIER)
249 		return !!(regs->dar & SIER_SIPR);
250 
251 	if (ppmu->flags & PPMU_ALT_SIPR)
252 		sipr = POWER6_MMCRA_SIPR;
253 
254 	return !!(regs->dsisr & sipr);
255 }
256 
257 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
258 {
259 	if (regs->msr & MSR_PR)
260 		return PERF_RECORD_MISC_USER;
261 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
262 		return PERF_RECORD_MISC_HYPERVISOR;
263 	return PERF_RECORD_MISC_KERNEL;
264 }
265 
266 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
267 {
268 	bool use_siar = regs_use_siar(regs);
269 	unsigned long mmcra = regs->dsisr;
270 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
271 
272 	if (!use_siar)
273 		return perf_flags_from_msr(regs);
274 
275 	/*
276 	 * Check the address in SIAR to identify the
277 	 * privilege levels since the SIER[MSR_HV, MSR_PR]
278 	 * bits are not set for marked events in power10
279 	 * DD1.
280 	 */
281 	if (marked && (ppmu->flags & PPMU_P10_DD1)) {
282 		unsigned long siar = mfspr(SPRN_SIAR);
283 		if (siar) {
284 			if (is_kernel_addr(siar))
285 				return PERF_RECORD_MISC_KERNEL;
286 			return PERF_RECORD_MISC_USER;
287 		} else {
288 			if (is_kernel_addr(regs->nip))
289 				return PERF_RECORD_MISC_KERNEL;
290 			return PERF_RECORD_MISC_USER;
291 		}
292 	}
293 
294 	/*
295 	 * If we don't have flags in MMCRA, rather than using
296 	 * the MSR, we intuit the flags from the address in
297 	 * SIAR which should give slightly more reliable
298 	 * results
299 	 */
300 	if (ppmu->flags & PPMU_NO_SIPR) {
301 		unsigned long siar = mfspr(SPRN_SIAR);
302 		if (is_kernel_addr(siar))
303 			return PERF_RECORD_MISC_KERNEL;
304 		return PERF_RECORD_MISC_USER;
305 	}
306 
307 	/* PR has priority over HV, so order below is important */
308 	if (regs_sipr(regs))
309 		return PERF_RECORD_MISC_USER;
310 
311 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
312 		return PERF_RECORD_MISC_HYPERVISOR;
313 
314 	return PERF_RECORD_MISC_KERNEL;
315 }
316 
317 /*
318  * Overload regs->dsisr to store MMCRA so we only need to read it once
319  * on each interrupt.
320  * Overload regs->dar to store SIER if we have it.
321  * Overload regs->result to specify whether we should use the MSR (result
322  * is zero) or the SIAR (result is non zero).
323  */
324 static inline void perf_read_regs(struct pt_regs *regs)
325 {
326 	unsigned long mmcra = mfspr(SPRN_MMCRA);
327 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
328 	int use_siar;
329 
330 	regs->dsisr = mmcra;
331 
332 	if (ppmu->flags & PPMU_HAS_SIER)
333 		regs->dar = mfspr(SPRN_SIER);
334 
335 	/*
336 	 * If this isn't a PMU exception (eg a software event) the SIAR is
337 	 * not valid. Use pt_regs.
338 	 *
339 	 * If it is a marked event use the SIAR.
340 	 *
341 	 * If the PMU doesn't update the SIAR for non marked events use
342 	 * pt_regs.
343 	 *
344 	 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
345 	 * issue with regs_sipr not being in synch with SIAR in interrupt entry
346 	 * and return sequences, which can result in regs_sipr being true for
347 	 * kernel interrupts and SIAR, which has the effect of causing samples
348 	 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
349 	 * interrupt entry/exit.
350 	 *
351 	 * If the PMU has HV/PR flags then check to see if they
352 	 * place the exception in userspace. If so, use pt_regs. In
353 	 * continuous sampling mode the SIAR and the PMU exception are
354 	 * not synchronised, so they may be many instructions apart.
355 	 * This can result in confusing backtraces. We still want
356 	 * hypervisor samples as well as samples in the kernel with
357 	 * interrupts off hence the userspace check.
358 	 */
359 	if (TRAP(regs) != INTERRUPT_PERFMON)
360 		use_siar = 0;
361 	else if ((ppmu->flags & PPMU_NO_SIAR))
362 		use_siar = 0;
363 	else if (marked)
364 		use_siar = 1;
365 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
366 		use_siar = 0;
367 	else if (!user_mode(regs))
368 		use_siar = 1;
369 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
370 		use_siar = 0;
371 	else
372 		use_siar = 1;
373 
374 	regs->result = use_siar;
375 }
376 
377 /*
378  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
379  * must be sampled only if the SIAR-valid bit is set.
380  *
381  * For unmarked instructions and for processors that don't have the SIAR-Valid
382  * bit, assume that SIAR is valid.
383  */
384 static inline int siar_valid(struct pt_regs *regs)
385 {
386 	unsigned long mmcra = regs->dsisr;
387 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
388 
389 	if (marked) {
390 		/*
391 		 * SIER[SIAR_VALID] is not set for some
392 		 * marked events on power10 DD1, so drop
393 		 * the check for SIER[SIAR_VALID] and return true.
394 		 */
395 		if (ppmu->flags & PPMU_P10_DD1)
396 			return 0x1;
397 		else if (ppmu->flags & PPMU_HAS_SIER)
398 			return regs->dar & SIER_SIAR_VALID;
399 
400 		if (ppmu->flags & PPMU_SIAR_VALID)
401 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
402 	}
403 
404 	return 1;
405 }
406 
407 
408 /* Reset all possible BHRB entries */
409 static void power_pmu_bhrb_reset(void)
410 {
411 	asm volatile(PPC_CLRBHRB);
412 }
413 
414 static void power_pmu_bhrb_enable(struct perf_event *event)
415 {
416 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
417 
418 	if (!ppmu->bhrb_nr)
419 		return;
420 
421 	/* Clear BHRB if we changed task context to avoid data leaks */
422 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
423 		power_pmu_bhrb_reset();
424 		cpuhw->bhrb_context = event->ctx;
425 	}
426 	cpuhw->bhrb_users++;
427 	perf_sched_cb_inc(event->ctx->pmu);
428 }
429 
430 static void power_pmu_bhrb_disable(struct perf_event *event)
431 {
432 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
433 
434 	if (!ppmu->bhrb_nr)
435 		return;
436 
437 	WARN_ON_ONCE(!cpuhw->bhrb_users);
438 	cpuhw->bhrb_users--;
439 	perf_sched_cb_dec(event->ctx->pmu);
440 
441 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
442 		/* BHRB cannot be turned off when other
443 		 * events are active on the PMU.
444 		 */
445 
446 		/* avoid stale pointer */
447 		cpuhw->bhrb_context = NULL;
448 	}
449 }
450 
451 /* Called from ctxsw to prevent one process's branch entries to
452  * mingle with the other process's entries during context switch.
453  */
454 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
455 {
456 	if (!ppmu->bhrb_nr)
457 		return;
458 
459 	if (sched_in)
460 		power_pmu_bhrb_reset();
461 }
462 /* Calculate the to address for a branch */
463 static __u64 power_pmu_bhrb_to(u64 addr)
464 {
465 	unsigned int instr;
466 	__u64 target;
467 
468 	if (is_kernel_addr(addr)) {
469 		if (copy_from_kernel_nofault(&instr, (void *)addr,
470 				sizeof(instr)))
471 			return 0;
472 
473 		return branch_target(&instr);
474 	}
475 
476 	/* Userspace: need copy instruction here then translate it */
477 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
478 			sizeof(instr)))
479 		return 0;
480 
481 	target = branch_target(&instr);
482 	if ((!target) || (instr & BRANCH_ABSOLUTE))
483 		return target;
484 
485 	/* Translate relative branch target from kernel to user address */
486 	return target - (unsigned long)&instr + addr;
487 }
488 
489 /* Processing BHRB entries */
490 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
491 {
492 	u64 val;
493 	u64 addr;
494 	int r_index, u_index, pred;
495 
496 	r_index = 0;
497 	u_index = 0;
498 	while (r_index < ppmu->bhrb_nr) {
499 		/* Assembly read function */
500 		val = read_bhrb(r_index++);
501 		if (!val)
502 			/* Terminal marker: End of valid BHRB entries */
503 			break;
504 		else {
505 			addr = val & BHRB_EA;
506 			pred = val & BHRB_PREDICTION;
507 
508 			if (!addr)
509 				/* invalid entry */
510 				continue;
511 
512 			/*
513 			 * BHRB rolling buffer could very much contain the kernel
514 			 * addresses at this point. Check the privileges before
515 			 * exporting it to userspace (avoid exposure of regions
516 			 * where we could have speculative execution)
517 			 * Incase of ISA v3.1, BHRB will capture only user-space
518 			 * addresses, hence include a check before filtering code
519 			 */
520 			if (!(ppmu->flags & PPMU_ARCH_31) &&
521 			    is_kernel_addr(addr) && event->attr.exclude_kernel)
522 				continue;
523 
524 			/* Branches are read most recent first (ie. mfbhrb 0 is
525 			 * the most recent branch).
526 			 * There are two types of valid entries:
527 			 * 1) a target entry which is the to address of a
528 			 *    computed goto like a blr,bctr,btar.  The next
529 			 *    entry read from the bhrb will be branch
530 			 *    corresponding to this target (ie. the actual
531 			 *    blr/bctr/btar instruction).
