xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision e721eb06)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	/*
41 	 * The order of the MMCR array is:
42 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
44 	 */
45 	unsigned long mmcr[4];
46 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 
52 	unsigned int txn_flags;
53 	int n_txn_start;
54 
55 	/* BHRB bits */
56 	u64				bhrb_filter;	/* BHRB HW branch filter */
57 	unsigned int			bhrb_users;
58 	void				*bhrb_context;
59 	struct	perf_branch_stack	bhrb_stack;
60 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
61 	u64				ic_init;
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  */
81 #ifdef CONFIG_PPC32
82 
83 #define MMCR0_FCHV		0
84 #define MMCR0_PMCjCE		MMCR0_PMCnCE
85 #define MMCR0_FC56		0
86 #define MMCR0_PMAO		0
87 #define MMCR0_EBE		0
88 #define MMCR0_BHRBA		0
89 #define MMCR0_PMCC		0
90 #define MMCR0_PMCC_U6		0
91 
92 #define SPRN_MMCRA		SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE	0
94 
95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 {
97 	return 0;
98 }
99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 {
102 	return 0;
103 }
104 static inline void perf_read_regs(struct pt_regs *regs)
105 {
106 	regs->result = 0;
107 }
108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 {
110 	return 0;
111 }
112 
113 static inline int siar_valid(struct pt_regs *regs)
114 {
115 	return 1;
116 }
117 
118 static bool is_ebb_event(struct perf_event *event) { return false; }
119 static int ebb_event_check(struct perf_event *event) { return 0; }
120 static void ebb_event_add(struct perf_event *event) { }
121 static void ebb_switch_out(unsigned long mmcr0) { }
122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 {
124 	return cpuhw->mmcr[0];
125 }
126 
127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
133 
134 bool is_sier_available(void)
135 {
136 	if (ppmu->flags & PPMU_HAS_SIER)
137 		return true;
138 
139 	return false;
140 }
141 
142 static bool regs_use_siar(struct pt_regs *regs)
143 {
144 	/*
145 	 * When we take a performance monitor exception the regs are setup
146 	 * using perf_read_regs() which overloads some fields, in particular
147 	 * regs->result to tell us whether to use SIAR.
148 	 *
149 	 * However if the regs are from another exception, eg. a syscall, then
150 	 * they have not been setup using perf_read_regs() and so regs->result
151 	 * is something random.
152 	 */
153 	return ((TRAP(regs) == 0xf00) && regs->result);
154 }
155 
156 /*
157  * Things that are specific to 64-bit implementations.
158  */
159 #ifdef CONFIG_PPC64
160 
161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
162 {
163 	unsigned long mmcra = regs->dsisr;
164 
165 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167 		if (slot > 1)
168 			return 4 * (slot - 1);
169 	}
170 
171 	return 0;
172 }
173 
174 /*
175  * The user wants a data address recorded.
176  * If we're not doing instruction sampling, give them the SDAR
177  * (sampled data address).  If we are doing instruction sampling, then
178  * only give them the SDAR if it corresponds to the instruction
179  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
181  */
182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
183 {
184 	unsigned long mmcra = regs->dsisr;
185 	bool sdar_valid;
186 
187 	if (ppmu->flags & PPMU_HAS_SIER)
188 		sdar_valid = regs->dar & SIER_SDAR_VALID;
189 	else {
190 		unsigned long sdsync;
191 
192 		if (ppmu->flags & PPMU_SIAR_VALID)
193 			sdsync = POWER7P_MMCRA_SDAR_VALID;
194 		else if (ppmu->flags & PPMU_ALT_SIPR)
195 			sdsync = POWER6_MMCRA_SDSYNC;
196 		else if (ppmu->flags & PPMU_NO_SIAR)
197 			sdsync = MMCRA_SAMPLE_ENABLE;
198 		else
199 			sdsync = MMCRA_SDSYNC;
200 
201 		sdar_valid = mmcra & sdsync;
202 	}
203 
204 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205 		*addrp = mfspr(SPRN_SDAR);
206 
207 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
208 		*addrp = 0;
209 }
210 
211 static bool regs_sihv(struct pt_regs *regs)
212 {
213 	unsigned long sihv = MMCRA_SIHV;
214 
215 	if (ppmu->flags & PPMU_HAS_SIER)
216 		return !!(regs->dar & SIER_SIHV);
217 
218 	if (ppmu->flags & PPMU_ALT_SIPR)
219 		sihv = POWER6_MMCRA_SIHV;
220 
221 	return !!(regs->dsisr & sihv);
222 }
223 
224 static bool regs_sipr(struct pt_regs *regs)
225 {
226 	unsigned long sipr = MMCRA_SIPR;
227 
228 	if (ppmu->flags & PPMU_HAS_SIER)
229 		return !!(regs->dar & SIER_SIPR);
230 
231 	if (ppmu->flags & PPMU_ALT_SIPR)
232 		sipr = POWER6_MMCRA_SIPR;
233 
234 	return !!(regs->dsisr & sipr);
235 }
236 
237 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
238 {
239 	if (regs->msr & MSR_PR)
240 		return PERF_RECORD_MISC_USER;
241 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
242 		return PERF_RECORD_MISC_HYPERVISOR;
243 	return PERF_RECORD_MISC_KERNEL;
244 }
245 
246 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
247 {
248 	bool use_siar = regs_use_siar(regs);
249 
250 	if (!use_siar)
251 		return perf_flags_from_msr(regs);
252 
253 	/*
254 	 * If we don't have flags in MMCRA, rather than using
255 	 * the MSR, we intuit the flags from the address in
256 	 * SIAR which should give slightly more reliable
257 	 * results
258 	 */
259 	if (ppmu->flags & PPMU_NO_SIPR) {
260 		unsigned long siar = mfspr(SPRN_SIAR);
261 		if (is_kernel_addr(siar))
262 			return PERF_RECORD_MISC_KERNEL;
263 		return PERF_RECORD_MISC_USER;
264 	}
265 
266 	/* PR has priority over HV, so order below is important */
267 	if (regs_sipr(regs))
268 		return PERF_RECORD_MISC_USER;
269 
270 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
271 		return PERF_RECORD_MISC_HYPERVISOR;
272 
273 	return PERF_RECORD_MISC_KERNEL;
274 }
275 
276 /*
277  * Overload regs->dsisr to store MMCRA so we only need to read it once
278  * on each interrupt.
279  * Overload regs->dar to store SIER if we have it.
280  * Overload regs->result to specify whether we should use the MSR (result
281  * is zero) or the SIAR (result is non zero).
282  */
283 static inline void perf_read_regs(struct pt_regs *regs)
284 {
285 	unsigned long mmcra = mfspr(SPRN_MMCRA);
286 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
287 	int use_siar;
288 
289 	regs->dsisr = mmcra;
290 
291 	if (ppmu->flags & PPMU_HAS_SIER)
292 		regs->dar = mfspr(SPRN_SIER);
293 
294 	/*
295 	 * If this isn't a PMU exception (eg a software event) the SIAR is
296 	 * not valid. Use pt_regs.
297 	 *
298 	 * If it is a marked event use the SIAR.
299 	 *
300 	 * If the PMU doesn't update the SIAR for non marked events use
301 	 * pt_regs.
302 	 *
303 	 * If the PMU has HV/PR flags then check to see if they
304 	 * place the exception in userspace. If so, use pt_regs. In
305 	 * continuous sampling mode the SIAR and the PMU exception are
306 	 * not synchronised, so they may be many instructions apart.
307 	 * This can result in confusing backtraces. We still want
308 	 * hypervisor samples as well as samples in the kernel with
309 	 * interrupts off hence the userspace check.
310 	 */
311 	if (TRAP(regs) != 0xf00)
312 		use_siar = 0;
313 	else if ((ppmu->flags & PPMU_NO_SIAR))
314 		use_siar = 0;
315 	else if (marked)
316 		use_siar = 1;
317 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
318 		use_siar = 0;
319 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
320 		use_siar = 0;
321 	else
322 		use_siar = 1;
323 
324 	regs->result = use_siar;
325 }
326 
327 /*
328  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
329  * it as an NMI.
330  */
331 static inline int perf_intr_is_nmi(struct pt_regs *regs)
332 {
333 	return (regs->softe & IRQS_DISABLED);
334 }
335 
336 /*
337  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
338  * must be sampled only if the SIAR-valid bit is set.
339  *
340  * For unmarked instructions and for processors that don't have the SIAR-Valid
341  * bit, assume that SIAR is valid.
