1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 #include <asm/hw_irq.h> 21 #include <asm/interrupt.h> 22 23 #ifdef CONFIG_PPC64 24 #include "internal.h" 25 #endif 26 27 #define BHRB_MAX_ENTRIES 32 28 #define BHRB_TARGET 0x0000000000000002 29 #define BHRB_PREDICTION 0x0000000000000001 30 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 31 32 struct cpu_hw_events { 33 int n_events; 34 int n_percpu; 35 int disabled; 36 int n_added; 37 int n_limited; 38 u8 pmcs_enabled; 39 struct perf_event *event[MAX_HWEVENTS]; 40 u64 events[MAX_HWEVENTS]; 41 unsigned int flags[MAX_HWEVENTS]; 42 struct mmcr_regs mmcr; 43 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 44 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 45 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 46 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 47 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 48 49 unsigned int txn_flags; 50 int n_txn_start; 51 52 /* BHRB bits */ 53 u64 bhrb_filter; /* BHRB HW branch filter */ 54 unsigned int bhrb_users; 55 void *bhrb_context; 56 struct perf_branch_stack bhrb_stack; 57 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 58 u64 ic_init; 59 60 /* Store the PMC values */ 61 unsigned long pmcs[MAX_HWEVENTS]; 62 }; 63 64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 65 66 static struct power_pmu *ppmu; 67 68 /* 69 * Normally, to ignore kernel events we set the FCS (freeze counters 70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 71 * hypervisor bit set in the MSR, or if we are running on a processor 72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 73 * then we need to use the FCHV bit to ignore kernel events. 74 */ 75 static unsigned int freeze_events_kernel = MMCR0_FCS; 76 77 /* 78 * 32-bit doesn't have MMCRA but does have an MMCR2, 79 * and a few other names are different. 80 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. 81 * Define them as zero knowing that any code path accessing 82 * these registers (via mtspr/mfspr) are done under ppmu flag 83 * check for PPMU_ARCH_31 and we will not enter that code path 84 * for 32-bit. 85 */ 86 #ifdef CONFIG_PPC32 87 88 #define MMCR0_FCHV 0 89 #define MMCR0_PMCjCE MMCR0_PMCnCE 90 #define MMCR0_FC56 0 91 #define MMCR0_PMAO 0 92 #define MMCR0_EBE 0 93 #define MMCR0_BHRBA 0 94 #define MMCR0_PMCC 0 95 #define MMCR0_PMCC_U6 0 96 97 #define SPRN_MMCRA SPRN_MMCR2 98 #define SPRN_MMCR3 0 99 #define SPRN_SIER2 0 100 #define SPRN_SIER3 0 101 #define MMCRA_SAMPLE_ENABLE 0 102 #define MMCRA_BHRB_DISABLE 0 103 #define MMCR0_PMCCEXT 0 104 105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 106 { 107 return 0; 108 } 109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 110 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 111 { 112 return 0; 113 } 114 static inline void perf_read_regs(struct pt_regs *regs) 115 { 116 regs->result = 0; 117 } 118 119 static inline int siar_valid(struct pt_regs *regs) 120 { 121 return 1; 122 } 123 124 static bool is_ebb_event(struct perf_event *event) { return false; } 125 static int ebb_event_check(struct perf_event *event) { return 0; } 126 static void ebb_event_add(struct perf_event *event) { } 127 static void ebb_switch_out(unsigned long mmcr0) { } 128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 129 { 130 return cpuhw->mmcr.mmcr0; 131 } 132 133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 135 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 136 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 137 static void pmao_restore_workaround(bool ebb) { } 138 #endif /* CONFIG_PPC32 */ 139 140 bool is_sier_available(void) 141 { 142 if (!ppmu) 143 return false; 144 145 if (ppmu->flags & PPMU_HAS_SIER) 146 return true; 147 148 return false; 149 } 150 151 /* 152 * Return PMC value corresponding to the 153 * index passed. 154 */ 155 unsigned long get_pmcs_ext_regs(int idx) 156 { 157 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 158 159 return cpuhw->pmcs[idx]; 160 } 161 162 static bool regs_use_siar(struct pt_regs *regs) 163 { 164 /* 165 * When we take a performance monitor exception the regs are setup 166 * using perf_read_regs() which overloads some fields, in particular 167 * regs->result to tell us whether to use SIAR. 168 * 169 * However if the regs are from another exception, eg. a syscall, then 170 * they have not been setup using perf_read_regs() and so regs->result 171 * is something random. 172 */ 173 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result); 174 } 175 176 /* 177 * Things that are specific to 64-bit implementations. 178 */ 179 #ifdef CONFIG_PPC64 180 181 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 182 { 183 unsigned long mmcra = regs->dsisr; 184 185 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 186 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 187 if (slot > 1) 188 return 4 * (slot - 1); 189 } 190 191 return 0; 192 } 193 194 /* 195 * The user wants a data address recorded. 196 * If we're not doing instruction sampling, give them the SDAR 197 * (sampled data address). If we are doing instruction sampling, then 198 * only give them the SDAR if it corresponds to the instruction 199 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 200 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 201 */ 202 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 203 { 204 unsigned long mmcra = regs->dsisr; 205 bool sdar_valid; 206 207 if (ppmu->flags & PPMU_HAS_SIER) 208 sdar_valid = regs->dar & SIER_SDAR_VALID; 209 else { 210 unsigned long sdsync; 211 212 if (ppmu->flags & PPMU_SIAR_VALID) 213 sdsync = POWER7P_MMCRA_SDAR_VALID; 214 else if (ppmu->flags & PPMU_ALT_SIPR) 215 sdsync = POWER6_MMCRA_SDSYNC; 216 else if (ppmu->flags & PPMU_NO_SIAR) 217 sdsync = MMCRA_SAMPLE_ENABLE; 218 else 219 sdsync = MMCRA_SDSYNC; 220 221 sdar_valid = mmcra & sdsync; 222 } 223 224 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 225 *addrp = mfspr(SPRN_SDAR); 226 227 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel) 228 *addrp = 0; 229 } 230 231 static bool regs_sihv(struct pt_regs *regs) 232 { 233 unsigned long sihv = MMCRA_SIHV; 234 235 if (ppmu->flags & PPMU_HAS_SIER) 236 return !!(regs->dar & SIER_SIHV); 237 238 if (ppmu->flags & PPMU_ALT_SIPR) 239 sihv = POWER6_MMCRA_SIHV; 240 241 return !!(regs->dsisr & sihv); 242 } 243 244 static bool regs_sipr(struct pt_regs *regs) 245 { 246 unsigned long sipr = MMCRA_SIPR; 247 248 if (ppmu->flags & PPMU_HAS_SIER) 249 return !!(regs->dar & SIER_SIPR); 250 251 if (ppmu->flags & PPMU_ALT_SIPR) 252 sipr = POWER6_MMCRA_SIPR; 253 254 return !!(regs->dsisr & sipr); 255 } 256 257 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 258 { 259 if (regs->msr & MSR_PR) 260 return PERF_RECORD_MISC_USER; 261 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 262 return PERF_RECORD_MISC_HYPERVISOR; 263 return PERF_RECORD_MISC_KERNEL; 264 } 265 266 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 267 { 268 bool use_siar = regs_use_siar(regs); 269 unsigned long mmcra = regs->dsisr; 270 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 271 272 if (!use_siar) 273 return perf_flags_from_msr(regs); 274 275 /* 276 * Check the address in SIAR to identify the 277 * privilege levels since the SIER[MSR_HV, MSR_PR] 278 * bits are not set for marked events in power10 279 * DD1. 