532 			 * 2) a from address which is an actual branch.  If a
533 			 *    target entry proceeds this, then this is the
534 			 *    matching branch for that target.  If this is not
535 			 *    following a target entry, then this is a branch
536 			 *    where the target is given as an immediate field
537 			 *    in the instruction (ie. an i or b form branch).
538 			 *    In this case we need to read the instruction from
539 			 *    memory to determine the target/to address.
540 			 */
541 
542 			if (val & BHRB_TARGET) {
543 				/* Target branches use two entries
544 				 * (ie. computed gotos/XL form)
545 				 */
546 				cpuhw->bhrb_entries[u_index].to = addr;
547 				cpuhw->bhrb_entries[u_index].mispred = pred;
548 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
549 
550 				/* Get from address in next entry */
551 				val = read_bhrb(r_index++);
552 				addr = val & BHRB_EA;
553 				if (val & BHRB_TARGET) {
554 					/* Shouldn't have two targets in a
555 					   row.. Reset index and try again */
556 					r_index--;
557 					addr = 0;
558 				}
559 				cpuhw->bhrb_entries[u_index].from = addr;
560 			} else {
561 				/* Branches to immediate field
562 				   (ie I or B form) */
563 				cpuhw->bhrb_entries[u_index].from = addr;
564 				cpuhw->bhrb_entries[u_index].to =
565 					power_pmu_bhrb_to(addr);
566 				cpuhw->bhrb_entries[u_index].mispred = pred;
567 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
568 			}
569 			u_index++;
570 
571 		}
572 	}
573 	cpuhw->bhrb_stack.nr = u_index;
574 	cpuhw->bhrb_stack.hw_idx = -1ULL;
575 	return;
576 }
577 
578 static bool is_ebb_event(struct perf_event *event)
579 {
580 	/*
581 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
582 	 * check that the PMU supports EBB, meaning those that don't can still
583 	 * use bit 63 of the event code for something else if they wish.
584 	 */
585 	return (ppmu->flags & PPMU_ARCH_207S) &&
586 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
587 }
588 
589 static int ebb_event_check(struct perf_event *event)
590 {
591 	struct perf_event *leader = event->group_leader;
592 
593 	/* Event and group leader must agree on EBB */
594 	if (is_ebb_event(leader) != is_ebb_event(event))
595 		return -EINVAL;
596 
597 	if (is_ebb_event(event)) {
598 		if (!(event->attach_state & PERF_ATTACH_TASK))
599 			return -EINVAL;
600 
601 		if (!leader->attr.pinned || !leader->attr.exclusive)
602 			return -EINVAL;
603 
604 		if (event->attr.freq ||
605 		    event->attr.inherit ||
606 		    event->attr.sample_type ||
607 		    event->attr.sample_period ||
608 		    event->attr.enable_on_exec)
609 			return -EINVAL;
610 	}
611 
612 	return 0;
613 }
614 
615 static void ebb_event_add(struct perf_event *event)
616 {
617 	if (!is_ebb_event(event) || current->thread.used_ebb)
618 		return;
619 
620 	/*
621 	 * IFF this is the first time we've added an EBB event, set
622 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
623 	 * userspace. We need this so that we can context switch while
624 	 * userspace is in the EBB handler (where PMXE is 0).
625 	 */
626 	current->thread.used_ebb = 1;
627 	current->thread.mmcr0 |= MMCR0_PMXE;
628 }
629 
630 static void ebb_switch_out(unsigned long mmcr0)
631 {
632 	if (!(mmcr0 & MMCR0_EBE))
633 		return;
634 
635 	current->thread.siar  = mfspr(SPRN_SIAR);
636 	current->thread.sier  = mfspr(SPRN_SIER);
637 	current->thread.sdar  = mfspr(SPRN_SDAR);
638 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
639 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
640 	if (ppmu->flags & PPMU_ARCH_31) {
641 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
642 		current->thread.sier2 = mfspr(SPRN_SIER2);
643 		current->thread.sier3 = mfspr(SPRN_SIER3);
644 	}
645 }
646 
647 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
648 {
649 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
650 
651 	if (!ebb)
652 		goto out;
653 
654 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
655 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
656 
657 	/*
658 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
659 	 * with pmao_restore_workaround() because we may add PMAO but we never
660 	 * clear it here.
661 	 */
662 	mmcr0 |= current->thread.mmcr0;
663 
664 	/*
665 	 * Be careful not to set PMXE if userspace had it cleared. This is also
666 	 * compatible with pmao_restore_workaround() because it has already
667 	 * cleared PMXE and we leave PMAO alone.
668 	 */
669 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
670 		mmcr0 &= ~MMCR0_PMXE;
671 
672 	mtspr(SPRN_SIAR, current->thread.siar);
673 	mtspr(SPRN_SIER, current->thread.sier);
674 	mtspr(SPRN_SDAR, current->thread.sdar);
675 
676 	/*
677 	 * Merge the kernel & user values of MMCR2. The semantics we implement
678 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
679 	 * but not clear bits. If a task wants to be able to clear bits, ie.
680 	 * unfreeze counters, it should not set exclude_xxx in its events and
681 	 * instead manage the MMCR2 entirely by itself.
682 	 */
683 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
684 
685 	if (ppmu->flags & PPMU_ARCH_31) {
686 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
687 		mtspr(SPRN_SIER2, current->thread.sier2);
688 		mtspr(SPRN_SIER3, current->thread.sier3);
689 	}
690 out:
691 	return mmcr0;
692 }
693 
694 static void pmao_restore_workaround(bool ebb)
695 {
696 	unsigned pmcs[6];
697 
698 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
699 		return;
700 
701 	/*
702 	 * On POWER8E there is a hardware defect which affects the PMU context
703 	 * switch logic, ie. power_pmu_disable/enable().
704 	 *
705 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
706 	 * by the hardware. Sometime later the actual PMU exception is
707 	 * delivered.
708 	 *
709 	 * If we context switch, or simply disable/enable, the PMU prior to the
710 	 * exception arriving, the exception will be lost when we clear PMAO.
711 	 *
712 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
713 	 * set, and this _should_ generate an exception. However because of the
714 	 * defect no exception is generated when we write PMAO, and we get
715 	 * stuck with no counters counting but no exception delivered.
716 	 *
717 	 * The workaround is to detect this case and tweak the hardware to
718 	 * create another pending PMU exception.
719 	 *
720 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
721 	 * enabling the PMU. That causes a new exception to be generated in the
722 	 * chip, but we don't take it yet because we have interrupts hard
723 	 * disabled. We then write back the PMU state as we want it to be seen
724 	 * by the exception handler. When we reenable interrupts the exception
725 	 * handler will be called and see the correct state.
726 	 *
727 	 * The logic is the same for EBB, except that the exception is gated by
728 	 * us having interrupts hard disabled as well as the fact that we are
729 	 * not in userspace. The exception is finally delivered when we return
730 	 * to userspace.
731 	 */
732 
733 	/* Only if PMAO is set and PMAO_SYNC is clear */
734 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
735 		return;
736 
737 	/* If we're doing EBB, only if BESCR[GE] is set */
738 	if (ebb && !(current->thread.bescr & BESCR_GE))
739 		return;
740 
741 	/*
742 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
743 	 * disable to actually prevent the PMU exception from firing.
744 	 */
745 	hard_irq_disable();
746 
747 	/*
748 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
749 	 * Using read/write_pmc() in a for loop adds 12 function calls and
750 	 * almost doubles our code size.
751 	 */
752 	pmcs[0] = mfspr(SPRN_PMC1);
753 	pmcs[1] = mfspr(SPRN_PMC2);
754 	pmcs[2] = mfspr(SPRN_PMC3);
755 	pmcs[3] = mfspr(SPRN_PMC4);
756 	pmcs[4] = mfspr(SPRN_PMC5);
757 	pmcs[5] = mfspr(SPRN_PMC6);
758 
759 	/* Ensure all freeze bits are unset */
760 	mtspr(SPRN_MMCR2, 0);
761 
762 	/* Set up PMC6 to overflow in one cycle */
763 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
764 
765 	/* Enable exceptions and unfreeze PMC6 */
766 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
767 
768 	/* Now we need to refreeze and restore the PMCs */
769 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
770 
771 	mtspr(SPRN_PMC1, pmcs[0]);
772 	mtspr(SPRN_PMC2, pmcs[1]);
773 	mtspr(SPRN_PMC3, pmcs[2]);
774 	mtspr(SPRN_PMC4, pmcs[3]);
775 	mtspr(SPRN_PMC5, pmcs[4]);
776 	mtspr(SPRN_PMC6, pmcs[5]);
777 }
778 
779 #endif /* CONFIG_PPC64 */
780 
781 static void perf_event_interrupt(struct pt_regs *regs);
782 
783 /*
784  * Read one performance monitor counter (PMC).
785  */
786 static unsigned long read_pmc(int idx)
787 {
788 	unsigned long val;
789 
790 	switch (idx) {
791 	case 1:
792 		val = mfspr(SPRN_PMC1);
793 		break;
794 	case 2:
795 		val = mfspr(SPRN_PMC2);
796 		break;
797 	case 3:
798 		val = mfspr(SPRN_PMC3);
799 		break;
800 	case 4:
801 		val = mfspr(SPRN_PMC4);
802 		break;
803 	case 5:
804 		val = mfspr(SPRN_PMC5);
805 		break;
806 	case 6:
807 		val = mfspr(SPRN_PMC6);
808 		break;
809 #ifdef CONFIG_PPC64
810 	case 7:
811 		val = mfspr(SPRN_PMC7);
812 		break;
813 	case 8:
814 		val = mfspr(SPRN_PMC8);
815 		break;
816 #endif /* CONFIG_PPC64 */
817 	default:
818 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
819 		val = 0;
820 	}
821 	return val;
822 }
823 
824 /*
825  * Write one PMC.