342  */
343 static inline int siar_valid(struct pt_regs *regs)
344 {
345 	unsigned long mmcra = regs->dsisr;
346 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
347 
348 	if (marked) {
349 		if (ppmu->flags & PPMU_HAS_SIER)
350 			return regs->dar & SIER_SIAR_VALID;
351 
352 		if (ppmu->flags & PPMU_SIAR_VALID)
353 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
354 	}
355 
356 	return 1;
357 }
358 
359 
360 /* Reset all possible BHRB entries */
361 static void power_pmu_bhrb_reset(void)
362 {
363 	asm volatile(PPC_CLRBHRB);
364 }
365 
366 static void power_pmu_bhrb_enable(struct perf_event *event)
367 {
368 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
369 
370 	if (!ppmu->bhrb_nr)
371 		return;
372 
373 	/* Clear BHRB if we changed task context to avoid data leaks */
374 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
375 		power_pmu_bhrb_reset();
376 		cpuhw->bhrb_context = event->ctx;
377 	}
378 	cpuhw->bhrb_users++;
379 	perf_sched_cb_inc(event->ctx->pmu);
380 }
381 
382 static void power_pmu_bhrb_disable(struct perf_event *event)
383 {
384 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
385 
386 	if (!ppmu->bhrb_nr)
387 		return;
388 
389 	WARN_ON_ONCE(!cpuhw->bhrb_users);
390 	cpuhw->bhrb_users--;
391 	perf_sched_cb_dec(event->ctx->pmu);
392 
393 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
394 		/* BHRB cannot be turned off when other
395 		 * events are active on the PMU.
396 		 */
397 
398 		/* avoid stale pointer */
399 		cpuhw->bhrb_context = NULL;
400 	}
401 }
402 
403 /* Called from ctxsw to prevent one process's branch entries to
404  * mingle with the other process's entries during context switch.
405  */
406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
407 {
408 	if (!ppmu->bhrb_nr)
409 		return;
410 
411 	if (sched_in)
412 		power_pmu_bhrb_reset();
413 }
414 /* Calculate the to address for a branch */
415 static __u64 power_pmu_bhrb_to(u64 addr)
416 {
417 	unsigned int instr;
418 	__u64 target;
419 
420 	if (is_kernel_addr(addr)) {
421 		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
422 			return 0;
423 
424 		return branch_target((struct ppc_inst *)&instr);
425 	}
426 
427 	/* Userspace: need copy instruction here then translate it */
428 	if (probe_user_read(&instr, (unsigned int __user *)addr, sizeof(instr)))
429 		return 0;
430 
431 	target = branch_target((struct ppc_inst *)&instr);
432 	if ((!target) || (instr & BRANCH_ABSOLUTE))
433 		return target;
434 
435 	/* Translate relative branch target from kernel to user address */
436 	return target - (unsigned long)&instr + addr;
437 }
438 
439 /* Processing BHRB entries */
440 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
441 {
442 	u64 val;
443 	u64 addr;
444 	int r_index, u_index, pred;
445 
446 	r_index = 0;
447 	u_index = 0;
448 	while (r_index < ppmu->bhrb_nr) {
449 		/* Assembly read function */
450 		val = read_bhrb(r_index++);
451 		if (!val)
452 			/* Terminal marker: End of valid BHRB entries */
453 			break;
454 		else {
455 			addr = val & BHRB_EA;
456 			pred = val & BHRB_PREDICTION;
457 
458 			if (!addr)
459 				/* invalid entry */
460 				continue;
461 
462 			/*
463 			 * BHRB rolling buffer could very much contain the kernel
464 			 * addresses at this point. Check the privileges before
465 			 * exporting it to userspace (avoid exposure of regions
466 			 * where we could have speculative execution)
467 			 */
468 			if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
469 				continue;
470 
471 			/* Branches are read most recent first (ie. mfbhrb 0 is
472 			 * the most recent branch).
473 			 * There are two types of valid entries:
474 			 * 1) a target entry which is the to address of a
475 			 *    computed goto like a blr,bctr,btar.  The next
476 			 *    entry read from the bhrb will be branch
477 			 *    corresponding to this target (ie. the actual
478 			 *    blr/bctr/btar instruction).
479 			 * 2) a from address which is an actual branch.  If a
480 			 *    target entry proceeds this, then this is the
481 			 *    matching branch for that target.  If this is not
482 			 *    following a target entry, then this is a branch
483 			 *    where the target is given as an immediate field
484 			 *    in the instruction (ie. an i or b form branch).
485 			 *    In this case we need to read the instruction from
486 			 *    memory to determine the target/to address.
487 			 */
488 
489 			if (val & BHRB_TARGET) {
490 				/* Target branches use two entries
491 				 * (ie. computed gotos/XL form)
492 				 */
493 				cpuhw->bhrb_entries[u_index].to = addr;
494 				cpuhw->bhrb_entries[u_index].mispred = pred;
495 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
496 
497 				/* Get from address in next entry */
498 				val = read_bhrb(r_index++);
499 				addr = val & BHRB_EA;
500 				if (val & BHRB_TARGET) {
501 					/* Shouldn't have two targets in a
502 					   row.. Reset index and try again */
503 					r_index--;
504 					addr = 0;
505 				}
506 				cpuhw->bhrb_entries[u_index].from = addr;
507 			} else {
508 				/* Branches to immediate field
509 				   (ie I or B form) */
510 				cpuhw->bhrb_entries[u_index].from = addr;
511 				cpuhw->bhrb_entries[u_index].to =
512 					power_pmu_bhrb_to(addr);
513 				cpuhw->bhrb_entries[u_index].mispred = pred;
514 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
515 			}
516 			u_index++;
517 
518 		}
519 	}
520 	cpuhw->bhrb_stack.nr = u_index;
521 	cpuhw->bhrb_stack.hw_idx = -1ULL;
522 	return;
523 }
524 
525 static bool is_ebb_event(struct perf_event *event)
526 {
527 	/*
528 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
529 	 * check that the PMU supports EBB, meaning those that don't can still
530 	 * use bit 63 of the event code for something else if they wish.
531 	 */
532 	return (ppmu->flags & PPMU_ARCH_207S) &&
533 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
534 }
535 
536 static int ebb_event_check(struct perf_event *event)
537 {
538 	struct perf_event *leader = event->group_leader;
539 
540 	/* Event and group leader must agree on EBB */
541 	if (is_ebb_event(leader) != is_ebb_event(event))
542 		return -EINVAL;
543 
544 	if (is_ebb_event(event)) {
545 		if (!(event->attach_state & PERF_ATTACH_TASK))
546 			return -EINVAL;
547 
548 		if (!leader->attr.pinned || !leader->attr.exclusive)
549 			return -EINVAL;
550 
551 		if (event->attr.freq ||
552 		    event->attr.inherit ||
553 		    event->attr.sample_type ||
554 		    event->attr.sample_period ||
555 		    event->attr.enable_on_exec)
556 			return -EINVAL;
557 	}
558 
559 	return 0;
560 }
561 
562 static void ebb_event_add(struct perf_event *event)
563 {
564 	if (!is_ebb_event(event) || current->thread.used_ebb)
565 		return;
566 
567 	/*
568 	 * IFF this is the first time we've added an EBB event, set
569 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
570 	 * userspace. We need this so that we can context switch while
571 	 * userspace is in the EBB handler (where PMXE is 0).
572 	 */
573 	current->thread.used_ebb = 1;
574 	current->thread.mmcr0 |= MMCR0_PMXE;
575 }
576 
577 static void ebb_switch_out(unsigned long mmcr0)
578 {
579 	if (!(mmcr0 & MMCR0_EBE))
580 		return;
581 
582 	current->thread.siar  = mfspr(SPRN_SIAR);
583 	current->thread.sier  = mfspr(SPRN_SIER);
584 	current->thread.sdar  = mfspr(SPRN_SDAR);
585 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
586 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
587 }
588 
589 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
590 {
591 	unsigned long mmcr0 = cpuhw->mmcr[0];
592 
593 	if (!ebb)
594 		goto out;
595 
596 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
597 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
598 
599 	/*
600 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
601 	 * with pmao_restore_workaround() because we may add PMAO but we never
602 	 * clear it here.
603 	 */
604 	mmcr0 |= current->thread.mmcr0;
605 
606 	/*
607 	 * Be careful not to set PMXE if userspace had it cleared. This is also
608 	 * compatible with pmao_restore_workaround() because it has already
609 	 * cleared PMXE and we leave PMAO alone.
610 	 */
611 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
612 		mmcr0 &= ~MMCR0_PMXE;
613 
614 	mtspr(SPRN_SIAR, current->thread.siar);
615 	mtspr(SPRN_SIER, current->thread.sier);
616 	mtspr(SPRN_SDAR, current->thread.sdar);
617 
618 	/*
619 	 * Merge the kernel & user values of MMCR2. The semantics we implement
620 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
621 	 * but not clear bits. If a task wants to be able to clear bits, ie.
622 	 * unfreeze counters, it should not set exclude_xxx in its events and
623 	 * instead manage the MMCR2 entirely by itself.
624 	 */
625 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
626 out:
627 	return mmcr0;
628 }
629 
630 static void pmao_restore_workaround(bool ebb)
631 {
632 	unsigned pmcs[6];
633 
634 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
635 		return;
636 
637 	/*
638 	 * On POWER8E there is a hardware defect which affects the PMU context
639 	 * switch logic, ie. power_pmu_disable/enable().