280 */ 281 if (marked && (ppmu->flags & PPMU_P10_DD1)) { 282 unsigned long siar = mfspr(SPRN_SIAR); 283 if (siar) { 284 if (is_kernel_addr(siar)) 285 return PERF_RECORD_MISC_KERNEL; 286 return PERF_RECORD_MISC_USER; 287 } else { 288 if (is_kernel_addr(regs->nip)) 289 return PERF_RECORD_MISC_KERNEL; 290 return PERF_RECORD_MISC_USER; 291 } 292 } 293 294 /* 295 * If we don't have flags in MMCRA, rather than using 296 * the MSR, we intuit the flags from the address in 297 * SIAR which should give slightly more reliable 298 * results 299 */ 300 if (ppmu->flags & PPMU_NO_SIPR) { 301 unsigned long siar = mfspr(SPRN_SIAR); 302 if (is_kernel_addr(siar)) 303 return PERF_RECORD_MISC_KERNEL; 304 return PERF_RECORD_MISC_USER; 305 } 306 307 /* PR has priority over HV, so order below is important */ 308 if (regs_sipr(regs)) 309 return PERF_RECORD_MISC_USER; 310 311 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 312 return PERF_RECORD_MISC_HYPERVISOR; 313 314 return PERF_RECORD_MISC_KERNEL; 315 } 316 317 /* 318 * Overload regs->dsisr to store MMCRA so we only need to read it once 319 * on each interrupt. 320 * Overload regs->dar to store SIER if we have it. 321 * Overload regs->result to specify whether we should use the MSR (result 322 * is zero) or the SIAR (result is non zero). 323 */ 324 static inline void perf_read_regs(struct pt_regs *regs) 325 { 326 unsigned long mmcra = mfspr(SPRN_MMCRA); 327 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 328 int use_siar; 329 330 regs->dsisr = mmcra; 331 332 if (ppmu->flags & PPMU_HAS_SIER) 333 regs->dar = mfspr(SPRN_SIER); 334 335 /* 336 * If this isn't a PMU exception (eg a software event) the SIAR is 337 * not valid. Use pt_regs. 338 * 339 * If it is a marked event use the SIAR. 340 * 341 * If the PMU doesn't update the SIAR for non marked events use 342 * pt_regs. 343 * 344 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an 345 * issue with regs_sipr not being in synch with SIAR in interrupt entry 346 * and return sequences, which can result in regs_sipr being true for 347 * kernel interrupts and SIAR, which has the effect of causing samples 348 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around 349 * interrupt entry/exit. 350 * 351 * If the PMU has HV/PR flags then check to see if they 352 * place the exception in userspace. If so, use pt_regs. In 353 * continuous sampling mode the SIAR and the PMU exception are 354 * not synchronised, so they may be many instructions apart. 355 * This can result in confusing backtraces. We still want 356 * hypervisor samples as well as samples in the kernel with 357 * interrupts off hence the userspace check. 358 */ 359 if (TRAP(regs) != INTERRUPT_PERFMON) 360 use_siar = 0; 361 else if ((ppmu->flags & PPMU_NO_SIAR)) 362 use_siar = 0; 363 else if (marked) 364 use_siar = 1; 365 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 366 use_siar = 0; 367 else if (!user_mode(regs)) 368 use_siar = 1; 369 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 370 use_siar = 0; 371 else 372 use_siar = 1; 373 374 regs->result = use_siar; 375 } 376 377 /* 378 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 379 * must be sampled only if the SIAR-valid bit is set. 380 * 381 * For unmarked instructions and for processors that don't have the SIAR-Valid 382 * bit, assume that SIAR is valid. 383 */ 384 static inline int siar_valid(struct pt_regs *regs) 385 { 386 unsigned long mmcra = regs->dsisr; 387 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 388 389 if (marked) { 390 /* 391 * SIER[SIAR_VALID] is not set for some 392 * marked events on power10 DD1, so drop 393 * the check for SIER[SIAR_VALID] and return true. 394 */ 395 if (ppmu->flags & PPMU_P10_DD1) 396 return 0x1; 397 else if (ppmu->flags & PPMU_HAS_SIER) 398 return regs->dar & SIER_SIAR_VALID; 399 400 if (ppmu->flags & PPMU_SIAR_VALID) 401 return mmcra & POWER7P_MMCRA_SIAR_VALID; 402 } 403 404 return 1; 405 } 406 407 408 /* Reset all possible BHRB entries */ 409 static void power_pmu_bhrb_reset(void) 410 { 411 asm volatile(PPC_CLRBHRB); 412 } 413 414 static void power_pmu_bhrb_enable(struct perf_event *event) 415 { 416 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 417 418 if (!ppmu->bhrb_nr) 419 return; 420 421 /* Clear BHRB if we changed task context to avoid data leaks */ 422 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 423 power_pmu_bhrb_reset(); 424 cpuhw->bhrb_context = event->ctx; 425 } 426 cpuhw->bhrb_users++; 427 perf_sched_cb_inc(event->ctx->pmu); 428 } 429 430 static void power_pmu_bhrb_disable(struct perf_event *event) 431 { 432 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 433 434 if (!ppmu->bhrb_nr) 435 return; 436 437 WARN_ON_ONCE(!cpuhw->bhrb_users); 438 cpuhw->bhrb_users--; 439 perf_sched_cb_dec(event->ctx->pmu); 440 441 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 442 /* BHRB cannot be turned off when other 443 * events are active on the PMU. 444 */ 445 446 /* avoid stale pointer */ 447 cpuhw->bhrb_context = NULL; 448 } 449 } 450 451 /* Called from ctxsw to prevent one process's branch entries to 452 * mingle with the other process's entries during context switch. 453 */ 454 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 455 { 456 if (!ppmu->bhrb_nr) 457 return; 458 459 if (sched_in) 460 power_pmu_bhrb_reset(); 461 } 462 /* Calculate the to address for a branch */ 463 static __u64 power_pmu_bhrb_to(u64 addr) 464 { 465 unsigned int instr; 466 __u64 target; 467 468 if (is_kernel_addr(addr)) { 469 if (copy_from_kernel_nofault(&instr, (void *)addr, 470 sizeof(instr))) 471 return 0; 472 473 return branch_target(&instr); 474 } 475 476 /* Userspace: need copy instruction here then translate it */ 477 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 478 sizeof(instr))) 479 return 0; 480 481 target = branch_target(&instr); 482 if ((!target) || (instr & BRANCH_ABSOLUTE)) 483 return target; 484 485 /* Translate relative branch target from kernel to user address */ 486 return target - (unsigned long)&instr + addr; 487 } 488 489 /* Processing BHRB entries */ 490 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 491 { 492 u64 val; 493 u64 addr; 494 int r_index, u_index, pred; 495 496 r_index = 0; 497 u_index = 0; 498 while (r_index < ppmu->bhrb_nr) { 499 /* Assembly read function */ 500 val = read_bhrb(r_index++); 501 if (!val) 502 /* Terminal marker: End of valid BHRB entries */ 503 break; 504 else { 505 addr = val & BHRB_EA; 506 pred = val & BHRB_PREDICTION; 507 508 if (!addr) 509 /* invalid entry */ 510 continue; 511 512 /* 513 * BHRB rolling buffer could very much contain the kernel 514 * addresses at this point. Check the privileges before 515 * exporting it to userspace (avoid exposure of regions 516 * where we could have speculative execution) 517 * Incase of ISA v3.1, BHRB will capture only user-space 518 * addresses, hence include a check before filtering code 519 */ 520 if (!(ppmu->flags & PPMU_ARCH_31) && 521 is_kernel_addr(addr) && event->attr.exclude_kernel) 522 continue; 523 524 /* Branches are read most recent first (ie. mfbhrb 0 is 525 * the most recent branch). 526 * There are two types of valid entries: 527 * 1) a target entry which is the to address of a 528 * computed goto like a blr,bctr,btar. The next 529 * entry read from the bhrb will be branch 530 * corresponding to this target (ie. the actual 531 * blr/bctr/btar instruction). 532 * 2) a from address which is an actual branch. If a 533 * target entry proceeds this, then this is the 534 * matching branch for that target. If this is not 535 * following a target entry, then this is a branch 536 * where the target is given as an immediate field 537 * in the instruction (ie. an i or b form branch). 538 * In this case we need to read the instruction from 539 * memory to determine the target/to address. 