826  */
827 static void write_pmc(int idx, unsigned long val)
828 {
829 	switch (idx) {
830 	case 1:
831 		mtspr(SPRN_PMC1, val);
832 		break;
833 	case 2:
834 		mtspr(SPRN_PMC2, val);
835 		break;
836 	case 3:
837 		mtspr(SPRN_PMC3, val);
838 		break;
839 	case 4:
840 		mtspr(SPRN_PMC4, val);
841 		break;
842 	case 5:
843 		mtspr(SPRN_PMC5, val);
844 		break;
845 	case 6:
846 		mtspr(SPRN_PMC6, val);
847 		break;
848 #ifdef CONFIG_PPC64
849 	case 7:
850 		mtspr(SPRN_PMC7, val);
851 		break;
852 	case 8:
853 		mtspr(SPRN_PMC8, val);
854 		break;
855 #endif /* CONFIG_PPC64 */
856 	default:
857 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
858 	}
859 }
860 
861 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
862 {
863 	int i, idx;
864 
865 	for (i = 0; i < cpuhw->n_events; i++) {
866 		idx = cpuhw->event[i]->hw.idx;
867 		if ((idx) && ((int)read_pmc(idx) < 0))
868 			return idx;
869 	}
870 
871 	return 0;
872 }
873 
874 /* Called from sysrq_handle_showregs() */
875 void perf_event_print_debug(void)
876 {
877 	unsigned long sdar, sier, flags;
878 	u32 pmcs[MAX_HWEVENTS];
879 	int i;
880 
881 	if (!ppmu) {
882 		pr_info("Performance monitor hardware not registered.\n");
883 		return;
884 	}
885 
886 	if (!ppmu->n_counter)
887 		return;
888 
889 	local_irq_save(flags);
890 
891 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
892 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
893 
894 	for (i = 0; i < ppmu->n_counter; i++)
895 		pmcs[i] = read_pmc(i + 1);
896 
897 	for (; i < MAX_HWEVENTS; i++)
898 		pmcs[i] = 0xdeadbeef;
899 
900 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
901 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
902 
903 	if (ppmu->n_counter > 4)
904 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
905 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
906 
907 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
908 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
909 
910 	sdar = sier = 0;
911 #ifdef CONFIG_PPC64
912 	sdar = mfspr(SPRN_SDAR);
913 
914 	if (ppmu->flags & PPMU_HAS_SIER)
915 		sier = mfspr(SPRN_SIER);
916 
917 	if (ppmu->flags & PPMU_ARCH_207S) {
918 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
919 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
920 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
921 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
922 	}
923 
924 	if (ppmu->flags & PPMU_ARCH_31) {
925 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
926 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
927 	}
928 #endif
929 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
930 		mfspr(SPRN_SIAR), sdar, sier);
931 
932 	local_irq_restore(flags);
933 }
934 
935 /*
936  * Check if a set of events can all go on the PMU at once.
937  * If they can't, this will look at alternative codes for the events
938  * and see if any combination of alternative codes is feasible.
939  * The feasible set is returned in event_id[].
940  */
941 static int power_check_constraints(struct cpu_hw_events *cpuhw,
942 				   u64 event_id[], unsigned int cflags[],
943 				   int n_ev, struct perf_event **event)
944 {
945 	unsigned long mask, value, nv;
946 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
947 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
948 	int i, j;
949 	unsigned long addf = ppmu->add_fields;
950 	unsigned long tadd = ppmu->test_adder;
951 	unsigned long grp_mask = ppmu->group_constraint_mask;
952 	unsigned long grp_val = ppmu->group_constraint_val;
953 
954 	if (n_ev > ppmu->n_counter)
955 		return -1;
956 
957 	/* First see if the events will go on as-is */
958 	for (i = 0; i < n_ev; ++i) {
959 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
960 		    && !ppmu->limited_pmc_event(event_id[i])) {
961 			ppmu->get_alternatives(event_id[i], cflags[i],
962 					       cpuhw->alternatives[i]);
963 			event_id[i] = cpuhw->alternatives[i][0];
964 		}
965 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
966 					 &cpuhw->avalues[i][0], event[i]->attr.config1))
967 			return -1;
968 	}
969 	value = mask = 0;
970 	for (i = 0; i < n_ev; ++i) {
971 		nv = (value | cpuhw->avalues[i][0]) +
972 			(value & cpuhw->avalues[i][0] & addf);
973 
974 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
975 			break;
976 
977 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
978 			& (~grp_mask)) != 0)
979 			break;
980 
981 		value = nv;
982 		mask |= cpuhw->amasks[i][0];
983 	}
984 	if (i == n_ev) {
985 		if ((value & mask & grp_mask) != (mask & grp_val))
986 			return -1;
987 		else
988 			return 0;	/* all OK */
989 	}
990 
991 	/* doesn't work, gather alternatives... */
992 	if (!ppmu->get_alternatives)
993 		return -1;
994 	for (i = 0; i < n_ev; ++i) {
995 		choice[i] = 0;
996 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
997 						  cpuhw->alternatives[i]);
998 		for (j = 1; j < n_alt[i]; ++j)
999 			ppmu->get_constraint(cpuhw->alternatives[i][j],
1000 					     &cpuhw->amasks[i][j],
1001 					     &cpuhw->avalues[i][j],
1002 					     event[i]->attr.config1);
1003 	}
1004 
1005 	/* enumerate all possibilities and see if any will work */
1006 	i = 0;
1007 	j = -1;
1008 	value = mask = nv = 0;
1009 	while (i < n_ev) {
1010 		if (j >= 0) {
1011 			/* we're backtracking, restore context */
1012 			value = svalues[i];
1013 			mask = smasks[i];
1014 			j = choice[i];
1015 		}
1016 		/*
1017 		 * See if any alternative k for event_id i,
1018 		 * where k > j, will satisfy the constraints.
1019 		 */
1020 		while (++j < n_alt[i]) {
1021 			nv = (value | cpuhw->avalues[i][j]) +
1022 				(value & cpuhw->avalues[i][j] & addf);
1023 			if ((((nv + tadd) ^ value) & mask) == 0 &&
1024 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
1025 			     & cpuhw->amasks[i][j]) == 0)
1026 				break;
1027 		}
1028 		if (j >= n_alt[i]) {
1029 			/*
1030 			 * No feasible alternative, backtrack
1031 			 * to event_id i-1 and continue enumerating its
1032 			 * alternatives from where we got up to.
1033 			 */
1034 			if (--i < 0)
1035 				return -1;
1036 		} else {
1037 			/*
1038 			 * Found a feasible alternative for event_id i,
1039 			 * remember where we got up to with this event_id,
1040 			 * go on to the next event_id, and start with
1041 			 * the first alternative for it.
1042 			 */
1043 			choice[i] = j;
1044 			svalues[i] = value;
1045 			smasks[i] = mask;
1046 			value = nv;
1047 			mask |= cpuhw->amasks[i][j];
1048 			++i;
1049 			j = -1;
1050 		}
1051 	}
1052 
1053 	/* OK, we have a feasible combination, tell the caller the solution */
1054 	for (i = 0; i < n_ev; ++i)
1055 		event_id[i] = cpuhw->alternatives[i][choice[i]];
1056 	return 0;
1057 }
1058 
1059 /*
1060  * Check if newly-added events have consistent settings for
1061  * exclude_{user,kernel,hv} with each other and any previously
1062  * added events.
1063  */
1064 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1065 			  int n_prev, int n_new)
1066 {
1067 	int eu = 0, ek = 0, eh = 0;
1068 	int i, n, first;
1069 	struct perf_event *event;
1070 
1071 	/*
1072 	 * If the PMU we're on supports per event exclude settings then we
1073 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1074 	 * per event exclude and limited PMCs.
1075 	 */
1076 	if (ppmu->flags & PPMU_ARCH_207S)
1077 		return 0;
1078 
1079 	n = n_prev + n_new;
1080 	if (n <= 1)
1081 		return 0;
1082 
1083 	first = 1;
1084 	for (i = 0; i < n; ++i) {
1085 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1086 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1087 			continue;
1088 		}
1089 		event = ctrs[i];
1090 		if (first) {
1091 			eu = event->attr.exclude_user;
1092 			ek = event->attr.exclude_kernel;
1093 			eh = event->attr.exclude_hv;
1094 			first = 0;
1095 		} else if (event->attr.exclude_user != eu ||
1096 			   event->attr.exclude_kernel != ek ||
1097 			   event->attr.exclude_hv != eh) {
1098 			return -EAGAIN;
1099 		}
1100 	}
1101 
1102 	if (eu || ek || eh)
1103 		for (i = 0; i < n; ++i)
1104 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1105 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1106 
1107 	return 0;
1108 }
1109 
1110 static u64 check_and_compute_delta(u64 prev, u64 val)
1111 {
1112 	u64 delta = (val - prev) & 0xfffffffful;
1113 
1114 	/*
1115 	 * POWER7 can roll back counter values, if the new value is smaller
1116 	 * than the previous value it will cause the delta and the counter to
1117 	 * have bogus values unless we rolled a counter over.  If a coutner is
1118 	 * rolled back, it will be smaller, but within 256, which is the maximum
1119 	 * number of events to rollback at once.  If we detect a rollback
1120 	 * return 0.  This can lead to a small lack of precision in the
1121 	 * counters.