640 	 *
641 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
642 	 * by the hardware. Sometime later the actual PMU exception is
643 	 * delivered.
644 	 *
645 	 * If we context switch, or simply disable/enable, the PMU prior to the
646 	 * exception arriving, the exception will be lost when we clear PMAO.
647 	 *
648 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
649 	 * set, and this _should_ generate an exception. However because of the
650 	 * defect no exception is generated when we write PMAO, and we get
651 	 * stuck with no counters counting but no exception delivered.
652 	 *
653 	 * The workaround is to detect this case and tweak the hardware to
654 	 * create another pending PMU exception.
655 	 *
656 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
657 	 * enabling the PMU. That causes a new exception to be generated in the
658 	 * chip, but we don't take it yet because we have interrupts hard
659 	 * disabled. We then write back the PMU state as we want it to be seen
660 	 * by the exception handler. When we reenable interrupts the exception
661 	 * handler will be called and see the correct state.
662 	 *
663 	 * The logic is the same for EBB, except that the exception is gated by
664 	 * us having interrupts hard disabled as well as the fact that we are
665 	 * not in userspace. The exception is finally delivered when we return
666 	 * to userspace.
667 	 */
668 
669 	/* Only if PMAO is set and PMAO_SYNC is clear */
670 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
671 		return;
672 
673 	/* If we're doing EBB, only if BESCR[GE] is set */
674 	if (ebb && !(current->thread.bescr & BESCR_GE))
675 		return;
676 
677 	/*
678 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
679 	 * disable to actually prevent the PMU exception from firing.
680 	 */
681 	hard_irq_disable();
682 
683 	/*
684 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
685 	 * Using read/write_pmc() in a for loop adds 12 function calls and
686 	 * almost doubles our code size.
687 	 */
688 	pmcs[0] = mfspr(SPRN_PMC1);
689 	pmcs[1] = mfspr(SPRN_PMC2);
690 	pmcs[2] = mfspr(SPRN_PMC3);
691 	pmcs[3] = mfspr(SPRN_PMC4);
692 	pmcs[4] = mfspr(SPRN_PMC5);
693 	pmcs[5] = mfspr(SPRN_PMC6);
694 
695 	/* Ensure all freeze bits are unset */
696 	mtspr(SPRN_MMCR2, 0);
697 
698 	/* Set up PMC6 to overflow in one cycle */
699 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
700 
701 	/* Enable exceptions and unfreeze PMC6 */
702 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
703 
704 	/* Now we need to refreeze and restore the PMCs */
705 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
706 
707 	mtspr(SPRN_PMC1, pmcs[0]);
708 	mtspr(SPRN_PMC2, pmcs[1]);
709 	mtspr(SPRN_PMC3, pmcs[2]);
710 	mtspr(SPRN_PMC4, pmcs[3]);
711 	mtspr(SPRN_PMC5, pmcs[4]);
712 	mtspr(SPRN_PMC6, pmcs[5]);
713 }
714 
715 #endif /* CONFIG_PPC64 */
716 
717 static void perf_event_interrupt(struct pt_regs *regs);
718 
719 /*
720  * Read one performance monitor counter (PMC).
721  */
722 static unsigned long read_pmc(int idx)
723 {
724 	unsigned long val;
725 
726 	switch (idx) {
727 	case 1:
728 		val = mfspr(SPRN_PMC1);
729 		break;
730 	case 2:
731 		val = mfspr(SPRN_PMC2);
732 		break;
733 	case 3:
734 		val = mfspr(SPRN_PMC3);
735 		break;
736 	case 4:
737 		val = mfspr(SPRN_PMC4);
738 		break;
739 	case 5:
740 		val = mfspr(SPRN_PMC5);
741 		break;
742 	case 6:
743 		val = mfspr(SPRN_PMC6);
744 		break;
745 #ifdef CONFIG_PPC64
746 	case 7:
747 		val = mfspr(SPRN_PMC7);
748 		break;
749 	case 8:
750 		val = mfspr(SPRN_PMC8);
751 		break;
752 #endif /* CONFIG_PPC64 */
753 	default:
754 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
755 		val = 0;
756 	}
757 	return val;
758 }
759 
760 /*
761  * Write one PMC.
762  */
763 static void write_pmc(int idx, unsigned long val)
764 {
765 	switch (idx) {
766 	case 1:
767 		mtspr(SPRN_PMC1, val);
768 		break;
769 	case 2:
770 		mtspr(SPRN_PMC2, val);
771 		break;
772 	case 3:
773 		mtspr(SPRN_PMC3, val);
774 		break;
775 	case 4:
776 		mtspr(SPRN_PMC4, val);
777 		break;
778 	case 5:
779 		mtspr(SPRN_PMC5, val);
780 		break;
781 	case 6:
782 		mtspr(SPRN_PMC6, val);
783 		break;
784 #ifdef CONFIG_PPC64
785 	case 7:
786 		mtspr(SPRN_PMC7, val);
787 		break;
788 	case 8:
789 		mtspr(SPRN_PMC8, val);
790 		break;
791 #endif /* CONFIG_PPC64 */
792 	default:
793 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
794 	}
795 }
796 
797 /* Called from sysrq_handle_showregs() */
798 void perf_event_print_debug(void)
799 {
800 	unsigned long sdar, sier, flags;
801 	u32 pmcs[MAX_HWEVENTS];
802 	int i;
803 
804 	if (!ppmu) {
805 		pr_info("Performance monitor hardware not registered.\n");
806 		return;
807 	}
808 
809 	if (!ppmu->n_counter)
810 		return;
811 
812 	local_irq_save(flags);
813 
814 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
815 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
816 
817 	for (i = 0; i < ppmu->n_counter; i++)
818 		pmcs[i] = read_pmc(i + 1);
819 
820 	for (; i < MAX_HWEVENTS; i++)
821 		pmcs[i] = 0xdeadbeef;
822 
823 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
824 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
825 
826 	if (ppmu->n_counter > 4)
827 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
828 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
829 
830 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
831 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
832 
833 	sdar = sier = 0;
834 #ifdef CONFIG_PPC64
835 	sdar = mfspr(SPRN_SDAR);
836 
837 	if (ppmu->flags & PPMU_HAS_SIER)
838 		sier = mfspr(SPRN_SIER);
839 
840 	if (ppmu->flags & PPMU_ARCH_207S) {
841 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
842 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
843 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
844 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
845 	}
846 #endif
847 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
848 		mfspr(SPRN_SIAR), sdar, sier);
849 
850 	local_irq_restore(flags);
851 }
852 
853 /*
854  * Check if a set of events can all go on the PMU at once.
855  * If they can't, this will look at alternative codes for the events
856  * and see if any combination of alternative codes is feasible.
857  * The feasible set is returned in event_id[].
858  */
859 static int power_check_constraints(struct cpu_hw_events *cpuhw,
860 				   u64 event_id[], unsigned int cflags[],
861 				   int n_ev)
862 {
863 	unsigned long mask, value, nv;
864 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
865 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
866 	int i, j;
867 	unsigned long addf = ppmu->add_fields;
868 	unsigned long tadd = ppmu->test_adder;
869 	unsigned long grp_mask = ppmu->group_constraint_mask;
870 	unsigned long grp_val = ppmu->group_constraint_val;
871 
872 	if (n_ev > ppmu->n_counter)
873 		return -1;
874 
875 	/* First see if the events will go on as-is */
876 	for (i = 0; i < n_ev; ++i) {
877 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
878 		    && !ppmu->limited_pmc_event(event_id[i])) {
879 			ppmu->get_alternatives(event_id[i], cflags[i],
880 					       cpuhw->alternatives[i]);
881 			event_id[i] = cpuhw->alternatives[i][0];
882 		}
883 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
884 					 &cpuhw->avalues[i][0]))
885 			return -1;
886 	}
887 	value = mask = 0;
888 	for (i = 0; i < n_ev; ++i) {
889 		nv = (value | cpuhw->avalues[i][0]) +
890 			(value & cpuhw->avalues[i][0] & addf);
891 
892 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
893 			break;
894 
895 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
896 			& (~grp_mask)) != 0)
897 			break;
898 
899 		value = nv;
900 		mask |= cpuhw->amasks[i][0];
901 	}
902 	if (i == n_ev) {
903 		if ((value & mask & grp_mask) != (mask & grp_val))
904 			return -1;
905 		else
906 			return 0;	/* all OK */
907 	}
908 
909 	/* doesn't work, gather alternatives... */
910 	if (!ppmu->get_alternatives)
911 		return -1;
912 	for (i = 0; i < n_ev; ++i) {
913 		choice[i] = 0;
914 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
915 						  cpuhw->alternatives[i]);
916 		for (j = 1; j < n_alt[i]; ++j)
917 			ppmu->get_constraint(cpuhw->alternatives[i][j],
918 					     &cpuhw->amasks[i][j],
919 					     &cpuhw->avalues[i][j]);
920 	}
921 
922 	/* enumerate all possibilities and see if any will work */
923 	i = 0;
924 	j = -1;
925 	value = mask = nv = 0;
926 	while (i < n_ev) {
927 		if (j >= 0) {
928 			/* we're backtracking, restore context */
929 			value = svalues[i];
930 			mask = smasks[i];
931 			j = choice[i];
932 		}
933 		/*
934 		 * See if any alternative k for event_id i,
935 		 * where k > j, will satisfy the constraints.