540 */ 541 542 if (val & BHRB_TARGET) { 543 /* Target branches use two entries 544 * (ie. computed gotos/XL form) 545 */ 546 cpuhw->bhrb_entries[u_index].to = addr; 547 cpuhw->bhrb_entries[u_index].mispred = pred; 548 cpuhw->bhrb_entries[u_index].predicted = ~pred; 549 550 /* Get from address in next entry */ 551 val = read_bhrb(r_index++); 552 addr = val & BHRB_EA; 553 if (val & BHRB_TARGET) { 554 /* Shouldn't have two targets in a 555 row.. Reset index and try again */ 556 r_index--; 557 addr = 0; 558 } 559 cpuhw->bhrb_entries[u_index].from = addr; 560 } else { 561 /* Branches to immediate field 562 (ie I or B form) */ 563 cpuhw->bhrb_entries[u_index].from = addr; 564 cpuhw->bhrb_entries[u_index].to = 565 power_pmu_bhrb_to(addr); 566 cpuhw->bhrb_entries[u_index].mispred = pred; 567 cpuhw->bhrb_entries[u_index].predicted = ~pred; 568 } 569 u_index++; 570 571 } 572 } 573 cpuhw->bhrb_stack.nr = u_index; 574 cpuhw->bhrb_stack.hw_idx = -1ULL; 575 return; 576 } 577 578 static bool is_ebb_event(struct perf_event *event) 579 { 580 /* 581 * This could be a per-PMU callback, but we'd rather avoid the cost. We 582 * check that the PMU supports EBB, meaning those that don't can still 583 * use bit 63 of the event code for something else if they wish. 584 */ 585 return (ppmu->flags & PPMU_ARCH_207S) && 586 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 587 } 588 589 static int ebb_event_check(struct perf_event *event) 590 { 591 struct perf_event *leader = event->group_leader; 592 593 /* Event and group leader must agree on EBB */ 594 if (is_ebb_event(leader) != is_ebb_event(event)) 595 return -EINVAL; 596 597 if (is_ebb_event(event)) { 598 if (!(event->attach_state & PERF_ATTACH_TASK)) 599 return -EINVAL; 600 601 if (!leader->attr.pinned || !leader->attr.exclusive) 602 return -EINVAL; 603 604 if (event->attr.freq || 605 event->attr.inherit || 606 event->attr.sample_type || 607 event->attr.sample_period || 608 event->attr.enable_on_exec) 609 return -EINVAL; 610 } 611 612 return 0; 613 } 614 615 static void ebb_event_add(struct perf_event *event) 616 { 617 if (!is_ebb_event(event) || current->thread.used_ebb) 618 return; 619 620 /* 621 * IFF this is the first time we've added an EBB event, set 622 * PMXE in the user MMCR0 so we can detect when it's cleared by 623 * userspace. We need this so that we can context switch while 624 * userspace is in the EBB handler (where PMXE is 0). 625 */ 626 current->thread.used_ebb = 1; 627 current->thread.mmcr0 |= MMCR0_PMXE; 628 } 629 630 static void ebb_switch_out(unsigned long mmcr0) 631 { 632 if (!(mmcr0 & MMCR0_EBE)) 633 return; 634 635 current->thread.siar = mfspr(SPRN_SIAR); 636 current->thread.sier = mfspr(SPRN_SIER); 637 current->thread.sdar = mfspr(SPRN_SDAR); 638 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 639 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 640 if (ppmu->flags & PPMU_ARCH_31) { 641 current->thread.mmcr3 = mfspr(SPRN_MMCR3); 642 current->thread.sier2 = mfspr(SPRN_SIER2); 643 current->thread.sier3 = mfspr(SPRN_SIER3); 644 } 645 } 646 647 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 648 { 649 unsigned long mmcr0 = cpuhw->mmcr.mmcr0; 650 651 if (!ebb) 652 goto out; 653 654 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 655 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 656 657 /* 658 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 659 * with pmao_restore_workaround() because we may add PMAO but we never 660 * clear it here. 661 */ 662 mmcr0 |= current->thread.mmcr0; 663 664 /* 665 * Be careful not to set PMXE if userspace had it cleared. This is also 666 * compatible with pmao_restore_workaround() because it has already 667 * cleared PMXE and we leave PMAO alone. 668 */ 669 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 670 mmcr0 &= ~MMCR0_PMXE; 671 672 mtspr(SPRN_SIAR, current->thread.siar); 673 mtspr(SPRN_SIER, current->thread.sier); 674 mtspr(SPRN_SDAR, current->thread.sdar); 675 676 /* 677 * Merge the kernel & user values of MMCR2. The semantics we implement 678 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 679 * but not clear bits. If a task wants to be able to clear bits, ie. 680 * unfreeze counters, it should not set exclude_xxx in its events and 681 * instead manage the MMCR2 entirely by itself. 682 */ 683 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); 684 685 if (ppmu->flags & PPMU_ARCH_31) { 686 mtspr(SPRN_MMCR3, current->thread.mmcr3); 687 mtspr(SPRN_SIER2, current->thread.sier2); 688 mtspr(SPRN_SIER3, current->thread.sier3); 689 } 690 out: 691 return mmcr0; 692 } 693 694 static void pmao_restore_workaround(bool ebb) 695 { 696 unsigned pmcs[6]; 697 698 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 699 return; 700 701 /* 702 * On POWER8E there is a hardware defect which affects the PMU context 703 * switch logic, ie. power_pmu_disable/enable(). 704 * 705 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 706 * by the hardware. Sometime later the actual PMU exception is 707 * delivered. 708 * 709 * If we context switch, or simply disable/enable, the PMU prior to the 710 * exception arriving, the exception will be lost when we clear PMAO. 711 * 712 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 713 * set, and this _should_ generate an exception. However because of the 714 * defect no exception is generated when we write PMAO, and we get 715 * stuck with no counters counting but no exception delivered. 716 * 717 * The workaround is to detect this case and tweak the hardware to 718 * create another pending PMU exception. 719 * 720 * We do that by setting up PMC6 (cycles) for an imminent overflow and 721 * enabling the PMU. That causes a new exception to be generated in the 722 * chip, but we don't take it yet because we have interrupts hard 723 * disabled. We then write back the PMU state as we want it to be seen 724 * by the exception handler. When we reenable interrupts the exception 725 * handler will be called and see the correct state. 726 * 727 * The logic is the same for EBB, except that the exception is gated by 728 * us having interrupts hard disabled as well as the fact that we are 729 * not in userspace. The exception is finally delivered when we return 730 * to userspace. 731 */ 732 733 /* Only if PMAO is set and PMAO_SYNC is clear */ 734 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 735 return; 736 737 /* If we're doing EBB, only if BESCR[GE] is set */ 738 if (ebb && !(current->thread.bescr & BESCR_GE)) 739 return; 740 741 /* 742 * We are already soft-disabled in power_pmu_enable(). We need to hard 743 * disable to actually prevent the PMU exception from firing. 744 */ 745 hard_irq_disable(); 746 747 /* 748 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 749 * Using read/write_pmc() in a for loop adds 12 function calls and 750 * almost doubles our code size. 751 */ 752 pmcs[0] = mfspr(SPRN_PMC1); 753 pmcs[1] = mfspr(SPRN_PMC2); 754 pmcs[2] = mfspr(SPRN_PMC3); 755 pmcs[3] = mfspr(SPRN_PMC4); 756 pmcs[4] = mfspr(SPRN_PMC5); 757 pmcs[5] = mfspr(SPRN_PMC6); 758 759 /* Ensure all freeze bits are unset */ 760 mtspr(SPRN_MMCR2, 0); 761 762 /* Set up PMC6 to overflow in one cycle */ 763 mtspr(SPRN_PMC6, 0x7FFFFFFE); 764 765 /* Enable exceptions and unfreeze PMC6 */ 766 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 767 768 /* Now we need to refreeze and restore the PMCs */ 769 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 770 771 mtspr(SPRN_PMC1, pmcs[0]); 772 mtspr(SPRN_PMC2, pmcs[1]); 773 mtspr(SPRN_PMC3, pmcs[2]); 774 mtspr(SPRN_PMC4, pmcs[3]); 775 mtspr(SPRN_PMC5, pmcs[4]); 776 mtspr(SPRN_PMC6, pmcs[5]); 777 } 778 779 #endif /* CONFIG_PPC64 */ 780 781 static void perf_event_interrupt(struct pt_regs *regs); 782 783 /* 784 * Read one performance monitor counter (PMC). 