1122 	 */
1123 	if (prev > val && (prev - val) < 256)
1124 		delta = 0;
1125 
1126 	return delta;
1127 }
1128 
1129 static void power_pmu_read(struct perf_event *event)
1130 {
1131 	s64 val, delta, prev;
1132 
1133 	if (event->hw.state & PERF_HES_STOPPED)
1134 		return;
1135 
1136 	if (!event->hw.idx)
1137 		return;
1138 
1139 	if (is_ebb_event(event)) {
1140 		val = read_pmc(event->hw.idx);
1141 		local64_set(&event->hw.prev_count, val);
1142 		return;
1143 	}
1144 
1145 	/*
1146 	 * Performance monitor interrupts come even when interrupts
1147 	 * are soft-disabled, as long as interrupts are hard-enabled.
1148 	 * Therefore we treat them like NMIs.
1149 	 */
1150 	do {
1151 		prev = local64_read(&event->hw.prev_count);
1152 		barrier();
1153 		val = read_pmc(event->hw.idx);
1154 		delta = check_and_compute_delta(prev, val);
1155 		if (!delta)
1156 			return;
1157 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1158 
1159 	local64_add(delta, &event->count);
1160 
1161 	/*
1162 	 * A number of places program the PMC with (0x80000000 - period_left).
1163 	 * We never want period_left to be less than 1 because we will program
1164 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1165 	 * roll around to 0 before taking an exception. We have seen this
1166 	 * on POWER8.
1167 	 *
1168 	 * To fix this, clamp the minimum value of period_left to 1.
1169 	 */
1170 	do {
1171 		prev = local64_read(&event->hw.period_left);
1172 		val = prev - delta;
1173 		if (val < 1)
1174 			val = 1;
1175 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1176 }
1177 
1178 /*
1179  * On some machines, PMC5 and PMC6 can't be written, don't respect
1180  * the freeze conditions, and don't generate interrupts.  This tells
1181  * us if `event' is using such a PMC.
1182  */
1183 static int is_limited_pmc(int pmcnum)
1184 {
1185 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1186 		&& (pmcnum == 5 || pmcnum == 6);
1187 }
1188 
1189 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1190 				    unsigned long pmc5, unsigned long pmc6)
1191 {
1192 	struct perf_event *event;
1193 	u64 val, prev, delta;
1194 	int i;
1195 
1196 	for (i = 0; i < cpuhw->n_limited; ++i) {
1197 		event = cpuhw->limited_counter[i];
1198 		if (!event->hw.idx)
1199 			continue;
1200 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1201 		prev = local64_read(&event->hw.prev_count);
1202 		event->hw.idx = 0;
1203 		delta = check_and_compute_delta(prev, val);
1204 		if (delta)
1205 			local64_add(delta, &event->count);
1206 	}
1207 }
1208 
1209 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1210 				  unsigned long pmc5, unsigned long pmc6)
1211 {
1212 	struct perf_event *event;
1213 	u64 val, prev;
1214 	int i;
1215 
1216 	for (i = 0; i < cpuhw->n_limited; ++i) {
1217 		event = cpuhw->limited_counter[i];
1218 		event->hw.idx = cpuhw->limited_hwidx[i];
1219 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1220 		prev = local64_read(&event->hw.prev_count);
1221 		if (check_and_compute_delta(prev, val))
1222 			local64_set(&event->hw.prev_count, val);
1223 		perf_event_update_userpage(event);
1224 	}
1225 }
1226 
1227 /*
1228  * Since limited events don't respect the freeze conditions, we
1229  * have to read them immediately after freezing or unfreezing the
1230  * other events.  We try to keep the values from the limited
1231  * events as consistent as possible by keeping the delay (in
1232  * cycles and instructions) between freezing/unfreezing and reading
1233  * the limited events as small and consistent as possible.
1234  * Therefore, if any limited events are in use, we read them
1235  * both, and always in the same order, to minimize variability,
1236  * and do it inside the same asm that writes MMCR0.
1237  */
1238 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1239 {
1240 	unsigned long pmc5, pmc6;
1241 
1242 	if (!cpuhw->n_limited) {
1243 		mtspr(SPRN_MMCR0, mmcr0);
1244 		return;
1245 	}
1246 
1247 	/*
1248 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1249 	 * To ensure we don't get a performance monitor interrupt
1250 	 * between writing MMCR0 and freezing/thawing the limited
1251 	 * events, we first write MMCR0 with the event overflow
1252 	 * interrupt enable bits turned off.
1253 	 */
1254 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1255 		     : "=&r" (pmc5), "=&r" (pmc6)
1256 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1257 		       "i" (SPRN_MMCR0),
1258 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1259 
1260 	if (mmcr0 & MMCR0_FC)
1261 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1262 	else
1263 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1264 
1265 	/*
1266 	 * Write the full MMCR0 including the event overflow interrupt
1267 	 * enable bits, if necessary.
1268 	 */
1269 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1270 		mtspr(SPRN_MMCR0, mmcr0);
1271 }
1272 
1273 /*
1274  * Disable all events to prevent PMU interrupts and to allow
1275  * events to be added or removed.
1276  */
1277 static void power_pmu_disable(struct pmu *pmu)
1278 {
1279 	struct cpu_hw_events *cpuhw;
1280 	unsigned long flags, mmcr0, val, mmcra;
1281 
1282 	if (!ppmu)
1283 		return;
1284 	local_irq_save(flags);
1285 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1286 
1287 	if (!cpuhw->disabled) {
1288 		/*
1289 		 * Check if we ever enabled the PMU on this cpu.
1290 		 */
1291 		if (!cpuhw->pmcs_enabled) {
1292 			ppc_enable_pmcs();
1293 			cpuhw->pmcs_enabled = 1;
1294 		}
1295 
1296 		/*
1297 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1298 		 * Also clear PMXE to disable PMI's getting triggered in some
1299 		 * corner cases during PMU disable.
1300 		 */
1301 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1302 		val |= MMCR0_FC;
1303 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1304 			 MMCR0_PMXE | MMCR0_FC56);
1305 		/* Set mmcr0 PMCCEXT for p10 */
1306 		if (ppmu->flags & PPMU_ARCH_31)
1307 			val |= MMCR0_PMCCEXT;
1308 
1309 		/*
1310 		 * The barrier is to make sure the mtspr has been
1311 		 * executed and the PMU has frozen the events etc.
1312 		 * before we return.
1313 		 */
1314 		write_mmcr0(cpuhw, val);
1315 		mb();
1316 		isync();
1317 
1318 		/*
1319 		 * Some corner cases could clear the PMU counter overflow
1320 		 * while a masked PMI is pending. One such case is when
1321 		 * a PMI happens during interrupt replay and perf counter
1322 		 * values are cleared by PMU callbacks before replay.
1323 		 *
1324 		 * If any PMC corresponding to the active PMU events are
1325 		 * overflown, disable the interrupt by clearing the paca
1326 		 * bit for PMI since we are disabling the PMU now.
1327 		 * Otherwise provide a warning if there is PMI pending, but
1328 		 * no counter is found overflown.
1329 		 */
1330 		if (any_pmc_overflown(cpuhw))
1331 			clear_pmi_irq_pending();
1332 		else
1333 			WARN_ON(pmi_irq_pending());
1334 
1335 		val = mmcra = cpuhw->mmcr.mmcra;
1336 
1337 		/*
1338 		 * Disable instruction sampling if it was enabled
1339 		 */
1340 		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1341 			val &= ~MMCRA_SAMPLE_ENABLE;
1342 
1343 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1344 		if (ppmu->flags & PPMU_ARCH_31)
1345 			val |= MMCRA_BHRB_DISABLE;
1346 
1347 		/*
1348 		 * Write SPRN_MMCRA if mmcra has either disabled
1349 		 * instruction sampling or BHRB.
1350 		 */
1351 		if (val != mmcra) {
1352 			mtspr(SPRN_MMCRA, mmcra);
1353 			mb();
1354 			isync();
1355 		}
1356 
1357 		cpuhw->disabled = 1;
1358 		cpuhw->n_added = 0;
1359 
1360 		ebb_switch_out(mmcr0);
1361 
1362 #ifdef CONFIG_PPC64
1363 		/*
1364 		 * These are readable by userspace, may contain kernel
1365 		 * addresses and are not switched by context switch, so clear
1366 		 * them now to avoid leaking anything to userspace in general
1367 		 * including to another process.
1368 		 */
1369 		if (ppmu->flags & PPMU_ARCH_207S) {
1370 			mtspr(SPRN_SDAR, 0);
1371 			mtspr(SPRN_SIAR, 0);
1372 		}
1373 #endif
1374 	}
1375 
1376 	local_irq_restore(flags);
1377 }
1378 
1379 /*
1380  * Re-enable all events if disable == 0.
1381  * If we were previously disabled and events were added, then
1382  * put the new config on the PMU.