936 		 */
937 		while (++j < n_alt[i]) {
938 			nv = (value | cpuhw->avalues[i][j]) +
939 				(value & cpuhw->avalues[i][j] & addf);
940 			if ((((nv + tadd) ^ value) & mask) == 0 &&
941 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
942 			     & cpuhw->amasks[i][j]) == 0)
943 				break;
944 		}
945 		if (j >= n_alt[i]) {
946 			/*
947 			 * No feasible alternative, backtrack
948 			 * to event_id i-1 and continue enumerating its
949 			 * alternatives from where we got up to.
950 			 */
951 			if (--i < 0)
952 				return -1;
953 		} else {
954 			/*
955 			 * Found a feasible alternative for event_id i,
956 			 * remember where we got up to with this event_id,
957 			 * go on to the next event_id, and start with
958 			 * the first alternative for it.
959 			 */
960 			choice[i] = j;
961 			svalues[i] = value;
962 			smasks[i] = mask;
963 			value = nv;
964 			mask |= cpuhw->amasks[i][j];
965 			++i;
966 			j = -1;
967 		}
968 	}
969 
970 	/* OK, we have a feasible combination, tell the caller the solution */
971 	for (i = 0; i < n_ev; ++i)
972 		event_id[i] = cpuhw->alternatives[i][choice[i]];
973 	return 0;
974 }
975 
976 /*
977  * Check if newly-added events have consistent settings for
978  * exclude_{user,kernel,hv} with each other and any previously
979  * added events.
980  */
981 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
982 			  int n_prev, int n_new)
983 {
984 	int eu = 0, ek = 0, eh = 0;
985 	int i, n, first;
986 	struct perf_event *event;
987 
988 	/*
989 	 * If the PMU we're on supports per event exclude settings then we
990 	 * don't need to do any of this logic. NB. This assumes no PMU has both
991 	 * per event exclude and limited PMCs.
992 	 */
993 	if (ppmu->flags & PPMU_ARCH_207S)
994 		return 0;
995 
996 	n = n_prev + n_new;
997 	if (n <= 1)
998 		return 0;
999 
1000 	first = 1;
1001 	for (i = 0; i < n; ++i) {
1002 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1003 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004 			continue;
1005 		}
1006 		event = ctrs[i];
1007 		if (first) {
1008 			eu = event->attr.exclude_user;
1009 			ek = event->attr.exclude_kernel;
1010 			eh = event->attr.exclude_hv;
1011 			first = 0;
1012 		} else if (event->attr.exclude_user != eu ||
1013 			   event->attr.exclude_kernel != ek ||
1014 			   event->attr.exclude_hv != eh) {
1015 			return -EAGAIN;
1016 		}
1017 	}
1018 
1019 	if (eu || ek || eh)
1020 		for (i = 0; i < n; ++i)
1021 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1022 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023 
1024 	return 0;
1025 }
1026 
1027 static u64 check_and_compute_delta(u64 prev, u64 val)
1028 {
1029 	u64 delta = (val - prev) & 0xfffffffful;
1030 
1031 	/*
1032 	 * POWER7 can roll back counter values, if the new value is smaller
1033 	 * than the previous value it will cause the delta and the counter to
1034 	 * have bogus values unless we rolled a counter over.  If a coutner is
1035 	 * rolled back, it will be smaller, but within 256, which is the maximum
1036 	 * number of events to rollback at once.  If we detect a rollback
1037 	 * return 0.  This can lead to a small lack of precision in the
1038 	 * counters.
1039 	 */
1040 	if (prev > val && (prev - val) < 256)
1041 		delta = 0;
1042 
1043 	return delta;
1044 }
1045 
1046 static void power_pmu_read(struct perf_event *event)
1047 {
1048 	s64 val, delta, prev;
1049 
1050 	if (event->hw.state & PERF_HES_STOPPED)
1051 		return;
1052 
1053 	if (!event->hw.idx)
1054 		return;
1055 
1056 	if (is_ebb_event(event)) {
1057 		val = read_pmc(event->hw.idx);
1058 		local64_set(&event->hw.prev_count, val);
1059 		return;
1060 	}
1061 
1062 	/*
1063 	 * Performance monitor interrupts come even when interrupts
1064 	 * are soft-disabled, as long as interrupts are hard-enabled.
1065 	 * Therefore we treat them like NMIs.
1066 	 */
1067 	do {
1068 		prev = local64_read(&event->hw.prev_count);
1069 		barrier();
1070 		val = read_pmc(event->hw.idx);
1071 		delta = check_and_compute_delta(prev, val);
1072 		if (!delta)
1073 			return;
1074 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1075 
1076 	local64_add(delta, &event->count);
1077 
1078 	/*
1079 	 * A number of places program the PMC with (0x80000000 - period_left).
1080 	 * We never want period_left to be less than 1 because we will program
1081 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1082 	 * roll around to 0 before taking an exception. We have seen this
1083 	 * on POWER8.
1084 	 *
1085 	 * To fix this, clamp the minimum value of period_left to 1.
1086 	 */
1087 	do {
1088 		prev = local64_read(&event->hw.period_left);
1089 		val = prev - delta;
1090 		if (val < 1)
1091 			val = 1;
1092 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1093 }
1094 
1095 /*
1096  * On some machines, PMC5 and PMC6 can't be written, don't respect
1097  * the freeze conditions, and don't generate interrupts.  This tells
1098  * us if `event' is using such a PMC.
1099  */
1100 static int is_limited_pmc(int pmcnum)
1101 {
1102 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1103 		&& (pmcnum == 5 || pmcnum == 6);
1104 }
1105 
1106 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1107 				    unsigned long pmc5, unsigned long pmc6)
1108 {
1109 	struct perf_event *event;
1110 	u64 val, prev, delta;
1111 	int i;
1112 
1113 	for (i = 0; i < cpuhw->n_limited; ++i) {
1114 		event = cpuhw->limited_counter[i];
1115 		if (!event->hw.idx)
1116 			continue;
1117 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1118 		prev = local64_read(&event->hw.prev_count);
1119 		event->hw.idx = 0;
1120 		delta = check_and_compute_delta(prev, val);
1121 		if (delta)
1122 			local64_add(delta, &event->count);
1123 	}
1124 }
1125 
1126 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1127 				  unsigned long pmc5, unsigned long pmc6)
1128 {
1129 	struct perf_event *event;
1130 	u64 val, prev;
1131 	int i;
1132 
1133 	for (i = 0; i < cpuhw->n_limited; ++i) {
1134 		event = cpuhw->limited_counter[i];
1135 		event->hw.idx = cpuhw->limited_hwidx[i];
1136 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1137 		prev = local64_read(&event->hw.prev_count);
1138 		if (check_and_compute_delta(prev, val))
1139 			local64_set(&event->hw.prev_count, val);
1140 		perf_event_update_userpage(event);
1141 	}
1142 }
1143 
1144 /*
1145  * Since limited events don't respect the freeze conditions, we
1146  * have to read them immediately after freezing or unfreezing the
1147  * other events.  We try to keep the values from the limited
1148  * events as consistent as possible by keeping the delay (in
1149  * cycles and instructions) between freezing/unfreezing and reading
1150  * the limited events as small and consistent as possible.
1151  * Therefore, if any limited events are in use, we read them
1152  * both, and always in the same order, to minimize variability,
1153  * and do it inside the same asm that writes MMCR0.
1154  */
1155 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1156 {
1157 	unsigned long pmc5, pmc6;
1158 
1159 	if (!cpuhw->n_limited) {
1160 		mtspr(SPRN_MMCR0, mmcr0);
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1166 	 * To ensure we don't get a performance monitor interrupt
1167 	 * between writing MMCR0 and freezing/thawing the limited
1168 	 * events, we first write MMCR0 with the event overflow
1169 	 * interrupt enable bits turned off.
1170 	 */
1171 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1172 		     : "=&r" (pmc5), "=&r" (pmc6)
1173 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1174 		       "i" (SPRN_MMCR0),
1175 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1176 
1177 	if (mmcr0 & MMCR0_FC)
1178 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1179 	else
1180 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1181 
1182 	/*
1183 	 * Write the full MMCR0 including the event overflow interrupt
1184 	 * enable bits, if necessary.