785 */ 786 static unsigned long read_pmc(int idx) 787 { 788 unsigned long val; 789 790 switch (idx) { 791 case 1: 792 val = mfspr(SPRN_PMC1); 793 break; 794 case 2: 795 val = mfspr(SPRN_PMC2); 796 break; 797 case 3: 798 val = mfspr(SPRN_PMC3); 799 break; 800 case 4: 801 val = mfspr(SPRN_PMC4); 802 break; 803 case 5: 804 val = mfspr(SPRN_PMC5); 805 break; 806 case 6: 807 val = mfspr(SPRN_PMC6); 808 break; 809 #ifdef CONFIG_PPC64 810 case 7: 811 val = mfspr(SPRN_PMC7); 812 break; 813 case 8: 814 val = mfspr(SPRN_PMC8); 815 break; 816 #endif /* CONFIG_PPC64 */ 817 default: 818 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 819 val = 0; 820 } 821 return val; 822 } 823 824 /* 825 * Write one PMC. 826 */ 827 static void write_pmc(int idx, unsigned long val) 828 { 829 switch (idx) { 830 case 1: 831 mtspr(SPRN_PMC1, val); 832 break; 833 case 2: 834 mtspr(SPRN_PMC2, val); 835 break; 836 case 3: 837 mtspr(SPRN_PMC3, val); 838 break; 839 case 4: 840 mtspr(SPRN_PMC4, val); 841 break; 842 case 5: 843 mtspr(SPRN_PMC5, val); 844 break; 845 case 6: 846 mtspr(SPRN_PMC6, val); 847 break; 848 #ifdef CONFIG_PPC64 849 case 7: 850 mtspr(SPRN_PMC7, val); 851 break; 852 case 8: 853 mtspr(SPRN_PMC8, val); 854 break; 855 #endif /* CONFIG_PPC64 */ 856 default: 857 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 858 } 859 } 860 861 static int any_pmc_overflown(struct cpu_hw_events *cpuhw) 862 { 863 int i, idx; 864 865 for (i = 0; i < cpuhw->n_events; i++) { 866 idx = cpuhw->event[i]->hw.idx; 867 if ((idx) && ((int)read_pmc(idx) < 0)) 868 return idx; 869 } 870 871 return 0; 872 } 873 874 /* Called from sysrq_handle_showregs() */ 875 void perf_event_print_debug(void) 876 { 877 unsigned long sdar, sier, flags; 878 u32 pmcs[MAX_HWEVENTS]; 879 int i; 880 881 if (!ppmu) { 882 pr_info("Performance monitor hardware not registered.\n"); 883 return; 884 } 885 886 if (!ppmu->n_counter) 887 return; 888 889 local_irq_save(flags); 890 891 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 892 smp_processor_id(), ppmu->name, ppmu->n_counter); 893 894 for (i = 0; i < ppmu->n_counter; i++) 895 pmcs[i] = read_pmc(i + 1); 896 897 for (; i < MAX_HWEVENTS; i++) 898 pmcs[i] = 0xdeadbeef; 899 900 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 901 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 902 903 if (ppmu->n_counter > 4) 904 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 905 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 906 907 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 908 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 909 910 sdar = sier = 0; 911 #ifdef CONFIG_PPC64 912 sdar = mfspr(SPRN_SDAR); 913 914 if (ppmu->flags & PPMU_HAS_SIER) 915 sier = mfspr(SPRN_SIER); 916 917 if (ppmu->flags & PPMU_ARCH_207S) { 918 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 919 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 920 pr_info("EBBRR: %016lx BESCR: %016lx\n", 921 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 922 } 923 924 if (ppmu->flags & PPMU_ARCH_31) { 925 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", 926 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); 927 } 928 #endif 929 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 930 mfspr(SPRN_SIAR), sdar, sier); 931 932 local_irq_restore(flags); 933 } 934 935 /* 936 * Check if a set of events can all go on the PMU at once. 937 * If they can't, this will look at alternative codes for the events 938 * and see if any combination of alternative codes is feasible. 939 * The feasible set is returned in event_id[]. 940 */ 941 static int power_check_constraints(struct cpu_hw_events *cpuhw, 942 u64 event_id[], unsigned int cflags[], 943 int n_ev, struct perf_event **event) 944 { 945 unsigned long mask, value, nv; 946 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 947 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 948 int i, j; 949 unsigned long addf = ppmu->add_fields; 950 unsigned long tadd = ppmu->test_adder; 951 unsigned long grp_mask = ppmu->group_constraint_mask; 952 unsigned long grp_val = ppmu->group_constraint_val; 953 954 if (n_ev > ppmu->n_counter) 955 return -1; 956 957 /* First see if the events will go on as-is */ 958 for (i = 0; i < n_ev; ++i) { 959 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 960 && !ppmu->limited_pmc_event(event_id[i])) { 961 ppmu->get_alternatives(event_id[i], cflags[i], 962 cpuhw->alternatives[i]); 963 event_id[i] = cpuhw->alternatives[i][0]; 964 } 965 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 966 &cpuhw->avalues[i][0], event[i]->attr.config1)) 967 return -1; 968 } 969 value = mask = 0; 970 for (i = 0; i < n_ev; ++i) { 971 nv = (value | cpuhw->avalues[i][0]) + 972 (value & cpuhw->avalues[i][0] & addf); 973 974 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 975 break; 976 977 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 978 & (~grp_mask)) != 0) 979 break; 980 981 value = nv; 982 mask |= cpuhw->amasks[i][0]; 983 } 984 if (i == n_ev) { 985 if ((value & mask & grp_mask) != (mask & grp_val)) 986 return -1; 987 else 988 return 0; /* all OK */ 989 } 990 991 /* doesn't work, gather alternatives... */ 992 if (!ppmu->get_alternatives) 993 return -1; 994 for (i = 0; i < n_ev; ++i) { 995 choice[i] = 0; 996 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 997 cpuhw->alternatives[i]); 998 for (j = 1; j < n_alt[i]; ++j) 999 ppmu->get_constraint(cpuhw->alternatives[i][j], 1000 &cpuhw->amasks[i][j], 1001 &cpuhw->avalues[i][j], 1002 event[i]->attr.config1); 1003 } 1004 1005 /* enumerate all possibilities and see if any will work */ 1006 i = 0; 1007 j = -1; 1008 value = mask = nv = 0; 1009 while (i < n_ev) { 1010 if (j >= 0) { 1011 /* we're backtracking, restore context */ 1012 value = svalues[i]; 1013 mask = smasks[i]; 1014 j = choice[i]; 1015 } 1016 /* 1017 * See if any alternative k for event_id i, 1018 * where k > j, will satisfy the constraints. 1019 */ 1020 while (++j < n_alt[i]) { 1021 nv = (value | cpuhw->avalues[i][j]) + 1022 (value & cpuhw->avalues[i][j] & addf); 1023 if ((((nv + tadd) ^ value) & mask) == 0 && 1024 (((nv + tadd) ^ cpuhw->avalues[i][j]) 1025 & cpuhw->amasks[i][j]) == 0) 1026 break; 1027 } 1028 if (j >= n_alt[i]) { 1029 /* 1030 * No feasible alternative, backtrack 1031 * to event_id i-1 and continue enumerating its 1032 * alternatives from where we got up to. 1033 */ 1034 if (--i < 0) 1035 return -1; 1036 } else { 1037 /* 1038 * Found a feasible alternative for event_id i, 1039 * remember where we got up to with this event_id, 1040 * go on to the next event_id, and start with 1041 * the first alternative for it. 1042 */ 1043 choice[i] = j; 1044 svalues[i] = value; 1045 smasks[i] = mask; 1046 value = nv; 1047 mask |= cpuhw->amasks[i][j]; 1048 ++i; 1049 j = -1; 1050 } 1051 } 1052 1053 /* OK, we have a feasible combination, tell the caller the solution */ 1054 for (i = 0; i < n_ev; ++i) 1055 event_id[i] = cpuhw->alternatives[i][choice[i]]; 1056 return 0; 1057 } 1058 1059 /* 1060 * Check if newly-added events have consistent settings for 1061 * exclude_{user,kernel,hv} with each other and any previously 1062 * added events. 1063 */ 1064 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 1065 int n_prev, int n_new) 1066 { 1067 int eu = 0, ek = 0, eh = 0; 1068 int i, n, first; 1069 struct perf_event *event; 1070 1071 /* 1072 * If the PMU we're on supports per event exclude settings then we 1073 * don't need to do any of this logic. NB. This assumes no PMU has both 1074 * per event exclude and limited PMCs. 1075 */ 1076 if (ppmu->flags & PPMU_ARCH_207S) 1077 return 0; 1078 1079 n = n_prev + n_new; 1080 if (n <= 1) 1081 return 0; 1082 1083 first = 1; 1084 for (i = 0; i < n; ++i) { 1085 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1086 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1087 continue; 1088 } 1089 event = ctrs[i]; 1090 if (first) { 1091 eu = event->attr.exclude_user; 1092 ek = event->attr.exclude_kernel; 1093 eh = event->attr.exclude_hv; 1094 first = 0; 1095 } else if (event->attr.exclude_user != eu || 1096 event->attr.exclude_kernel != ek || 1097 event->attr.exclude_hv != eh) { 1098 return -EAGAIN; 1099 } 1100 } 1101 1102 if (eu || ek || eh) 1103 for (i = 0; i < n; ++i) 1104 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1105 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1106 1107 return 0; 1108 } 1109 1110 static u64 check_and_compute_delta(u64 prev, u64 val) 1111 { 1112 u64 delta = (val - prev) & 0xfffffffful; 1113 1114 /* 1115 * POWER7 can roll back counter values, if the new value is smaller 1116 * than the previous value it will cause the delta and the counter to 1117 * have bogus values unless we rolled a counter over. If a coutner is 1118 * rolled back, it will be smaller, but within 256, which is the maximum 1119 * number of events to rollback at once. If we detect a rollback 1120 * return 0. This can lead to a small lack of precision in the 1121 * counters. 