1383  */
1384 static void power_pmu_enable(struct pmu *pmu)
1385 {
1386 	struct perf_event *event;
1387 	struct cpu_hw_events *cpuhw;
1388 	unsigned long flags;
1389 	long i;
1390 	unsigned long val, mmcr0;
1391 	s64 left;
1392 	unsigned int hwc_index[MAX_HWEVENTS];
1393 	int n_lim;
1394 	int idx;
1395 	bool ebb;
1396 
1397 	if (!ppmu)
1398 		return;
1399 	local_irq_save(flags);
1400 
1401 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1402 	if (!cpuhw->disabled)
1403 		goto out;
1404 
1405 	if (cpuhw->n_events == 0) {
1406 		ppc_set_pmu_inuse(0);
1407 		goto out;
1408 	}
1409 
1410 	cpuhw->disabled = 0;
1411 
1412 	/*
1413 	 * EBB requires an exclusive group and all events must have the EBB
1414 	 * flag set, or not set, so we can just check a single event. Also we
1415 	 * know we have at least one event.
1416 	 */
1417 	ebb = is_ebb_event(cpuhw->event[0]);
1418 
1419 	/*
1420 	 * If we didn't change anything, or only removed events,
1421 	 * no need to recalculate MMCR* settings and reset the PMCs.
1422 	 * Just reenable the PMU with the current MMCR* settings
1423 	 * (possibly updated for removal of events).
1424 	 */
1425 	if (!cpuhw->n_added) {
1426 		/*
1427 		 * If there is any active event with an overflown PMC
1428 		 * value, set back PACA_IRQ_PMI which would have been
1429 		 * cleared in power_pmu_disable().
1430 		 */
1431 		hard_irq_disable();
1432 		if (any_pmc_overflown(cpuhw))
1433 			set_pmi_irq_pending();
1434 
1435 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1436 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1437 		if (ppmu->flags & PPMU_ARCH_31)
1438 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1439 		goto out_enable;
1440 	}
1441 
1442 	/*
1443 	 * Clear all MMCR settings and recompute them for the new set of events.
1444 	 */
1445 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1446 
1447 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1448 			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1449 		/* shouldn't ever get here */
1450 		printk(KERN_ERR "oops compute_mmcr failed\n");
1451 		goto out;
1452 	}
1453 
1454 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1455 		/*
1456 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1457 		 * bits for the first event. We have already checked that all
1458 		 * events have the same value for these bits as the first event.
1459 		 */
1460 		event = cpuhw->event[0];
1461 		if (event->attr.exclude_user)
1462 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1463 		if (event->attr.exclude_kernel)
1464 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1465 		if (event->attr.exclude_hv)
1466 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1467 	}
1468 
1469 	/*
1470 	 * Write the new configuration to MMCR* with the freeze
1471 	 * bit set and set the hardware events to their initial values.
1472 	 * Then unfreeze the events.
1473 	 */
1474 	ppc_set_pmu_inuse(1);
1475 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1476 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1477 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1478 				| MMCR0_FC);
1479 	if (ppmu->flags & PPMU_ARCH_207S)
1480 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1481 
1482 	if (ppmu->flags & PPMU_ARCH_31)
1483 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1484 
1485 	/*
1486 	 * Read off any pre-existing events that need to move
1487 	 * to another PMC.
1488 	 */
1489 	for (i = 0; i < cpuhw->n_events; ++i) {
1490 		event = cpuhw->event[i];
1491 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1492 			power_pmu_read(event);
1493 			write_pmc(event->hw.idx, 0);
1494 			event->hw.idx = 0;
1495 		}
1496 	}
1497 
1498 	/*
1499 	 * Initialize the PMCs for all the new and moved events.
1500 	 */
1501 	cpuhw->n_limited = n_lim = 0;
1502 	for (i = 0; i < cpuhw->n_events; ++i) {
1503 		event = cpuhw->event[i];
1504 		if (event->hw.idx)
1505 			continue;
1506 		idx = hwc_index[i] + 1;
1507 		if (is_limited_pmc(idx)) {
1508 			cpuhw->limited_counter[n_lim] = event;
1509 			cpuhw->limited_hwidx[n_lim] = idx;
1510 			++n_lim;
1511 			continue;
1512 		}
1513 
1514 		if (ebb)
1515 			val = local64_read(&event->hw.prev_count);
1516 		else {
1517 			val = 0;
1518 			if (event->hw.sample_period) {
1519 				left = local64_read(&event->hw.period_left);
1520 				if (left < 0x80000000L)
1521 					val = 0x80000000L - left;
1522 			}
1523 			local64_set(&event->hw.prev_count, val);
1524 		}
1525 
1526 		event->hw.idx = idx;
1527 		if (event->hw.state & PERF_HES_STOPPED)
1528 			val = 0;
1529 		write_pmc(idx, val);
1530 
1531 		perf_event_update_userpage(event);
1532 	}
1533 	cpuhw->n_limited = n_lim;
1534 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1535 
1536  out_enable:
1537 	pmao_restore_workaround(ebb);
1538 
1539 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1540 
1541 	mb();
1542 	if (cpuhw->bhrb_users)
1543 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1544 
1545 	write_mmcr0(cpuhw, mmcr0);
1546 
1547 	/*
1548 	 * Enable instruction sampling if necessary
1549 	 */
1550 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1551 		mb();
1552 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1553 	}
1554 
1555  out:
1556 
1557 	local_irq_restore(flags);
1558 }
1559 
1560 static int collect_events(struct perf_event *group, int max_count,
1561 			  struct perf_event *ctrs[], u64 *events,
1562 			  unsigned int *flags)
1563 {
1564 	int n = 0;
1565 	struct perf_event *event;
1566 
1567 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1568 		if (n >= max_count)
1569 			return -1;
1570 		ctrs[n] = group;
1571 		flags[n] = group->hw.event_base;
1572 		events[n++] = group->hw.config;
1573 	}
1574 	for_each_sibling_event(event, group) {
1575 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1576 		    event->state != PERF_EVENT_STATE_OFF) {
1577 			if (n >= max_count)
1578 				return -1;
1579 			ctrs[n] = event;
1580 			flags[n] = event->hw.event_base;
1581 			events[n++] = event->hw.config;
1582 		}
1583 	}
1584 	return n;
1585 }
1586 
1587 /*
1588  * Add an event to the PMU.
1589  * If all events are not already frozen, then we disable and
1590  * re-enable the PMU in order to get hw_perf_enable to do the
1591  * actual work of reconfiguring the PMU.
1592  */
1593 static int power_pmu_add(struct perf_event *event, int ef_flags)
1594 {
1595 	struct cpu_hw_events *cpuhw;
1596 	unsigned long flags;
1597 	int n0;
1598 	int ret = -EAGAIN;
1599 
1600 	local_irq_save(flags);
1601 	perf_pmu_disable(event->pmu);
1602 
1603 	/*
1604 	 * Add the event to the list (if there is room)
1605 	 * and check whether the total set is still feasible.
1606 	 */
1607 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1608 	n0 = cpuhw->n_events;
1609 	if (n0 >= ppmu->n_counter)
1610 		goto out;
1611 	cpuhw->event[n0] = event;
1612 	cpuhw->events[n0] = event->hw.config;
1613 	cpuhw->flags[n0] = event->hw.event_base;
1614 
1615 	/*
1616 	 * This event may have been disabled/stopped in record_and_restart()
1617 	 * because we exceeded the ->event_limit. If re-starting the event,
1618 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1619 	 * notification is re-enabled.
1620 	 */
1621 	if (!(ef_flags & PERF_EF_START))
1622 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1623 	else
1624 		event->hw.state = 0;
1625 
1626 	/*
1627 	 * If group events scheduling transaction was started,
1628 	 * skip the schedulability test here, it will be performed
1629 	 * at commit time(->commit_txn) as a whole
1630 	 */
1631 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1632 		goto nocheck;
1633 
1634 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1635 		goto out;
1636 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1637 		goto out;
1638 	event->hw.config = cpuhw->events[n0];
1639 
1640 nocheck:
1641 	ebb_event_add(event);
1642 
1643 	++cpuhw->n_events;
1644 	++cpuhw->n_added;
1645 
1646 	ret = 0;
1647  out:
1648 	if (has_branch_stack(event)) {
1649 		u64 bhrb_filter = -1;
1650 
1651 		if (ppmu->bhrb_filter_map)
1652 			bhrb_filter = ppmu->bhrb_filter_map(
1653 				event->attr.branch_sample_type);
1654 
1655 		if (bhrb_filter != -1) {
1656 			cpuhw->bhrb_filter = bhrb_filter;
1657 			power_pmu_bhrb_enable(event);
1658 		}
1659 	}
1660 
1661 	perf_pmu_enable(event->pmu);
1662 	local_irq_restore(flags);
1663 	return ret;
1664 }
1665 
1666 /*
1667  * Remove an event from the PMU.