1185 	 */
1186 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1187 		mtspr(SPRN_MMCR0, mmcr0);
1188 }
1189 
1190 /*
1191  * Disable all events to prevent PMU interrupts and to allow
1192  * events to be added or removed.
1193  */
1194 static void power_pmu_disable(struct pmu *pmu)
1195 {
1196 	struct cpu_hw_events *cpuhw;
1197 	unsigned long flags, mmcr0, val;
1198 
1199 	if (!ppmu)
1200 		return;
1201 	local_irq_save(flags);
1202 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1203 
1204 	if (!cpuhw->disabled) {
1205 		/*
1206 		 * Check if we ever enabled the PMU on this cpu.
1207 		 */
1208 		if (!cpuhw->pmcs_enabled) {
1209 			ppc_enable_pmcs();
1210 			cpuhw->pmcs_enabled = 1;
1211 		}
1212 
1213 		/*
1214 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1215 		 */
1216 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1217 		val |= MMCR0_FC;
1218 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1219 			 MMCR0_FC56);
1220 
1221 		/*
1222 		 * The barrier is to make sure the mtspr has been
1223 		 * executed and the PMU has frozen the events etc.
1224 		 * before we return.
1225 		 */
1226 		write_mmcr0(cpuhw, val);
1227 		mb();
1228 		isync();
1229 
1230 		/*
1231 		 * Disable instruction sampling if it was enabled
1232 		 */
1233 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1234 			mtspr(SPRN_MMCRA,
1235 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1236 			mb();
1237 			isync();
1238 		}
1239 
1240 		cpuhw->disabled = 1;
1241 		cpuhw->n_added = 0;
1242 
1243 		ebb_switch_out(mmcr0);
1244 
1245 #ifdef CONFIG_PPC64
1246 		/*
1247 		 * These are readable by userspace, may contain kernel
1248 		 * addresses and are not switched by context switch, so clear
1249 		 * them now to avoid leaking anything to userspace in general
1250 		 * including to another process.
1251 		 */
1252 		if (ppmu->flags & PPMU_ARCH_207S) {
1253 			mtspr(SPRN_SDAR, 0);
1254 			mtspr(SPRN_SIAR, 0);
1255 		}
1256 #endif
1257 	}
1258 
1259 	local_irq_restore(flags);
1260 }
1261 
1262 /*
1263  * Re-enable all events if disable == 0.
1264  * If we were previously disabled and events were added, then
1265  * put the new config on the PMU.
1266  */
1267 static void power_pmu_enable(struct pmu *pmu)
1268 {
1269 	struct perf_event *event;
1270 	struct cpu_hw_events *cpuhw;
1271 	unsigned long flags;
1272 	long i;
1273 	unsigned long val, mmcr0;
1274 	s64 left;
1275 	unsigned int hwc_index[MAX_HWEVENTS];
1276 	int n_lim;
1277 	int idx;
1278 	bool ebb;
1279 
1280 	if (!ppmu)
1281 		return;
1282 	local_irq_save(flags);
1283 
1284 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1285 	if (!cpuhw->disabled)
1286 		goto out;
1287 
1288 	if (cpuhw->n_events == 0) {
1289 		ppc_set_pmu_inuse(0);
1290 		goto out;
1291 	}
1292 
1293 	cpuhw->disabled = 0;
1294 
1295 	/*
1296 	 * EBB requires an exclusive group and all events must have the EBB
1297 	 * flag set, or not set, so we can just check a single event. Also we
1298 	 * know we have at least one event.
1299 	 */
1300 	ebb = is_ebb_event(cpuhw->event[0]);
1301 
1302 	/*
1303 	 * If we didn't change anything, or only removed events,
1304 	 * no need to recalculate MMCR* settings and reset the PMCs.
1305 	 * Just reenable the PMU with the current MMCR* settings
1306 	 * (possibly updated for removal of events).
1307 	 */
1308 	if (!cpuhw->n_added) {
1309 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1310 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1311 		goto out_enable;
1312 	}
1313 
1314 	/*
1315 	 * Clear all MMCR settings and recompute them for the new set of events.
1316 	 */
1317 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1318 
1319 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1320 			       cpuhw->mmcr, cpuhw->event)) {
1321 		/* shouldn't ever get here */
1322 		printk(KERN_ERR "oops compute_mmcr failed\n");
1323 		goto out;
1324 	}
1325 
1326 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1327 		/*
1328 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1329 		 * bits for the first event. We have already checked that all
1330 		 * events have the same value for these bits as the first event.
1331 		 */
1332 		event = cpuhw->event[0];
1333 		if (event->attr.exclude_user)
1334 			cpuhw->mmcr[0] |= MMCR0_FCP;
1335 		if (event->attr.exclude_kernel)
1336 			cpuhw->mmcr[0] |= freeze_events_kernel;
1337 		if (event->attr.exclude_hv)
1338 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1339 	}
1340 
1341 	/*
1342 	 * Write the new configuration to MMCR* with the freeze
1343 	 * bit set and set the hardware events to their initial values.
1344 	 * Then unfreeze the events.
1345 	 */
1346 	ppc_set_pmu_inuse(1);
1347 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1348 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1349 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1350 				| MMCR0_FC);
1351 	if (ppmu->flags & PPMU_ARCH_207S)
1352 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1353 
1354 	/*
1355 	 * Read off any pre-existing events that need to move
1356 	 * to another PMC.
1357 	 */
1358 	for (i = 0; i < cpuhw->n_events; ++i) {
1359 		event = cpuhw->event[i];
1360 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1361 			power_pmu_read(event);
1362 			write_pmc(event->hw.idx, 0);
1363 			event->hw.idx = 0;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Initialize the PMCs for all the new and moved events.
1369 	 */
1370 	cpuhw->n_limited = n_lim = 0;
1371 	for (i = 0; i < cpuhw->n_events; ++i) {
1372 		event = cpuhw->event[i];
1373 		if (event->hw.idx)
1374 			continue;
1375 		idx = hwc_index[i] + 1;
1376 		if (is_limited_pmc(idx)) {
1377 			cpuhw->limited_counter[n_lim] = event;
1378 			cpuhw->limited_hwidx[n_lim] = idx;
1379 			++n_lim;
1380 			continue;
1381 		}
1382 
1383 		if (ebb)
1384 			val = local64_read(&event->hw.prev_count);
1385 		else {
1386 			val = 0;
1387 			if (event->hw.sample_period) {
1388 				left = local64_read(&event->hw.period_left);
1389 				if (left < 0x80000000L)
1390 					val = 0x80000000L - left;
1391 			}
1392 			local64_set(&event->hw.prev_count, val);
1393 		}
1394 
1395 		event->hw.idx = idx;
1396 		if (event->hw.state & PERF_HES_STOPPED)
1397 			val = 0;
1398 		write_pmc(idx, val);
1399 
1400 		perf_event_update_userpage(event);
1401 	}
1402 	cpuhw->n_limited = n_lim;
1403 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1404 
1405  out_enable:
1406 	pmao_restore_workaround(ebb);
1407 
1408 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1409 
1410 	mb();
1411 	if (cpuhw->bhrb_users)
1412 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1413 
1414 	write_mmcr0(cpuhw, mmcr0);
1415 
1416 	/*
1417 	 * Enable instruction sampling if necessary
1418 	 */
1419 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1420 		mb();
1421 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1422 	}
1423 
1424  out:
1425 
1426 	local_irq_restore(flags);
1427 }
1428 
1429 static int collect_events(struct perf_event *group, int max_count,
1430 			  struct perf_event *ctrs[], u64 *events,
1431 			  unsigned int *flags)
1432 {
1433 	int n = 0;
1434 	struct perf_event *event;
1435 
1436 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1437 		if (n >= max_count)
1438 			return -1;
1439 		ctrs[n] = group;
1440 		flags[n] = group->hw.event_base;
1441 		events[n++] = group->hw.config;
1442 	}
1443 	for_each_sibling_event(event, group) {
1444 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1445 		    event->state != PERF_EVENT_STATE_OFF) {
1446 			if (n >= max_count)
1447 				return -1;
1448 			ctrs[n] = event;
1449 			flags[n] = event->hw.event_base;
1450 			events[n++] = event->hw.config;
1451 		}
1452 	}
1453 	return n;
1454 }
1455 
1456 /*
1457  * Add an event to the PMU.
1458  * If all events are not already frozen, then we disable and
1459  * re-enable the PMU in order to get hw_perf_enable to do the
1460  * actual work of reconfiguring the PMU.
1461  */
1462 static int power_pmu_add(struct perf_event *event, int ef_flags)
1463 {
1464 	struct cpu_hw_events *cpuhw;
1465 	unsigned long flags;
1466 	int n0;
1467 	int ret = -EAGAIN;
1468 
1469 	local_irq_save(flags);
1470 	perf_pmu_disable(event->pmu);
1471 
1472 	/*
1473 	 * Add the event to the list (if there is room)
1474 	 * and check whether the total set is still feasible.