1122 */ 1123 if (prev > val && (prev - val) < 256) 1124 delta = 0; 1125 1126 return delta; 1127 } 1128 1129 static void power_pmu_read(struct perf_event *event) 1130 { 1131 s64 val, delta, prev; 1132 1133 if (event->hw.state & PERF_HES_STOPPED) 1134 return; 1135 1136 if (!event->hw.idx) 1137 return; 1138 1139 if (is_ebb_event(event)) { 1140 val = read_pmc(event->hw.idx); 1141 local64_set(&event->hw.prev_count, val); 1142 return; 1143 } 1144 1145 /* 1146 * Performance monitor interrupts come even when interrupts 1147 * are soft-disabled, as long as interrupts are hard-enabled. 1148 * Therefore we treat them like NMIs. 1149 */ 1150 do { 1151 prev = local64_read(&event->hw.prev_count); 1152 barrier(); 1153 val = read_pmc(event->hw.idx); 1154 delta = check_and_compute_delta(prev, val); 1155 if (!delta) 1156 return; 1157 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1158 1159 local64_add(delta, &event->count); 1160 1161 /* 1162 * A number of places program the PMC with (0x80000000 - period_left). 1163 * We never want period_left to be less than 1 because we will program 1164 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1165 * roll around to 0 before taking an exception. We have seen this 1166 * on POWER8. 1167 * 1168 * To fix this, clamp the minimum value of period_left to 1. 1169 */ 1170 do { 1171 prev = local64_read(&event->hw.period_left); 1172 val = prev - delta; 1173 if (val < 1) 1174 val = 1; 1175 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1176 } 1177 1178 /* 1179 * On some machines, PMC5 and PMC6 can't be written, don't respect 1180 * the freeze conditions, and don't generate interrupts. This tells 1181 * us if `event' is using such a PMC. 1182 */ 1183 static int is_limited_pmc(int pmcnum) 1184 { 1185 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1186 && (pmcnum == 5 || pmcnum == 6); 1187 } 1188 1189 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1190 unsigned long pmc5, unsigned long pmc6) 1191 { 1192 struct perf_event *event; 1193 u64 val, prev, delta; 1194 int i; 1195 1196 for (i = 0; i < cpuhw->n_limited; ++i) { 1197 event = cpuhw->limited_counter[i]; 1198 if (!event->hw.idx) 1199 continue; 1200 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1201 prev = local64_read(&event->hw.prev_count); 1202 event->hw.idx = 0; 1203 delta = check_and_compute_delta(prev, val); 1204 if (delta) 1205 local64_add(delta, &event->count); 1206 } 1207 } 1208 1209 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1210 unsigned long pmc5, unsigned long pmc6) 1211 { 1212 struct perf_event *event; 1213 u64 val, prev; 1214 int i; 1215 1216 for (i = 0; i < cpuhw->n_limited; ++i) { 1217 event = cpuhw->limited_counter[i]; 1218 event->hw.idx = cpuhw->limited_hwidx[i]; 1219 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1220 prev = local64_read(&event->hw.prev_count); 1221 if (check_and_compute_delta(prev, val)) 1222 local64_set(&event->hw.prev_count, val); 1223 perf_event_update_userpage(event); 1224 } 1225 } 1226 1227 /* 1228 * Since limited events don't respect the freeze conditions, we 1229 * have to read them immediately after freezing or unfreezing the 1230 * other events. We try to keep the values from the limited 1231 * events as consistent as possible by keeping the delay (in 1232 * cycles and instructions) between freezing/unfreezing and reading 1233 * the limited events as small and consistent as possible. 1234 * Therefore, if any limited events are in use, we read them 1235 * both, and always in the same order, to minimize variability, 1236 * and do it inside the same asm that writes MMCR0. 1237 */ 1238 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1239 { 1240 unsigned long pmc5, pmc6; 1241 1242 if (!cpuhw->n_limited) { 1243 mtspr(SPRN_MMCR0, mmcr0); 1244 return; 1245 } 1246 1247 /* 1248 * Write MMCR0, then read PMC5 and PMC6 immediately. 1249 * To ensure we don't get a performance monitor interrupt 1250 * between writing MMCR0 and freezing/thawing the limited 1251 * events, we first write MMCR0 with the event overflow 1252 * interrupt enable bits turned off. 1253 */ 1254 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1255 : "=&r" (pmc5), "=&r" (pmc6) 1256 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1257 "i" (SPRN_MMCR0), 1258 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1259 1260 if (mmcr0 & MMCR0_FC) 1261 freeze_limited_counters(cpuhw, pmc5, pmc6); 1262 else 1263 thaw_limited_counters(cpuhw, pmc5, pmc6); 1264 1265 /* 1266 * Write the full MMCR0 including the event overflow interrupt 1267 * enable bits, if necessary. 1268 */ 1269 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1270 mtspr(SPRN_MMCR0, mmcr0); 1271 } 1272 1273 /* 1274 * Disable all events to prevent PMU interrupts and to allow 1275 * events to be added or removed. 1276 */ 1277 static void power_pmu_disable(struct pmu *pmu) 1278 { 1279 struct cpu_hw_events *cpuhw; 1280 unsigned long flags, mmcr0, val, mmcra; 1281 1282 if (!ppmu) 1283 return; 1284 local_irq_save(flags); 1285 cpuhw = this_cpu_ptr(&cpu_hw_events); 1286 1287 if (!cpuhw->disabled) { 1288 /* 1289 * Check if we ever enabled the PMU on this cpu. 1290 */ 1291 if (!cpuhw->pmcs_enabled) { 1292 ppc_enable_pmcs(); 1293 cpuhw->pmcs_enabled = 1; 1294 } 1295 1296 /* 1297 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1298 * Also clear PMXE to disable PMI's getting triggered in some 1299 * corner cases during PMU disable. 1300 */ 1301 val = mmcr0 = mfspr(SPRN_MMCR0); 1302 val |= MMCR0_FC; 1303 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1304 MMCR0_PMXE | MMCR0_FC56); 1305 /* Set mmcr0 PMCCEXT for p10 */ 1306 if (ppmu->flags & PPMU_ARCH_31) 1307 val |= MMCR0_PMCCEXT; 1308 1309 /* 1310 * The barrier is to make sure the mtspr has been 1311 * executed and the PMU has frozen the events etc. 1312 * before we return. 1313 */ 1314 write_mmcr0(cpuhw, val); 1315 mb(); 1316 isync(); 1317 1318 /* 1319 * Some corner cases could clear the PMU counter overflow 1320 * while a masked PMI is pending. One such case is when 1321 * a PMI happens during interrupt replay and perf counter 1322 * values are cleared by PMU callbacks before replay. 1323 * 1324 * If any PMC corresponding to the active PMU events are 1325 * overflown, disable the interrupt by clearing the paca 1326 * bit for PMI since we are disabling the PMU now. 1327 * Otherwise provide a warning if there is PMI pending, but 1328 * no counter is found overflown. 1329 */ 1330 if (any_pmc_overflown(cpuhw)) 1331 clear_pmi_irq_pending(); 1332 else 1333 WARN_ON(pmi_irq_pending()); 1334 1335 val = mmcra = cpuhw->mmcr.mmcra; 1336 1337 /* 1338 * Disable instruction sampling if it was enabled 1339 */ 1340 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) 1341 val &= ~MMCRA_SAMPLE_ENABLE; 1342 1343 /* Disable BHRB via mmcra (BHRBRD) for p10 */ 1344 if (ppmu->flags & PPMU_ARCH_31) 1345 val |= MMCRA_BHRB_DISABLE; 1346 1347 /* 1348 * Write SPRN_MMCRA if mmcra has either disabled 1349 * instruction sampling or BHRB. 1350 */ 1351 if (val != mmcra) { 1352 mtspr(SPRN_MMCRA, mmcra); 1353 mb(); 1354 isync(); 1355 } 1356 1357 cpuhw->disabled = 1; 1358 cpuhw->n_added = 0; 1359 1360 ebb_switch_out(mmcr0); 1361 1362 #ifdef CONFIG_PPC64 1363 /* 1364 * These are readable by userspace, may contain kernel 1365 * addresses and are not switched by context switch, so clear 1366 * them now to avoid leaking anything to userspace in general 1367 * including to another process. 