1668  */
1669 static void power_pmu_del(struct perf_event *event, int ef_flags)
1670 {
1671 	struct cpu_hw_events *cpuhw;
1672 	long i;
1673 	unsigned long flags;
1674 
1675 	local_irq_save(flags);
1676 	perf_pmu_disable(event->pmu);
1677 
1678 	power_pmu_read(event);
1679 
1680 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1681 	for (i = 0; i < cpuhw->n_events; ++i) {
1682 		if (event == cpuhw->event[i]) {
1683 			while (++i < cpuhw->n_events) {
1684 				cpuhw->event[i-1] = cpuhw->event[i];
1685 				cpuhw->events[i-1] = cpuhw->events[i];
1686 				cpuhw->flags[i-1] = cpuhw->flags[i];
1687 			}
1688 			--cpuhw->n_events;
1689 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1690 			if (event->hw.idx) {
1691 				write_pmc(event->hw.idx, 0);
1692 				event->hw.idx = 0;
1693 			}
1694 			perf_event_update_userpage(event);
1695 			break;
1696 		}
1697 	}
1698 	for (i = 0; i < cpuhw->n_limited; ++i)
1699 		if (event == cpuhw->limited_counter[i])
1700 			break;
1701 	if (i < cpuhw->n_limited) {
1702 		while (++i < cpuhw->n_limited) {
1703 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1704 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1705 		}
1706 		--cpuhw->n_limited;
1707 	}
1708 	if (cpuhw->n_events == 0) {
1709 		/* disable exceptions if no events are running */
1710 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1711 	}
1712 
1713 	if (has_branch_stack(event))
1714 		power_pmu_bhrb_disable(event);
1715 
1716 	perf_pmu_enable(event->pmu);
1717 	local_irq_restore(flags);
1718 }
1719 
1720 /*
1721  * POWER-PMU does not support disabling individual counters, hence
1722  * program their cycle counter to their max value and ignore the interrupts.
1723  */
1724 
1725 static void power_pmu_start(struct perf_event *event, int ef_flags)
1726 {
1727 	unsigned long flags;
1728 	s64 left;
1729 	unsigned long val;
1730 
1731 	if (!event->hw.idx || !event->hw.sample_period)
1732 		return;
1733 
1734 	if (!(event->hw.state & PERF_HES_STOPPED))
1735 		return;
1736 
1737 	if (ef_flags & PERF_EF_RELOAD)
1738 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1739 
1740 	local_irq_save(flags);
1741 	perf_pmu_disable(event->pmu);
1742 
1743 	event->hw.state = 0;
1744 	left = local64_read(&event->hw.period_left);
1745 
1746 	val = 0;
1747 	if (left < 0x80000000L)
1748 		val = 0x80000000L - left;
1749 
1750 	write_pmc(event->hw.idx, val);
1751 
1752 	perf_event_update_userpage(event);
1753 	perf_pmu_enable(event->pmu);
1754 	local_irq_restore(flags);
1755 }
1756 
1757 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1758 {
1759 	unsigned long flags;
1760 
1761 	if (!event->hw.idx || !event->hw.sample_period)
1762 		return;
1763 
1764 	if (event->hw.state & PERF_HES_STOPPED)
1765 		return;
1766 
1767 	local_irq_save(flags);
1768 	perf_pmu_disable(event->pmu);
1769 
1770 	power_pmu_read(event);
1771 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1772 	write_pmc(event->hw.idx, 0);
1773 
1774 	perf_event_update_userpage(event);
1775 	perf_pmu_enable(event->pmu);
1776 	local_irq_restore(flags);
1777 }
1778 
1779 /*
1780  * Start group events scheduling transaction
1781  * Set the flag to make pmu::enable() not perform the
1782  * schedulability test, it will be performed at commit time
1783  *
1784  * We only support PERF_PMU_TXN_ADD transactions. Save the
1785  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1786  * transactions.
1787  */
1788 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1789 {
1790 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1791 
1792 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1793 
1794 	cpuhw->txn_flags = txn_flags;
1795 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1796 		return;
1797 
1798 	perf_pmu_disable(pmu);
1799 	cpuhw->n_txn_start = cpuhw->n_events;
1800 }
1801 
1802 /*
1803  * Stop group events scheduling transaction
1804  * Clear the flag and pmu::enable() will perform the
1805  * schedulability test.
1806  */
1807 static void power_pmu_cancel_txn(struct pmu *pmu)
1808 {
1809 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1810 	unsigned int txn_flags;
1811 
1812 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1813 
1814 	txn_flags = cpuhw->txn_flags;
1815 	cpuhw->txn_flags = 0;
1816 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1817 		return;
1818 
1819 	perf_pmu_enable(pmu);
1820 }
1821 
1822 /*
1823  * Commit group events scheduling transaction
1824  * Perform the group schedulability test as a whole
1825  * Return 0 if success
1826  */
1827 static int power_pmu_commit_txn(struct pmu *pmu)
1828 {
1829 	struct cpu_hw_events *cpuhw;
1830 	long i, n;
1831 
1832 	if (!ppmu)
1833 		return -EAGAIN;
1834 
1835 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1836 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1837 
1838 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1839 		cpuhw->txn_flags = 0;
1840 		return 0;
1841 	}
1842 
1843 	n = cpuhw->n_events;
1844 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1845 		return -EAGAIN;
1846 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1847 	if (i < 0)
1848 		return -EAGAIN;
1849 
1850 	for (i = cpuhw->n_txn_start; i < n; ++i)
1851 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1852 
1853 	cpuhw->txn_flags = 0;
1854 	perf_pmu_enable(pmu);
1855 	return 0;
1856 }
1857 
1858 /*
1859  * Return 1 if we might be able to put event on a limited PMC,
1860  * or 0 if not.
1861  * An event can only go on a limited PMC if it counts something
1862  * that a limited PMC can count, doesn't require interrupts, and
1863  * doesn't exclude any processor mode.
1864  */
1865 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1866 				 unsigned int flags)
1867 {
1868 	int n;
1869 	u64 alt[MAX_EVENT_ALTERNATIVES];
1870 
1871 	if (event->attr.exclude_user
1872 	    || event->attr.exclude_kernel
1873 	    || event->attr.exclude_hv
1874 	    || event->attr.sample_period)
1875 		return 0;
1876 
1877 	if (ppmu->limited_pmc_event(ev))
1878 		return 1;
1879 
1880 	/*
1881 	 * The requested event_id isn't on a limited PMC already;
1882 	 * see if any alternative code goes on a limited PMC.
1883 	 */
1884 	if (!ppmu->get_alternatives)
1885 		return 0;
1886 
1887 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1888 	n = ppmu->get_alternatives(ev, flags, alt);
1889 
1890 	return n > 0;
1891 }
1892 
1893 /*
1894  * Find an alternative event_id that goes on a normal PMC, if possible,
1895  * and return the event_id code, or 0 if there is no such alternative.
1896  * (Note: event_id code 0 is "don't count" on all machines.)
1897  */
1898 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1899 {
1900 	u64 alt[MAX_EVENT_ALTERNATIVES];
1901 	int n;
1902 
1903 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1904 	n = ppmu->get_alternatives(ev, flags, alt);
1905 	if (!n)
1906 		return 0;
1907 	return alt[0];
1908 }
1909 
1910 /* Number of perf_events counting hardware events */
1911 static atomic_t num_events;
1912 /* Used to avoid races in calling reserve/release_pmc_hardware */
1913 static DEFINE_MUTEX(pmc_reserve_mutex);
1914 
1915 /*
1916  * Release the PMU if this is the last perf_event.
1917  */
1918 static void hw_perf_event_destroy(struct perf_event *event)
1919 {
1920 	if (!atomic_add_unless(&num_events, -1, 1)) {
1921 		mutex_lock(&pmc_reserve_mutex);
1922 		if (atomic_dec_return(&num_events) == 0)
1923 			release_pmc_hardware();
1924 		mutex_unlock(&pmc_reserve_mutex);
1925 	}
1926 }
1927 
1928 /*
1929  * Translate a generic cache event_id config to a raw event_id code.
1930  */
1931 static int hw_perf_cache_event(u64 config, u64 *eventp)
1932 {
1933 	unsigned long type, op, result;
1934 	u64 ev;
1935 
1936 	if (!ppmu->cache_events)
1937 		return -EINVAL;
1938 
1939 	/* unpack config */
1940 	type = config & 0xff;
1941 	op = (config >> 8) & 0xff;
1942 	result = (config >> 16) & 0xff;
1943 
1944 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1945 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1946 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1947 		return -EINVAL;
1948 
1949 	ev = (*ppmu->cache_events)[type][op][result];
1950 	if (ev == 0)
1951 		return -EOPNOTSUPP;
1952 	if (ev == -1)
1953 		return -EINVAL;
1954 	*eventp = ev;
1955 	return 0;
1956 }
1957 
1958 static bool is_event_blacklisted(u64 ev)
1959 {
1960 	int i;
1961 
1962 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1963 		if (ppmu->blacklist_ev[i] == ev)
1964 			return true;
1965 	}
1966 
1967 	return false;
1968 }
1969 
1970 static int power_pmu_event_init(struct perf_event *event)
1971 {
1972 	u64 ev;
1973 	unsigned long flags, irq_flags;
1974 	struct perf_event *ctrs[MAX_HWEVENTS];
1975 	u64 events[MAX_HWEVENTS];
1976 	unsigned int cflags[MAX_HWEVENTS];
1977 	int n;
1978 	int err;
1979 	struct cpu_hw_events *cpuhw;
1980 
1981 	if (!ppmu)
1982 		return -ENOENT;
1983 
1984 	if (has_branch_stack(event)) {
1985 	        /* PMU has BHRB enabled */
1986 		if (!(ppmu->flags & PPMU_ARCH_207S))
1987 			return -EOPNOTSUPP;
1988 	}
1989 
1990 	switch (event->attr.type) {
1991 	case PERF_TYPE_HARDWARE:
1992 		ev = event->attr.config;
1993 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1994 			return -EOPNOTSUPP;
1995 
1996 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1997 			return -EINVAL;
1998 		ev = ppmu->generic_events[ev];
1999 		break;
2000 	case PERF_TYPE_HW_CACHE:
2001 		err = hw_perf_cache_event(event->attr.config, &ev);
2002 		if (err)
2003 			return err;
2004 
2005 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2006 			return -EINVAL;
2007 		break;
2008 	case PERF_TYPE_RAW:
2009 		ev = event->attr.config;
2010 
2011 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2012 			return -EINVAL;
2013 		break;
2014 	default:
2015 		return -ENOENT;
2016 	}
2017 
2018 	/*
2019 	 * PMU config registers have fields that are
2020 	 * reserved and some specific values for bit fields are reserved.