1475 	 */
1476 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1477 	n0 = cpuhw->n_events;
1478 	if (n0 >= ppmu->n_counter)
1479 		goto out;
1480 	cpuhw->event[n0] = event;
1481 	cpuhw->events[n0] = event->hw.config;
1482 	cpuhw->flags[n0] = event->hw.event_base;
1483 
1484 	/*
1485 	 * This event may have been disabled/stopped in record_and_restart()
1486 	 * because we exceeded the ->event_limit. If re-starting the event,
1487 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1488 	 * notification is re-enabled.
1489 	 */
1490 	if (!(ef_flags & PERF_EF_START))
1491 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1492 	else
1493 		event->hw.state = 0;
1494 
1495 	/*
1496 	 * If group events scheduling transaction was started,
1497 	 * skip the schedulability test here, it will be performed
1498 	 * at commit time(->commit_txn) as a whole
1499 	 */
1500 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1501 		goto nocheck;
1502 
1503 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1504 		goto out;
1505 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1506 		goto out;
1507 	event->hw.config = cpuhw->events[n0];
1508 
1509 nocheck:
1510 	ebb_event_add(event);
1511 
1512 	++cpuhw->n_events;
1513 	++cpuhw->n_added;
1514 
1515 	ret = 0;
1516  out:
1517 	if (has_branch_stack(event)) {
1518 		power_pmu_bhrb_enable(event);
1519 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1520 					event->attr.branch_sample_type);
1521 	}
1522 
1523 	perf_pmu_enable(event->pmu);
1524 	local_irq_restore(flags);
1525 	return ret;
1526 }
1527 
1528 /*
1529  * Remove an event from the PMU.
1530  */
1531 static void power_pmu_del(struct perf_event *event, int ef_flags)
1532 {
1533 	struct cpu_hw_events *cpuhw;
1534 	long i;
1535 	unsigned long flags;
1536 
1537 	local_irq_save(flags);
1538 	perf_pmu_disable(event->pmu);
1539 
1540 	power_pmu_read(event);
1541 
1542 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1543 	for (i = 0; i < cpuhw->n_events; ++i) {
1544 		if (event == cpuhw->event[i]) {
1545 			while (++i < cpuhw->n_events) {
1546 				cpuhw->event[i-1] = cpuhw->event[i];
1547 				cpuhw->events[i-1] = cpuhw->events[i];
1548 				cpuhw->flags[i-1] = cpuhw->flags[i];
1549 			}
1550 			--cpuhw->n_events;
1551 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1552 			if (event->hw.idx) {
1553 				write_pmc(event->hw.idx, 0);
1554 				event->hw.idx = 0;
1555 			}
1556 			perf_event_update_userpage(event);
1557 			break;
1558 		}
1559 	}
1560 	for (i = 0; i < cpuhw->n_limited; ++i)
1561 		if (event == cpuhw->limited_counter[i])
1562 			break;
1563 	if (i < cpuhw->n_limited) {
1564 		while (++i < cpuhw->n_limited) {
1565 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1566 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1567 		}
1568 		--cpuhw->n_limited;
1569 	}
1570 	if (cpuhw->n_events == 0) {
1571 		/* disable exceptions if no events are running */
1572 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1573 	}
1574 
1575 	if (has_branch_stack(event))
1576 		power_pmu_bhrb_disable(event);
1577 
1578 	perf_pmu_enable(event->pmu);
1579 	local_irq_restore(flags);
1580 }
1581 
1582 /*
1583  * POWER-PMU does not support disabling individual counters, hence
1584  * program their cycle counter to their max value and ignore the interrupts.
1585  */
1586 
1587 static void power_pmu_start(struct perf_event *event, int ef_flags)
1588 {
1589 	unsigned long flags;
1590 	s64 left;
1591 	unsigned long val;
1592 
1593 	if (!event->hw.idx || !event->hw.sample_period)
1594 		return;
1595 
1596 	if (!(event->hw.state & PERF_HES_STOPPED))
1597 		return;
1598 
1599 	if (ef_flags & PERF_EF_RELOAD)
1600 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1601 
1602 	local_irq_save(flags);
1603 	perf_pmu_disable(event->pmu);
1604 
1605 	event->hw.state = 0;
1606 	left = local64_read(&event->hw.period_left);
1607 
1608 	val = 0;
1609 	if (left < 0x80000000L)
1610 		val = 0x80000000L - left;
1611 
1612 	write_pmc(event->hw.idx, val);
1613 
1614 	perf_event_update_userpage(event);
1615 	perf_pmu_enable(event->pmu);
1616 	local_irq_restore(flags);
1617 }
1618 
1619 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1620 {
1621 	unsigned long flags;
1622 
1623 	if (!event->hw.idx || !event->hw.sample_period)
1624 		return;
1625 
1626 	if (event->hw.state & PERF_HES_STOPPED)
1627 		return;
1628 
1629 	local_irq_save(flags);
1630 	perf_pmu_disable(event->pmu);
1631 
1632 	power_pmu_read(event);
1633 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1634 	write_pmc(event->hw.idx, 0);
1635 
1636 	perf_event_update_userpage(event);
1637 	perf_pmu_enable(event->pmu);
1638 	local_irq_restore(flags);
1639 }
1640 
1641 /*
1642  * Start group events scheduling transaction
1643  * Set the flag to make pmu::enable() not perform the
1644  * schedulability test, it will be performed at commit time
1645  *
1646  * We only support PERF_PMU_TXN_ADD transactions. Save the
1647  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1648  * transactions.
1649  */
1650 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1651 {
1652 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1653 
1654 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1655 
1656 	cpuhw->txn_flags = txn_flags;
1657 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1658 		return;
1659 
1660 	perf_pmu_disable(pmu);
1661 	cpuhw->n_txn_start = cpuhw->n_events;
1662 }
1663 
1664 /*
1665  * Stop group events scheduling transaction
1666  * Clear the flag and pmu::enable() will perform the
1667  * schedulability test.
1668  */
1669 static void power_pmu_cancel_txn(struct pmu *pmu)
1670 {
1671 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1672 	unsigned int txn_flags;
1673 
1674 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1675 
1676 	txn_flags = cpuhw->txn_flags;
1677 	cpuhw->txn_flags = 0;
1678 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1679 		return;
1680 
1681 	perf_pmu_enable(pmu);
1682 }
1683 
1684 /*
1685  * Commit group events scheduling transaction
1686  * Perform the group schedulability test as a whole
1687  * Return 0 if success
1688  */
1689 static int power_pmu_commit_txn(struct pmu *pmu)
1690 {
1691 	struct cpu_hw_events *cpuhw;
1692 	long i, n;
1693 
1694 	if (!ppmu)
1695 		return -EAGAIN;
1696 
1697 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1698 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1699 
1700 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1701 		cpuhw->txn_flags = 0;
1702 		return 0;
1703 	}
1704 
1705 	n = cpuhw->n_events;
1706 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1707 		return -EAGAIN;
1708 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1709 	if (i < 0)
1710 		return -EAGAIN;
1711 
1712 	for (i = cpuhw->n_txn_start; i < n; ++i)
1713 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1714 
1715 	cpuhw->txn_flags = 0;
1716 	perf_pmu_enable(pmu);
1717 	return 0;
1718 }
1719 
1720 /*
1721  * Return 1 if we might be able to put event on a limited PMC,
1722  * or 0 if not.
1723  * An event can only go on a limited PMC if it counts something
1724  * that a limited PMC can count, doesn't require interrupts, and
1725  * doesn't exclude any processor mode.
1726  */
1727 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1728 				 unsigned int flags)
1729 {
1730 	int n;
1731 	u64 alt[MAX_EVENT_ALTERNATIVES];
1732 
1733 	if (event->attr.exclude_user
1734 	    || event->attr.exclude_kernel
1735 	    || event->attr.exclude_hv
1736 	    || event->attr.sample_period)
1737 		return 0;
1738 
1739 	if (ppmu->limited_pmc_event(ev))
1740 		return 1;
1741 
1742 	/*
1743 	 * The requested event_id isn't on a limited PMC already;
1744 	 * see if any alternative code goes on a limited PMC.
1745 	 */
1746 	if (!ppmu->get_alternatives)
1747 		return 0;
1748 
1749 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1750 	n = ppmu->get_alternatives(ev, flags, alt);
1751 
1752 	return n > 0;
1753 }
1754 
1755 /*
1756  * Find an alternative event_id that goes on a normal PMC, if possible,
1757  * and return the event_id code, or 0 if there is no such alternative.
1758  * (Note: event_id code 0 is "don't count" on all machines.)
1759  */
1760 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1761 {
1762 	u64 alt[MAX_EVENT_ALTERNATIVES];
1763 	int n;
1764 
1765 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1766 	n = ppmu->get_alternatives(ev, flags, alt);
1767 	if (!n)
1768 		return 0;
1769 	return alt[0];
1770 }
1771 
1772 /* Number of perf_events counting hardware events */
1773 static atomic_t num_events;
1774 /* Used to avoid races in calling reserve/release_pmc_hardware */
1775 static DEFINE_MUTEX(pmc_reserve_mutex);
1776 
1777 /*
1778  * Release the PMU if this is the last perf_event.