1368 */ 1369 if (ppmu->flags & PPMU_ARCH_207S) { 1370 mtspr(SPRN_SDAR, 0); 1371 mtspr(SPRN_SIAR, 0); 1372 } 1373 #endif 1374 } 1375 1376 local_irq_restore(flags); 1377 } 1378 1379 /* 1380 * Re-enable all events if disable == 0. 1381 * If we were previously disabled and events were added, then 1382 * put the new config on the PMU. 1383 */ 1384 static void power_pmu_enable(struct pmu *pmu) 1385 { 1386 struct perf_event *event; 1387 struct cpu_hw_events *cpuhw; 1388 unsigned long flags; 1389 long i; 1390 unsigned long val, mmcr0; 1391 s64 left; 1392 unsigned int hwc_index[MAX_HWEVENTS]; 1393 int n_lim; 1394 int idx; 1395 bool ebb; 1396 1397 if (!ppmu) 1398 return; 1399 local_irq_save(flags); 1400 1401 cpuhw = this_cpu_ptr(&cpu_hw_events); 1402 if (!cpuhw->disabled) 1403 goto out; 1404 1405 if (cpuhw->n_events == 0) { 1406 ppc_set_pmu_inuse(0); 1407 goto out; 1408 } 1409 1410 cpuhw->disabled = 0; 1411 1412 /* 1413 * EBB requires an exclusive group and all events must have the EBB 1414 * flag set, or not set, so we can just check a single event. Also we 1415 * know we have at least one event. 1416 */ 1417 ebb = is_ebb_event(cpuhw->event[0]); 1418 1419 /* 1420 * If we didn't change anything, or only removed events, 1421 * no need to recalculate MMCR* settings and reset the PMCs. 1422 * Just reenable the PMU with the current MMCR* settings 1423 * (possibly updated for removal of events). 1424 */ 1425 if (!cpuhw->n_added) { 1426 /* 1427 * If there is any active event with an overflown PMC 1428 * value, set back PACA_IRQ_PMI which would have been 1429 * cleared in power_pmu_disable(). 1430 */ 1431 hard_irq_disable(); 1432 if (any_pmc_overflown(cpuhw)) 1433 set_pmi_irq_pending(); 1434 1435 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1436 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1437 if (ppmu->flags & PPMU_ARCH_31) 1438 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1439 goto out_enable; 1440 } 1441 1442 /* 1443 * Clear all MMCR settings and recompute them for the new set of events. 1444 */ 1445 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1446 1447 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1448 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) { 1449 /* shouldn't ever get here */ 1450 printk(KERN_ERR "oops compute_mmcr failed\n"); 1451 goto out; 1452 } 1453 1454 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1455 /* 1456 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1457 * bits for the first event. We have already checked that all 1458 * events have the same value for these bits as the first event. 1459 */ 1460 event = cpuhw->event[0]; 1461 if (event->attr.exclude_user) 1462 cpuhw->mmcr.mmcr0 |= MMCR0_FCP; 1463 if (event->attr.exclude_kernel) 1464 cpuhw->mmcr.mmcr0 |= freeze_events_kernel; 1465 if (event->attr.exclude_hv) 1466 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; 1467 } 1468 1469 /* 1470 * Write the new configuration to MMCR* with the freeze 1471 * bit set and set the hardware events to their initial values. 1472 * Then unfreeze the events. 1473 */ 1474 ppc_set_pmu_inuse(1); 1475 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1476 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1477 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1478 | MMCR0_FC); 1479 if (ppmu->flags & PPMU_ARCH_207S) 1480 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); 1481 1482 if (ppmu->flags & PPMU_ARCH_31) 1483 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1484 1485 /* 1486 * Read off any pre-existing events that need to move 1487 * to another PMC. 1488 */ 1489 for (i = 0; i < cpuhw->n_events; ++i) { 1490 event = cpuhw->event[i]; 1491 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1492 power_pmu_read(event); 1493 write_pmc(event->hw.idx, 0); 1494 event->hw.idx = 0; 1495 } 1496 } 1497 1498 /* 1499 * Initialize the PMCs for all the new and moved events. 1500 */ 1501 cpuhw->n_limited = n_lim = 0; 1502 for (i = 0; i < cpuhw->n_events; ++i) { 1503 event = cpuhw->event[i]; 1504 if (event->hw.idx) 1505 continue; 1506 idx = hwc_index[i] + 1; 1507 if (is_limited_pmc(idx)) { 1508 cpuhw->limited_counter[n_lim] = event; 1509 cpuhw->limited_hwidx[n_lim] = idx; 1510 ++n_lim; 1511 continue; 1512 } 1513 1514 if (ebb) 1515 val = local64_read(&event->hw.prev_count); 1516 else { 1517 val = 0; 1518 if (event->hw.sample_period) { 1519 left = local64_read(&event->hw.period_left); 1520 if (left < 0x80000000L) 1521 val = 0x80000000L - left; 1522 } 1523 local64_set(&event->hw.prev_count, val); 1524 } 1525 1526 event->hw.idx = idx; 1527 if (event->hw.state & PERF_HES_STOPPED) 1528 val = 0; 1529 write_pmc(idx, val); 1530 1531 perf_event_update_userpage(event); 1532 } 1533 cpuhw->n_limited = n_lim; 1534 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; 1535 1536 out_enable: 1537 pmao_restore_workaround(ebb); 1538 1539 mmcr0 = ebb_switch_in(ebb, cpuhw); 1540 1541 mb(); 1542 if (cpuhw->bhrb_users) 1543 ppmu->config_bhrb(cpuhw->bhrb_filter); 1544 1545 write_mmcr0(cpuhw, mmcr0); 1546 1547 /* 1548 * Enable instruction sampling if necessary 1549 */ 1550 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { 1551 mb(); 1552 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); 1553 } 1554 1555 out: 1556 1557 local_irq_restore(flags); 1558 } 1559 1560 static int collect_events(struct perf_event *group, int max_count, 1561 struct perf_event *ctrs[], u64 *events, 1562 unsigned int *flags) 1563 { 1564 int n = 0; 1565 struct perf_event *event; 1566 1567 if (group->pmu->task_ctx_nr == perf_hw_context) { 1568 if (n >= max_count) 1569 return -1; 1570 ctrs[n] = group; 1571 flags[n] = group->hw.event_base; 1572 events[n++] = group->hw.config; 1573 } 1574 for_each_sibling_event(event, group) { 1575 if (event->pmu->task_ctx_nr == perf_hw_context && 1576 event->state != PERF_EVENT_STATE_OFF) { 1577 if (n >= max_count) 1578 return -1; 1579 ctrs[n] = event; 1580 flags[n] = event->hw.event_base; 1581 events[n++] = event->hw.config; 1582 } 1583 } 1584 return n; 1585 } 1586 1587 /* 1588 * Add an event to the PMU. 1589 * If all events are not already frozen, then we disable and 1590 * re-enable the PMU in order to get hw_perf_enable to do the 1591 * actual work of reconfiguring the PMU. 1592 */ 1593 static int power_pmu_add(struct perf_event *event, int ef_flags) 1594 { 1595 struct cpu_hw_events *cpuhw; 1596 unsigned long flags; 1597 int n0; 1598 int ret = -EAGAIN; 1599 1600 local_irq_save(flags); 1601 perf_pmu_disable(event->pmu); 1602 1603 /* 1604 * Add the event to the list (if there is room) 1605 * and check whether the total set is still feasible. 1606 */ 1607 cpuhw = this_cpu_ptr(&cpu_hw_events); 1608 n0 = cpuhw->n_events; 1609 if (n0 >= ppmu->n_counter) 1610 goto out; 1611 cpuhw->event[n0] = event; 1612 cpuhw->events[n0] = event->hw.config; 1613 cpuhw->flags[n0] = event->hw.event_base; 1614 1615 /* 1616 * This event may have been disabled/stopped in record_and_restart() 1617 * because we exceeded the ->event_limit. If re-starting the event, 1618 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1619 * notification is re-enabled. 1620 */ 1621 if (!