2021 	 * For ex., MMCRA[61:62] is Randome Sampling Mode (SM)
2022 	 * and value of 0b11 to this field is reserved.
2023 	 * Check for invalid values in attr.config.
2024 	 */
2025 	if (ppmu->check_attr_config &&
2026 	    ppmu->check_attr_config(event))
2027 		return -EINVAL;
2028 
2029 	event->hw.config_base = ev;
2030 	event->hw.idx = 0;
2031 
2032 	/*
2033 	 * If we are not running on a hypervisor, force the
2034 	 * exclude_hv bit to 0 so that we don't care what
2035 	 * the user set it to.
2036 	 */
2037 	if (!firmware_has_feature(FW_FEATURE_LPAR))
2038 		event->attr.exclude_hv = 0;
2039 
2040 	/*
2041 	 * If this is a per-task event, then we can use
2042 	 * PM_RUN_* events interchangeably with their non RUN_*
2043 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2044 	 * XXX we should check if the task is an idle task.
2045 	 */
2046 	flags = 0;
2047 	if (event->attach_state & PERF_ATTACH_TASK)
2048 		flags |= PPMU_ONLY_COUNT_RUN;
2049 
2050 	/*
2051 	 * If this machine has limited events, check whether this
2052 	 * event_id could go on a limited event.
2053 	 */
2054 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2055 		if (can_go_on_limited_pmc(event, ev, flags)) {
2056 			flags |= PPMU_LIMITED_PMC_OK;
2057 		} else if (ppmu->limited_pmc_event(ev)) {
2058 			/*
2059 			 * The requested event_id is on a limited PMC,
2060 			 * but we can't use a limited PMC; see if any
2061 			 * alternative goes on a normal PMC.
2062 			 */
2063 			ev = normal_pmc_alternative(ev, flags);
2064 			if (!ev)
2065 				return -EINVAL;
2066 		}
2067 	}
2068 
2069 	/* Extra checks for EBB */
2070 	err = ebb_event_check(event);
2071 	if (err)
2072 		return err;
2073 
2074 	/*
2075 	 * If this is in a group, check if it can go on with all the
2076 	 * other hardware events in the group.  We assume the event
2077 	 * hasn't been linked into its leader's sibling list at this point.
2078 	 */
2079 	n = 0;
2080 	if (event->group_leader != event) {
2081 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
2082 				   ctrs, events, cflags);
2083 		if (n < 0)
2084 			return -EINVAL;
2085 	}
2086 	events[n] = ev;
2087 	ctrs[n] = event;
2088 	cflags[n] = flags;
2089 	if (check_excludes(ctrs, cflags, n, 1))
2090 		return -EINVAL;
2091 
2092 	local_irq_save(irq_flags);
2093 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2094 
2095 	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2096 
2097 	if (has_branch_stack(event)) {
2098 		u64 bhrb_filter = -1;
2099 
2100 		if (ppmu->bhrb_filter_map)
2101 			bhrb_filter = ppmu->bhrb_filter_map(
2102 					event->attr.branch_sample_type);
2103 
2104 		if (bhrb_filter == -1) {
2105 			local_irq_restore(irq_flags);
2106 			return -EOPNOTSUPP;
2107 		}
2108 		cpuhw->bhrb_filter = bhrb_filter;
2109 	}
2110 
2111 	local_irq_restore(irq_flags);
2112 	if (err)
2113 		return -EINVAL;
2114 
2115 	event->hw.config = events[n];
2116 	event->hw.event_base = cflags[n];
2117 	event->hw.last_period = event->hw.sample_period;
2118 	local64_set(&event->hw.period_left, event->hw.last_period);
2119 
2120 	/*
2121 	 * For EBB events we just context switch the PMC value, we don't do any
2122 	 * of the sample_period logic. We use hw.prev_count for this.
2123 	 */
2124 	if (is_ebb_event(event))
2125 		local64_set(&event->hw.prev_count, 0);
2126 
2127 	/*
2128 	 * See if we need to reserve the PMU.
2129 	 * If no events are currently in use, then we have to take a
2130 	 * mutex to ensure that we don't race with another task doing
2131 	 * reserve_pmc_hardware or release_pmc_hardware.
2132 	 */
2133 	err = 0;
2134 	if (!atomic_inc_not_zero(&num_events)) {
2135 		mutex_lock(&pmc_reserve_mutex);
2136 		if (atomic_read(&num_events) == 0 &&
2137 		    reserve_pmc_hardware(perf_event_interrupt))
2138 			err = -EBUSY;
2139 		else
2140 			atomic_inc(&num_events);
2141 		mutex_unlock(&pmc_reserve_mutex);
2142 	}
2143 	event->destroy = hw_perf_event_destroy;
2144 
2145 	return err;
2146 }
2147 
2148 static int power_pmu_event_idx(struct perf_event *event)
2149 {
2150 	return event->hw.idx;
2151 }
2152 
2153 ssize_t power_events_sysfs_show(struct device *dev,
2154 				struct device_attribute *attr, char *page)
2155 {
2156 	struct perf_pmu_events_attr *pmu_attr;
2157 
2158 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2159 
2160 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2161 }
2162 
2163 static struct pmu power_pmu = {
2164 	.pmu_enable	= power_pmu_enable,
2165 	.pmu_disable	= power_pmu_disable,
2166 	.event_init	= power_pmu_event_init,
2167 	.add		= power_pmu_add,
2168 	.del		= power_pmu_del,
2169 	.start		= power_pmu_start,
2170 	.stop		= power_pmu_stop,
2171 	.read		= power_pmu_read,
2172 	.start_txn	= power_pmu_start_txn,
2173 	.cancel_txn	= power_pmu_cancel_txn,
2174 	.commit_txn	= power_pmu_commit_txn,
2175 	.event_idx	= power_pmu_event_idx,
2176 	.sched_task	= power_pmu_sched_task,
2177 };
2178 
2179 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
2180 				PERF_SAMPLE_PHYS_ADDR |		\
2181 				PERF_SAMPLE_DATA_PAGE_SIZE)
2182 /*
2183  * A counter has overflowed; update its count and record
2184  * things if requested.  Note that interrupts are hard-disabled
2185  * here so there is no possibility of being interrupted.
2186  */
2187 static void record_and_restart(struct perf_event *event, unsigned long val,
2188 			       struct pt_regs *regs)
2189 {
2190 	u64 period = event->hw.sample_period;
2191 	s64 prev, delta, left;
2192 	int record = 0;
2193 
2194 	if (event->hw.state & PERF_HES_STOPPED) {
2195 		write_pmc(event->hw.idx, 0);
2196 		return;
2197 	}
2198 
2199 	/* we don't have to worry about interrupts here */
2200 	prev = local64_read(&event->hw.prev_count);
2201 	delta = check_and_compute_delta(prev, val);
2202 	local64_add(delta, &event->count);
2203 
2204 	/*
2205 	 * See if the total period for this event has expired,
2206 	 * and update for the next period.
2207 	 */
2208 	val = 0;
2209 	left = local64_read(&event->hw.period_left) - delta;
2210 	if (delta == 0)
2211 		left++;
2212 	if (period) {
2213 		if (left <= 0) {
2214 			left += period;
2215 			if (left <= 0)
2216 				left = period;
2217 
2218 			/*
2219 			 * If address is not requested in the sample via
2220 			 * PERF_SAMPLE_IP, just record that sample irrespective
2221 			 * of SIAR valid check.
2222 			 */
2223 			if (event->attr.sample_type & PERF_SAMPLE_IP)
2224 				record = siar_valid(regs);
2225 			else
2226 				record = 1;
2227 
2228 			event->hw.last_period = event->hw.sample_period;
2229 		}
2230 		if (left < 0x80000000LL)
2231 			val = 0x80000000LL - left;
2232 	}
2233 
2234 	write_pmc(event->hw.idx, val);
2235 	local64_set(&event->hw.prev_count, val);
2236 	local64_set(&event->hw.period_left, left);
2237 	perf_event_update_userpage(event);
2238 
2239 	/*
2240 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2241 	 * address even when freeze on supervisor state (kernel) is set in
2242 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2243 	 * these cases.
2244 	 */
2245 	if (event->attr.exclude_kernel &&
2246 	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
2247 	    is_kernel_addr(mfspr(SPRN_SIAR)))
2248 		record = 0;
2249 
2250 	/*
2251 	 * Finally record data if requested.