1779  */
1780 static void hw_perf_event_destroy(struct perf_event *event)
1781 {
1782 	if (!atomic_add_unless(&num_events, -1, 1)) {
1783 		mutex_lock(&pmc_reserve_mutex);
1784 		if (atomic_dec_return(&num_events) == 0)
1785 			release_pmc_hardware();
1786 		mutex_unlock(&pmc_reserve_mutex);
1787 	}
1788 }
1789 
1790 /*
1791  * Translate a generic cache event_id config to a raw event_id code.
1792  */
1793 static int hw_perf_cache_event(u64 config, u64 *eventp)
1794 {
1795 	unsigned long type, op, result;
1796 	int ev;
1797 
1798 	if (!ppmu->cache_events)
1799 		return -EINVAL;
1800 
1801 	/* unpack config */
1802 	type = config & 0xff;
1803 	op = (config >> 8) & 0xff;
1804 	result = (config >> 16) & 0xff;
1805 
1806 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1807 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1808 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1809 		return -EINVAL;
1810 
1811 	ev = (*ppmu->cache_events)[type][op][result];
1812 	if (ev == 0)
1813 		return -EOPNOTSUPP;
1814 	if (ev == -1)
1815 		return -EINVAL;
1816 	*eventp = ev;
1817 	return 0;
1818 }
1819 
1820 static bool is_event_blacklisted(u64 ev)
1821 {
1822 	int i;
1823 
1824 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1825 		if (ppmu->blacklist_ev[i] == ev)
1826 			return true;
1827 	}
1828 
1829 	return false;
1830 }
1831 
1832 static int power_pmu_event_init(struct perf_event *event)
1833 {
1834 	u64 ev;
1835 	unsigned long flags;
1836 	struct perf_event *ctrs[MAX_HWEVENTS];
1837 	u64 events[MAX_HWEVENTS];
1838 	unsigned int cflags[MAX_HWEVENTS];
1839 	int n;
1840 	int err;
1841 	struct cpu_hw_events *cpuhw;
1842 	u64 bhrb_filter;
1843 
1844 	if (!ppmu)
1845 		return -ENOENT;
1846 
1847 	if (has_branch_stack(event)) {
1848 	        /* PMU has BHRB enabled */
1849 		if (!(ppmu->flags & PPMU_ARCH_207S))
1850 			return -EOPNOTSUPP;
1851 	}
1852 
1853 	switch (event->attr.type) {
1854 	case PERF_TYPE_HARDWARE:
1855 		ev = event->attr.config;
1856 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1857 			return -EOPNOTSUPP;
1858 
1859 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1860 			return -EINVAL;
1861 		ev = ppmu->generic_events[ev];
1862 		break;
1863 	case PERF_TYPE_HW_CACHE:
1864 		err = hw_perf_cache_event(event->attr.config, &ev);
1865 		if (err)
1866 			return err;
1867 
1868 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1869 			return -EINVAL;
1870 		break;
1871 	case PERF_TYPE_RAW:
1872 		ev = event->attr.config;
1873 
1874 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1875 			return -EINVAL;
1876 		break;
1877 	default:
1878 		return -ENOENT;
1879 	}
1880 
1881 	event->hw.config_base = ev;
1882 	event->hw.idx = 0;
1883 
1884 	/*
1885 	 * If we are not running on a hypervisor, force the
1886 	 * exclude_hv bit to 0 so that we don't care what
1887 	 * the user set it to.
1888 	 */
1889 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1890 		event->attr.exclude_hv = 0;
1891 
1892 	/*
1893 	 * If this is a per-task event, then we can use
1894 	 * PM_RUN_* events interchangeably with their non RUN_*
1895 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1896 	 * XXX we should check if the task is an idle task.
1897 	 */
1898 	flags = 0;
1899 	if (event->attach_state & PERF_ATTACH_TASK)
1900 		flags |= PPMU_ONLY_COUNT_RUN;
1901 
1902 	/*
1903 	 * If this machine has limited events, check whether this
1904 	 * event_id could go on a limited event.
1905 	 */
1906 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1907 		if (can_go_on_limited_pmc(event, ev, flags)) {
1908 			flags |= PPMU_LIMITED_PMC_OK;
1909 		} else if (ppmu->limited_pmc_event(ev)) {
1910 			/*
1911 			 * The requested event_id is on a limited PMC,
1912 			 * but we can't use a limited PMC; see if any
1913 			 * alternative goes on a normal PMC.
1914 			 */
1915 			ev = normal_pmc_alternative(ev, flags);
1916 			if (!ev)
1917 				return -EINVAL;
1918 		}
1919 	}
1920 
1921 	/* Extra checks for EBB */
1922 	err = ebb_event_check(event);
1923 	if (err)
1924 		return err;
1925 
1926 	/*
1927 	 * If this is in a group, check if it can go on with all the
1928 	 * other hardware events in the group.  We assume the event
1929 	 * hasn't been linked into its leader's sibling list at this point.
1930 	 */
1931 	n = 0;
1932 	if (event->group_leader != event) {
1933 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1934 				   ctrs, events, cflags);
1935 		if (n < 0)
1936 			return -EINVAL;
1937 	}
1938 	events[n] = ev;
1939 	ctrs[n] = event;
1940 	cflags[n] = flags;
1941 	if (check_excludes(ctrs, cflags, n, 1))
1942 		return -EINVAL;
1943 
1944 	cpuhw = &get_cpu_var(cpu_hw_events);
1945 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1946 
1947 	if (has_branch_stack(event)) {
1948 		bhrb_filter = ppmu->bhrb_filter_map(
1949 					event->attr.branch_sample_type);
1950 
1951 		if (bhrb_filter == -1) {
1952 			put_cpu_var(cpu_hw_events);
1953 			return -EOPNOTSUPP;
1954 		}
1955 		cpuhw->bhrb_filter = bhrb_filter;
1956 	}
1957 
1958 	put_cpu_var(cpu_hw_events);
1959 	if (err)
1960 		return -EINVAL;
1961 
1962 	event->hw.config = events[n];
1963 	event->hw.event_base = cflags[n];
1964 	event->hw.last_period = event->hw.sample_period;
1965 	local64_set(&event->hw.period_left, event->hw.last_period);
1966 
1967 	/*
1968 	 * For EBB events we just context switch the PMC value, we don't do any
1969 	 * of the sample_period logic. We use hw.prev_count for this.
1970 	 */
1971 	if (is_ebb_event(event))
1972 		local64_set(&event->hw.prev_count, 0);
1973 
1974 	/*
1975 	 * See if we need to reserve the PMU.
1976 	 * If no events are currently in use, then we have to take a
1977 	 * mutex to ensure that we don't race with another task doing
1978 	 * reserve_pmc_hardware or release_pmc_hardware.
1979 	 */
1980 	err = 0;
1981 	if (!atomic_inc_not_zero(&num_events)) {
1982 		mutex_lock(&pmc_reserve_mutex);
1983 		if (atomic_read(&num_events) == 0 &&
1984 		    reserve_pmc_hardware(perf_event_interrupt))
1985 			err = -EBUSY;
1986 		else
1987 			atomic_inc(&num_events);
1988 		mutex_unlock(&pmc_reserve_mutex);
1989 	}
1990 	event->destroy = hw_perf_event_destroy;
1991 
1992 	return err;
1993 }
1994 
1995 static int power_pmu_event_idx(struct perf_event *event)
1996 {
1997 	return event->hw.idx;
1998 }
1999 
2000 ssize_t power_events_sysfs_show(struct device *dev,
2001 				struct device_attribute *attr, char *page)
2002 {
2003 	struct perf_pmu_events_attr *pmu_attr;
2004 
2005 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2006 
2007 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2008 }
2009 
2010 static struct pmu power_pmu = {
2011 	.pmu_enable	= power_pmu_enable,
2012 	.pmu_disable	= power_pmu_disable,
2013 	.event_init	= power_pmu_event_init,
2014 	.add		= power_pmu_add,
2015 	.del		= power_pmu_del,
2016 	.start		= power_pmu_start,
2017 	.stop		= power_pmu_stop,
2018 	.read		= power_pmu_read,
2019 	.start_txn	= power_pmu_start_txn,
2020 	.cancel_txn	= power_pmu_cancel_txn,
2021 	.commit_txn	= power_pmu_commit_txn,
2022 	.event_idx	= power_pmu_event_idx,
2023 	.sched_task	= power_pmu_sched_task,
2024 };
2025 
2026 /*
2027  * A counter has overflowed; update its count and record
2028  * things if requested.  Note that interrupts are hard-disabled
2029  * here so there is no possibility of being interrupted.