(ef_flags & PERF_EF_START)) 1622 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1623 else 1624 event->hw.state = 0; 1625 1626 /* 1627 * If group events scheduling transaction was started, 1628 * skip the schedulability test here, it will be performed 1629 * at commit time(->commit_txn) as a whole 1630 */ 1631 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1632 goto nocheck; 1633 1634 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1635 goto out; 1636 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event)) 1637 goto out; 1638 event->hw.config = cpuhw->events[n0]; 1639 1640 nocheck: 1641 ebb_event_add(event); 1642 1643 ++cpuhw->n_events; 1644 ++cpuhw->n_added; 1645 1646 ret = 0; 1647 out: 1648 if (has_branch_stack(event)) { 1649 u64 bhrb_filter = -1; 1650 1651 if (ppmu->bhrb_filter_map) 1652 bhrb_filter = ppmu->bhrb_filter_map( 1653 event->attr.branch_sample_type); 1654 1655 if (bhrb_filter != -1) { 1656 cpuhw->bhrb_filter = bhrb_filter; 1657 power_pmu_bhrb_enable(event); 1658 } 1659 } 1660 1661 perf_pmu_enable(event->pmu); 1662 local_irq_restore(flags); 1663 return ret; 1664 } 1665 1666 /* 1667 * Remove an event from the PMU. 1668 */ 1669 static void power_pmu_del(struct perf_event *event, int ef_flags) 1670 { 1671 struct cpu_hw_events *cpuhw; 1672 long i; 1673 unsigned long flags; 1674 1675 local_irq_save(flags); 1676 perf_pmu_disable(event->pmu); 1677 1678 power_pmu_read(event); 1679 1680 cpuhw = this_cpu_ptr(&cpu_hw_events); 1681 for (i = 0; i < cpuhw->n_events; ++i) { 1682 if (event == cpuhw->event[i]) { 1683 while (++i < cpuhw->n_events) { 1684 cpuhw->event[i-1] = cpuhw->event[i]; 1685 cpuhw->events[i-1] = cpuhw->events[i]; 1686 cpuhw->flags[i-1] = cpuhw->flags[i]; 1687 } 1688 --cpuhw->n_events; 1689 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); 1690 if (event->hw.idx) { 1691 write_pmc(event->hw.idx, 0); 1692 event->hw.idx = 0; 1693 } 1694 perf_event_update_userpage(event); 1695 break; 1696 } 1697 } 1698 for (i = 0; i < cpuhw->n_limited; ++i) 1699 if (event == cpuhw->limited_counter[i]) 1700 break; 1701 if (i < cpuhw->n_limited) { 1702 while (++i < cpuhw->n_limited) { 1703 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1704 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1705 } 1706 --cpuhw->n_limited; 1707 } 1708 if (cpuhw->n_events == 0) { 1709 /* disable exceptions if no events are running */ 1710 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); 1711 } 1712 1713 if (has_branch_stack(event)) 1714 power_pmu_bhrb_disable(event); 1715 1716 perf_pmu_enable(event->pmu); 1717 local_irq_restore(flags); 1718 } 1719 1720 /* 1721 * POWER-PMU does not support disabling individual counters, hence 1722 * program their cycle counter to their max value and ignore the interrupts. 1723 */ 1724 1725 static void power_pmu_start(struct perf_event *event, int ef_flags) 1726 { 1727 unsigned long flags; 1728 s64 left; 1729 unsigned long val; 1730 1731 if (!event->hw.idx || !event->hw.sample_period) 1732 return; 1733 1734 if (!(event->hw.state & PERF_HES_STOPPED)) 1735 return; 1736 1737 if (ef_flags & PERF_EF_RELOAD) 1738 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1739 1740 local_irq_save(flags); 1741 perf_pmu_disable(event->pmu); 1742 1743 event->hw.state = 0; 1744 left = local64_read(&event->hw.period_left); 1745 1746 val = 0; 1747 if (left < 0x80000000L) 1748 val = 0x80000000L - left; 1749 1750 write_pmc(event->hw.idx, val); 1751 1752 perf_event_update_userpage(event); 1753 perf_pmu_enable(event->pmu); 1754 local_irq_restore(flags); 1755 } 1756 1757 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1758 { 1759 unsigned long flags; 1760 1761 if (!event->hw.idx || !event->hw.sample_period) 1762 return; 1763 1764 if (event->hw.state & PERF_HES_STOPPED) 1765 return; 1766 1767 local_irq_save(flags); 1768 perf_pmu_disable(event->pmu); 1769 1770 power_pmu_read(event); 1771 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1772 write_pmc(event->hw.idx, 0); 1773 1774 perf_event_update_userpage(event); 1775 perf_pmu_enable(event->pmu); 1776 local_irq_restore(flags); 1777 } 1778 1779 /* 1780 * Start group events scheduling transaction 1781 * Set the flag to make pmu::enable() not perform the 1782 * schedulability test, it will be performed at commit time 1783 * 1784 * We only support PERF_PMU_TXN_ADD transactions. Save the 1785 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1786 * transactions. 1787 */ 1788 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1789 { 1790 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1791 1792 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1793 1794 cpuhw->txn_flags = txn_flags; 1795 if (txn_flags & ~PERF_PMU_TXN_ADD) 1796 return; 1797 1798 perf_pmu_disable(pmu); 1799 cpuhw->n_txn_start = cpuhw->n_events; 1800 } 1801 1802 /* 1803 * Stop group events scheduling transaction 1804 * Clear the flag and pmu::enable() will perform the 1805 * schedulability test. 1806 */ 1807 static void power_pmu_cancel_txn(struct pmu *pmu) 1808 { 1809 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1810 unsigned int txn_flags; 1811 1812 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1813 1814 txn_flags = cpuhw->txn_flags; 1815 cpuhw->txn_flags = 0; 1816 if (txn_flags & ~PERF_PMU_TXN_ADD) 1817 return; 1818 1819 perf_pmu_enable(pmu); 1820 } 1821 1822 /* 1823 * Commit group events scheduling transaction 1824 * Perform the group schedulability test as a whole 1825 * Return 0 if success 1826 */ 1827 static int power_pmu_commit_txn(struct pmu *pmu) 1828 { 1829 struct cpu_hw_events *cpuhw; 1830 long i, n; 1831 1832 if (!ppmu) 1833 return -EAGAIN; 1834 1835 cpuhw = this_cpu_ptr(&cpu_hw_events); 1836 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1837 1838 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1839 cpuhw->txn_flags = 0; 1840 return 0; 1841 } 1842 1843 n = cpuhw->n_events; 1844 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1845 return -EAGAIN; 1846 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event); 1847 if (i < 0) 1848 return -EAGAIN; 1849 1850 for (i = cpuhw->n_txn_start; i < n; ++i) 1851 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1852 1853 cpuhw->txn_flags = 0; 1854 perf_pmu_enable(pmu); 1855 return 0; 1856 } 1857 1858 /* 1859 * Return 1 if we might be able to put event on a limited PMC, 1860 * or 0 if not. 1861 * An event can only go on a limited PMC if it counts something 1862 * that a limited PMC can count, doesn't require interrupts, and 1863 * doesn't exclude any processor mode. 1864 */ 1865 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1866 unsigned int flags) 1867 { 1868 int n; 1869 u64 alt[MAX_EVENT_ALTERNATIVES]; 1870 1871 if (event->attr.exclude_user 1872 || event->attr.exclude_kernel 1873 || event->attr.exclude_hv 1874 || event->attr.sample_period) 1875 return 0; 1876 1877 if (ppmu->limited_pmc_event(ev)) 1878 return 1; 1879 1880 /* 1881 * The requested event_id isn't on a limited PMC already; 1882 * see if any alternative code goes on a limited PMC. 1883 */ 1884 if (!ppmu->get_alternatives) 1885 return 0; 1886 1887 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1888 n = ppmu->get_alternatives(ev, flags, alt); 1889 1890 return n > 0; 1891 } 1892 1893 /* 1894 * Find an alternative event_id that goes on a normal PMC, if possible, 1895 * and return the event_id code, or 0 if there is no such alternative. 1896 * (Note: event_id code 0 is "don't count" on all machines.) 1897 */ 1898 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1899 { 1900 u64 alt[MAX_EVENT_ALTERNATIVES]; 1901 int n; 1902 1903 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1904 n = ppmu->get_alternatives(ev, flags, alt); 1905 if (!n) 1906 return 0; 1907 return alt[0]; 1908 } 1909 1910 /* Number of perf_events counting hardware events */ 1911 static atomic_t num_events; 1912 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1913 static DEFINE_MUTEX(pmc_reserve_mutex); 1914 1915 /* 1916 * Release the PMU if this is the last perf_event. 