2252 	 */
2253 	if (record) {
2254 		struct perf_sample_data data;
2255 
2256 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2257 
2258 		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2259 			perf_get_data_addr(event, regs, &data.addr);
2260 
2261 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2262 			struct cpu_hw_events *cpuhw;
2263 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2264 			power_pmu_bhrb_read(event, cpuhw);
2265 			data.br_stack = &cpuhw->bhrb_stack;
2266 		}
2267 
2268 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2269 						ppmu->get_mem_data_src)
2270 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2271 
2272 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2273 						ppmu->get_mem_weight)
2274 			ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2275 
2276 		if (perf_event_overflow(event, &data, regs))
2277 			power_pmu_stop(event, 0);
2278 	} else if (period) {
2279 		/* Account for interrupt in case of invalid SIAR */
2280 		if (perf_event_account_interrupt(event))
2281 			power_pmu_stop(event, 0);
2282 	}
2283 }
2284 
2285 /*
2286  * Called from generic code to get the misc flags (i.e. processor mode)
2287  * for an event_id.
2288  */
2289 unsigned long perf_misc_flags(struct pt_regs *regs)
2290 {
2291 	u32 flags = perf_get_misc_flags(regs);
2292 
2293 	if (flags)
2294 		return flags;
2295 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2296 		PERF_RECORD_MISC_KERNEL;
2297 }
2298 
2299 /*
2300  * Called from generic code to get the instruction pointer
2301  * for an event_id.
2302  */
2303 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2304 {
2305 	unsigned long siar = mfspr(SPRN_SIAR);
2306 
2307 	if (regs_use_siar(regs) && siar_valid(regs) && siar)
2308 		return siar + perf_ip_adjust(regs);
2309 	else
2310 		return regs->nip;
2311 }
2312 
2313 static bool pmc_overflow_power7(unsigned long val)
2314 {
2315 	/*
2316 	 * Events on POWER7 can roll back if a speculative event doesn't
2317 	 * eventually complete. Unfortunately in some rare cases they will
2318 	 * raise a performance monitor exception. We need to catch this to
2319 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2320 	 * cycles from overflow.
2321 	 *
2322 	 * We only do this if the first pass fails to find any overflowing
2323 	 * PMCs because a user might set a period of less than 256 and we
2324 	 * don't want to mistakenly reset them.
2325 	 */
2326 	if ((0x80000000 - val) <= 256)
2327 		return true;
2328 
2329 	return false;
2330 }
2331 
2332 static bool pmc_overflow(unsigned long val)
2333 {
2334 	if ((int)val < 0)
2335 		return true;
2336 
2337 	return false;
2338 }
2339 
2340 /*
2341  * Performance monitor interrupt stuff
2342  */
2343 static void __perf_event_interrupt(struct pt_regs *regs)
2344 {
2345 	int i, j;
2346 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2347 	struct perf_event *event;
2348 	int found, active;
2349 
2350 	if (cpuhw->n_limited)
2351 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2352 					mfspr(SPRN_PMC6));
2353 
2354 	perf_read_regs(regs);
2355 
2356 	/* Read all the PMCs since we'll need them a bunch of times */
2357 	for (i = 0; i < ppmu->n_counter; ++i)
2358 		cpuhw->pmcs[i] = read_pmc(i + 1);
2359 
2360 	/* Try to find what caused the IRQ */
2361 	found = 0;
2362 	for (i = 0; i < ppmu->n_counter; ++i) {
2363 		if (!pmc_overflow(cpuhw->pmcs[i]))
2364 			continue;
2365 		if (is_limited_pmc(i + 1))
2366 			continue; /* these won't generate IRQs */
2367 		/*
2368 		 * We've found one that's overflowed.  For active
2369 		 * counters we need to log this.  For inactive
2370 		 * counters, we need to reset it anyway
2371 		 */
2372 		found = 1;
2373 		active = 0;
2374 		for (j = 0; j < cpuhw->n_events; ++j) {
2375 			event = cpuhw->event[j];
2376 			if (event->hw.idx == (i + 1)) {
2377 				active = 1;
2378 				record_and_restart(event, cpuhw->pmcs[i], regs);
2379 				break;
2380 			}
2381 		}
2382 
2383 		/*
2384 		 * Clear PACA_IRQ_PMI in case it was set by
2385 		 * set_pmi_irq_pending() when PMU was enabled
2386 		 * after accounting for interrupts.
2387 		 */
2388 		clear_pmi_irq_pending();
2389 
2390 		if (!active)
2391 			/* reset non active counters that have overflowed */
2392 			write_pmc(i + 1, 0);
2393 	}
2394 	if (!found && pvr_version_is(PVR_POWER7)) {
2395 		/* check active counters for special buggy p7 overflow */
2396 		for (i = 0; i < cpuhw->n_events; ++i) {
2397 			event = cpuhw->event[i];
2398 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2399 				continue;
2400 			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2401 				/* event has overflowed in a buggy way*/
2402 				found = 1;
2403 				record_and_restart(event,
2404 						   cpuhw->pmcs[event->hw.idx - 1],
2405 						   regs);
2406 			}
2407 		}
2408 	}
2409 
2410 	/*
2411 	 * During system wide profling or while specific CPU is monitored for an
2412 	 * event, some corner cases could cause PMC to overflow in idle path. This
2413 	 * will trigger a PMI after waking up from idle. Since counter values are _not_
2414 	 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2415 	 */
2416 	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2417 		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2418 
2419 	/*
2420 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2421 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2422 	 * and thus allow interrupts to occur again.
2423 	 * XXX might want to use MSR.PM to keep the events frozen until
2424 	 * we get back out of this interrupt.
2425 	 */
2426 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2427 
2428 	/* Clear the cpuhw->pmcs */
2429 	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2430 
2431 }
2432 
2433 static void perf_event_interrupt(struct pt_regs *regs)
2434 {
2435 	u64 start_clock = sched_clock();
2436 
2437 	__perf_event_interrupt(regs);
2438 	perf_sample_event_took(sched_clock() - start_clock);
2439 }
2440 
2441 /*
2442  * If the perf subsystem wants performance monitor interrupts as soon as
2443  * possible (e.g., to sample the instruction address and stack chain),
2444  * this should return true. The IRQ masking code can then enable MSR[EE]
2445  * in some places (e.g., interrupt handlers) that allows PMI interrupts
2446  * though to improve accuracy of profiles, at the cost of some performance.
2447  *
2448  * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
2449  * access), but in that case there is no need for prompt PMI handling.
2450  *
2451  * This currently returns true if any perf counter is being used. It
2452  * could possibly return false if only events are being counted rather than
2453  * samples being taken, but for now this is good enough.
2454  */
2455 bool power_pmu_wants_prompt_pmi(void)
2456 {
2457 	struct cpu_hw_events *cpuhw;
2458 
2459 	/*
2460 	 * This could simply test local_paca->pmcregs_in_use if that were not
2461 	 * under ifdef KVM.
2462 	 */
2463 
2464 	if (!ppmu)
2465 		return false;
2466 
2467 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2468 	return cpuhw->n_events;
2469 }
2470 
2471 static int power_pmu_prepare_cpu(unsigned int cpu)
2472 {
2473 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2474 
2475 	if (ppmu) {
2476 		memset(cpuhw, 0, sizeof(*cpuhw));
2477 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2478 	}
2479 	return 0;
2480 }
2481 
2482 int __init register_power_pmu(struct power_pmu *pmu)
2483 {
2484 	if (ppmu)
2485 		return -EBUSY;		/* something's already registered */
2486 
2487 	ppmu = pmu;
2488 	pr_info("%s performance monitor hardware support registered\n",
2489 		pmu->name);
2490 
2491 	power_pmu.attr_groups = ppmu->attr_groups;
2492 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2493 
2494 #ifdef MSR_HV
2495 	/*
2496 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2497 	 */
2498 	if (mfmsr() & MSR_HV)
2499 		freeze_events_kernel = MMCR0_FCHV;
2500 #endif /* CONFIG_PPC64 */
2501 
2502 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2503 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2504 			  power_pmu_prepare_cpu, NULL);
2505 	return 0;
2506 }
2507 
2508 #ifdef CONFIG_PPC64
2509 static bool pmu_override = false;
2510 static unsigned long pmu_override_val;
2511 static void do_pmu_override(void *data)
2512 {
2513 	ppc_set_pmu_inuse(1);
2514 	if (pmu_override_val)
2515 		mtspr(SPRN_MMCR1, pmu_override_val);
2516 	mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2517 }
2518 
2519 static int __init init_ppc64_pmu(void)
2520 {
2521 	if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2522 		pr_warn("disabling perf due to pmu_override= command line option.\n");
2523 		on_each_cpu(do_pmu_override, NULL, 1);
2524 		return 0;
2525 	}
2526 
2527 	/* run through all the pmu drivers one at a time */
2528 	if (!init_power5_pmu())
2529 		return 0;
2530 	else if (!init_power5p_pmu())
2531 		return 0;
2532 	else if (!init_power6_pmu())
2533 		return 0;
2534 	else if (!init_power7_pmu())
2535 		return 0;
2536 	else if (!init_power8_pmu())
2537 		return 0;
2538 	else if (!init_power9_pmu())
2539 		return 0;
2540 	else if (!init_power10_pmu())
2541 		return 0;
2542 	else if (!init_ppc970_pmu())
2543 		return 0;
2544 	else
2545 		return init_generic_compat_pmu();
2546 }
2547 early_initcall(init_ppc64_pmu);
2548 
2549 static int __init pmu_setup(char *str)
2550 {
2551 	unsigned long val;
2552 
2553 	if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2554 		return 0;
2555 
2556 	pmu_override = true;
2557 
2558 	if (kstrtoul(str, 0, &val))
2559 		val = 0;
2560 
2561 	pmu_override_val = val;
2562 
2563 	return 1;
2564 }
2565 __setup("pmu_override=", pmu_setup);
2566 
2567 #endif
2568