2030  */
2031 static void record_and_restart(struct perf_event *event, unsigned long val,
2032 			       struct pt_regs *regs)
2033 {
2034 	u64 period = event->hw.sample_period;
2035 	s64 prev, delta, left;
2036 	int record = 0;
2037 
2038 	if (event->hw.state & PERF_HES_STOPPED) {
2039 		write_pmc(event->hw.idx, 0);
2040 		return;
2041 	}
2042 
2043 	/* we don't have to worry about interrupts here */
2044 	prev = local64_read(&event->hw.prev_count);
2045 	delta = check_and_compute_delta(prev, val);
2046 	local64_add(delta, &event->count);
2047 
2048 	/*
2049 	 * See if the total period for this event has expired,
2050 	 * and update for the next period.
2051 	 */
2052 	val = 0;
2053 	left = local64_read(&event->hw.period_left) - delta;
2054 	if (delta == 0)
2055 		left++;
2056 	if (period) {
2057 		if (left <= 0) {
2058 			left += period;
2059 			if (left <= 0)
2060 				left = period;
2061 			record = siar_valid(regs);
2062 			event->hw.last_period = event->hw.sample_period;
2063 		}
2064 		if (left < 0x80000000LL)
2065 			val = 0x80000000LL - left;
2066 	}
2067 
2068 	write_pmc(event->hw.idx, val);
2069 	local64_set(&event->hw.prev_count, val);
2070 	local64_set(&event->hw.period_left, left);
2071 	perf_event_update_userpage(event);
2072 
2073 	/*
2074 	 * Finally record data if requested.
2075 	 */
2076 	if (record) {
2077 		struct perf_sample_data data;
2078 
2079 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2080 
2081 		if (event->attr.sample_type &
2082 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2083 			perf_get_data_addr(event, regs, &data.addr);
2084 
2085 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2086 			struct cpu_hw_events *cpuhw;
2087 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2088 			power_pmu_bhrb_read(event, cpuhw);
2089 			data.br_stack = &cpuhw->bhrb_stack;
2090 		}
2091 
2092 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2093 						ppmu->get_mem_data_src)
2094 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2095 
2096 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2097 						ppmu->get_mem_weight)
2098 			ppmu->get_mem_weight(&data.weight);
2099 
2100 		if (perf_event_overflow(event, &data, regs))
2101 			power_pmu_stop(event, 0);
2102 	}
2103 }
2104 
2105 /*
2106  * Called from generic code to get the misc flags (i.e. processor mode)
2107  * for an event_id.
2108  */
2109 unsigned long perf_misc_flags(struct pt_regs *regs)
2110 {
2111 	u32 flags = perf_get_misc_flags(regs);
2112 
2113 	if (flags)
2114 		return flags;
2115 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2116 		PERF_RECORD_MISC_KERNEL;
2117 }
2118 
2119 /*
2120  * Called from generic code to get the instruction pointer
2121  * for an event_id.
2122  */
2123 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2124 {
2125 	bool use_siar = regs_use_siar(regs);
2126 
2127 	if (use_siar && siar_valid(regs))
2128 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2129 	else if (use_siar)
2130 		return 0;		// no valid instruction pointer
2131 	else
2132 		return regs->nip;
2133 }
2134 
2135 static bool pmc_overflow_power7(unsigned long val)
2136 {
2137 	/*
2138 	 * Events on POWER7 can roll back if a speculative event doesn't
2139 	 * eventually complete. Unfortunately in some rare cases they will
2140 	 * raise a performance monitor exception. We need to catch this to
2141 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2142 	 * cycles from overflow.
2143 	 *
2144 	 * We only do this if the first pass fails to find any overflowing
2145 	 * PMCs because a user might set a period of less than 256 and we
2146 	 * don't want to mistakenly reset them.
2147 	 */
2148 	if ((0x80000000 - val) <= 256)
2149 		return true;
2150 
2151 	return false;
2152 }
2153 
2154 static bool pmc_overflow(unsigned long val)
2155 {
2156 	if ((int)val < 0)
2157 		return true;
2158 
2159 	return false;
2160 }
2161 
2162 /*
2163  * Performance monitor interrupt stuff
2164  */
2165 static void __perf_event_interrupt(struct pt_regs *regs)
2166 {
2167 	int i, j;
2168 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2169 	struct perf_event *event;
2170 	unsigned long val[8];
2171 	int found, active;
2172 	int nmi;
2173 
2174 	if (cpuhw->n_limited)
2175 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2176 					mfspr(SPRN_PMC6));
2177 
2178 	perf_read_regs(regs);
2179 
2180 	nmi = perf_intr_is_nmi(regs);
2181 	if (nmi)
2182 		nmi_enter();
2183 	else
2184 		irq_enter();
2185 
2186 	/* Read all the PMCs since we'll need them a bunch of times */
2187 	for (i = 0; i < ppmu->n_counter; ++i)
2188 		val[i] = read_pmc(i + 1);
2189 
2190 	/* Try to find what caused the IRQ */
2191 	found = 0;
2192 	for (i = 0; i < ppmu->n_counter; ++i) {
2193 		if (!pmc_overflow(val[i]))
2194 			continue;
2195 		if (is_limited_pmc(i + 1))
2196 			continue; /* these won't generate IRQs */
2197 		/*
2198 		 * We've found one that's overflowed.  For active
2199 		 * counters we need to log this.  For inactive
2200 		 * counters, we need to reset it anyway
2201 		 */
2202 		found = 1;
2203 		active = 0;
2204 		for (j = 0; j < cpuhw->n_events; ++j) {
2205 			event = cpuhw->event[j];
2206 			if (event->hw.idx == (i + 1)) {
2207 				active = 1;
2208 				record_and_restart(event, val[i], regs);
2209 				break;
2210 			}
2211 		}
2212 		if (!active)
2213 			/* reset non active counters that have overflowed */
2214 			write_pmc(i + 1, 0);
2215 	}
2216 	if (!found && pvr_version_is(PVR_POWER7)) {
2217 		/* check active counters for special buggy p7 overflow */
2218 		for (i = 0; i < cpuhw->n_events; ++i) {
2219 			event = cpuhw->event[i];
2220 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2221 				continue;
2222 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2223 				/* event has overflowed in a buggy way*/
2224 				found = 1;
2225 				record_and_restart(event,
2226 						   val[event->hw.idx - 1],
2227 						   regs);
2228 			}
2229 		}
2230 	}
2231 	if (!found && !nmi && printk_ratelimit())
2232 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2233 
2234 	/*
2235 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2236 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2237 	 * and thus allow interrupts to occur again.
2238 	 * XXX might want to use MSR.PM to keep the events frozen until
2239 	 * we get back out of this interrupt.
2240 	 */
2241 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2242 
2243 	if (nmi)
2244 		nmi_exit();
2245 	else
2246 		irq_exit();
2247 }
2248 
2249 static void perf_event_interrupt(struct pt_regs *regs)
2250 {
2251 	u64 start_clock = sched_clock();
2252 
2253 	__perf_event_interrupt(regs);
2254 	perf_sample_event_took(sched_clock() - start_clock);
2255 }
2256 
2257 static int power_pmu_prepare_cpu(unsigned int cpu)
2258 {
2259 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2260 
2261 	if (ppmu) {
2262 		memset(cpuhw, 0, sizeof(*cpuhw));
2263 		cpuhw->mmcr[0] = MMCR0_FC;
2264 	}
2265 	return 0;
2266 }
2267 
2268 int register_power_pmu(struct power_pmu *pmu)
2269 {
2270 	if (ppmu)
2271 		return -EBUSY;		/* something's already registered */
2272 
2273 	ppmu = pmu;
2274 	pr_info("%s performance monitor hardware support registered\n",
2275 		pmu->name);
2276 
2277 	power_pmu.attr_groups = ppmu->attr_groups;
2278 
2279 #ifdef MSR_HV
2280 	/*
2281 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2282 	 */
2283 	if (mfmsr() & MSR_HV)
2284 		freeze_events_kernel = MMCR0_FCHV;
2285 #endif /* CONFIG_PPC64 */
2286 
2287 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2288 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2289 			  power_pmu_prepare_cpu, NULL);
2290 	return 0;
2291 }
2292 
2293 #ifdef CONFIG_PPC64
2294 static int __init init_ppc64_pmu(void)
2295 {
2296 	/* run through all the pmu drivers one at a time */
2297 	if (!init_power5_pmu())
2298 		return 0;
2299 	else if (!init_power5p_pmu())
2300 		return 0;
2301 	else if (!init_power6_pmu())
2302 		return 0;
2303 	else if (!init_power7_pmu())
2304 		return 0;
2305 	else if (!init_power8_pmu())
2306 		return 0;
2307 	else if (!init_power9_pmu())
2308 		return 0;
2309 	else if (!init_ppc970_pmu())
2310 		return 0;
2311 	else
2312 		return init_generic_compat_pmu();
2313 }
2314 early_initcall(init_ppc64_pmu);
2315 #endif
2316