1917 */ 1918 static void hw_perf_event_destroy(struct perf_event *event) 1919 { 1920 if (!atomic_add_unless(&num_events, -1, 1)) { 1921 mutex_lock(&pmc_reserve_mutex); 1922 if (atomic_dec_return(&num_events) == 0) 1923 release_pmc_hardware(); 1924 mutex_unlock(&pmc_reserve_mutex); 1925 } 1926 } 1927 1928 /* 1929 * Translate a generic cache event_id config to a raw event_id code. 1930 */ 1931 static int hw_perf_cache_event(u64 config, u64 *eventp) 1932 { 1933 unsigned long type, op, result; 1934 u64 ev; 1935 1936 if (!ppmu->cache_events) 1937 return -EINVAL; 1938 1939 /* unpack config */ 1940 type = config & 0xff; 1941 op = (config >> 8) & 0xff; 1942 result = (config >> 16) & 0xff; 1943 1944 if (type >= PERF_COUNT_HW_CACHE_MAX || 1945 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1946 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1947 return -EINVAL; 1948 1949 ev = (*ppmu->cache_events)[type][op][result]; 1950 if (ev == 0) 1951 return -EOPNOTSUPP; 1952 if (ev == -1) 1953 return -EINVAL; 1954 *eventp = ev; 1955 return 0; 1956 } 1957 1958 static bool is_event_blacklisted(u64 ev) 1959 { 1960 int i; 1961 1962 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1963 if (ppmu->blacklist_ev[i] == ev) 1964 return true; 1965 } 1966 1967 return false; 1968 } 1969 1970 static int power_pmu_event_init(struct perf_event *event) 1971 { 1972 u64 ev; 1973 unsigned long flags, irq_flags; 1974 struct perf_event *ctrs[MAX_HWEVENTS]; 1975 u64 events[MAX_HWEVENTS]; 1976 unsigned int cflags[MAX_HWEVENTS]; 1977 int n; 1978 int err; 1979 struct cpu_hw_events *cpuhw; 1980 1981 if (!ppmu) 1982 return -ENOENT; 1983 1984 if (has_branch_stack(event)) { 1985 /* PMU has BHRB enabled */ 1986 if (!(ppmu->flags & PPMU_ARCH_207S)) 1987 return -EOPNOTSUPP; 1988 } 1989 1990 switch (event->attr.type) { 1991 case PERF_TYPE_HARDWARE: 1992 ev = event->attr.config; 1993 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1994 return -EOPNOTSUPP; 1995 1996 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1997 return -EINVAL; 1998 ev = ppmu->generic_events[ev]; 1999 break; 2000 case PERF_TYPE_HW_CACHE: 2001 err = hw_perf_cache_event(event->attr.config, &ev); 2002 if (err) 2003 return err; 2004 2005 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 2006 return -EINVAL; 2007 break; 2008 case PERF_TYPE_RAW: 2009 ev = event->attr.config; 2010 2011 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 2012 return -EINVAL; 2013 break; 2014 default: 2015 return -ENOENT; 2016 } 2017 2018 /* 2019 * PMU config registers have fields that are 2020 * reserved and some specific values for bit fields are reserved. 2021 * For ex., MMCRA[61:62] is Randome Sampling Mode (SM) 2022 * and value of 0b11 to this field is reserved. 2023 * Check for invalid values in attr.config. 2024 */ 2025 if (ppmu->check_attr_config && 2026 ppmu->check_attr_config(event)) 2027 return -EINVAL; 2028 2029 event->hw.config_base = ev; 2030 event->hw.idx = 0; 2031 2032 /* 2033 * If we are not running on a hypervisor, force the 2034 * exclude_hv bit to 0 so that we don't care what 2035 * the user set it to. 2036 */ 2037 if (!firmware_has_feature(FW_FEATURE_LPAR)) 2038 event->attr.exclude_hv = 0; 2039 2040 /* 2041 * If this is a per-task event, then we can use 2042 * PM_RUN_* events interchangeably with their non RUN_* 2043 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 2044 * XXX we should check if the task is an idle task. 2045 */ 2046 flags = 0; 2047 if (event->attach_state & PERF_ATTACH_TASK) 2048 flags |= PPMU_ONLY_COUNT_RUN; 2049 2050 /* 2051 * If this machine has limited events, check whether this 2052 * event_id could go on a limited event. 2053 */ 2054 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 2055 if (can_go_on_limited_pmc(event, ev, flags)) { 2056 flags |= PPMU_LIMITED_PMC_OK; 2057 } else if (ppmu->limited_pmc_event(ev)) { 2058 /* 2059 * The requested event_id is on a limited PMC, 2060 * but we can't use a limited PMC; see if any 2061 * alternative goes on a normal PMC. 2062 */ 2063 ev = normal_pmc_alternative(ev, flags); 2064 if (!ev) 2065 return -EINVAL; 2066 } 2067 } 2068 2069 /* Extra checks for EBB */ 2070 err = ebb_event_check(event); 2071 if (err) 2072 return err; 2073 2074 /* 2075 * If this is in a group, check if it can go on with all the 2076 * other hardware events in the group. We assume the event 2077 * hasn't been linked into its leader's sibling list at this point. 2078 */ 2079 n = 0; 2080 if (event->group_leader != event) { 2081 n = collect_events(event->group_leader, ppmu->n_counter - 1, 2082 ctrs, events, cflags); 2083 if (n < 0) 2084 return -EINVAL; 2085 } 2086 events[n] = ev; 2087 ctrs[n] = event; 2088 cflags[n] = flags; 2089 if (check_excludes(ctrs, cflags, n, 1)) 2090 return -EINVAL; 2091 2092 local_irq_save(irq_flags); 2093 cpuhw = this_cpu_ptr(&cpu_hw_events); 2094 2095 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs); 2096 2097 if (has_branch_stack(event)) { 2098 u64 bhrb_filter = -1; 2099 2100 if (ppmu->bhrb_filter_map) 2101 bhrb_filter = ppmu->bhrb_filter_map( 2102 event->attr.branch_sample_type); 2103 2104 if (bhrb_filter == -1) { 2105 local_irq_restore(irq_flags); 2106 return -EOPNOTSUPP; 2107 } 2108 cpuhw->bhrb_filter = bhrb_filter; 2109 } 2110 2111 local_irq_restore(irq_flags); 2112 if (err) 2113 return -EINVAL; 2114 2115 event->hw.config = events[n]; 2116 event->hw.event_base = cflags[n]; 2117 event->hw.last_period = event->hw.sample_period; 2118 local64_set(&event->hw.period_left, event->hw.last_period); 2119 2120 /* 2121 * For EBB events we just context switch the PMC value, we don't do any 2122 * of the sample_period logic. We use hw.prev_count for this. 2123 */ 2124 if (is_ebb_event(event)) 2125 local64_set(&event->hw.prev_count, 0); 2126 2127 /* 2128 * See if we need to reserve the PMU. 2129 * If no events are currently in use, then we have to take a 2130 * mutex to ensure that we don't race with another task doing 2131 * reserve_pmc_hardware or release_pmc_hardware. 2132 */ 2133 err = 0; 2134 if (!atomic_inc_not_zero(&num_events)) { 2135 mutex_lock(&pmc_reserve_mutex); 2136 if (atomic_read(&num_events) == 0 && 2137 reserve_pmc_hardware(perf_event_interrupt)) 2138 err = -EBUSY; 2139 else 2140 atomic_inc(&num_events); 2141 mutex_unlock(&pmc_reserve_mutex); 2142 } 2143 event->destroy = hw_perf_event_destroy; 2144 2145 return err; 2146 } 2147 2148 static int power_pmu_event_idx(struct perf_event *event) 2149 { 2150 return event->hw.idx; 2151 } 2152 2153 ssize_t power_events_sysfs_show(struct device *dev, 2154 struct device_attribute *attr, char *page) 2155 { 2156 struct perf_pmu_events_attr *pmu_attr; 2157 2158 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2159 2160 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2161 } 2162 2163 static struct pmu power_pmu = { 2164 .pmu_enable = power_pmu_enable, 2165 .pmu_disable = power_pmu_disable, 2166 .event_init = power_pmu_event_init, 2167 .add = power_pmu_add, 2168 .del = power_pmu_del, 2169 .start = power_pmu_start, 2170 .stop = power_pmu_stop, 2171 .read = power_pmu_read, 2172 .start_txn = power_pmu_start_txn, 2173 .cancel_txn = power_pmu_cancel_txn, 2174 .commit_txn = power_pmu_commit_txn, 2175 .event_idx = power_pmu_event_idx, 2176 .sched_task = power_pmu_sched_task, 2177 }; 2178 2179 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 2180 PERF_SAMPLE_PHYS_ADDR | \ 2181 PERF_SAMPLE_DATA_PAGE_SIZE) 2182 /* 2183 * A counter has overflowed; update its count and record 2184 * things if requested. Note that interrupts are hard-disabled 2185 * here so there is no possibility of being interrupted. 2186 */ 2187 static void record_and_restart(struct perf_event *event, unsigned long val, 2188 struct pt_regs *regs) 2189 { 2190 u64 period = event->hw.sample_period; 2191 s64 prev, delta, left; 2192 int record = 0; 2193 2194 if (event->hw.state & PERF_HES_STOPPED) { 2195 write_pmc(event->hw.idx, 0); 2196 return; 2197 } 2198 2199 /* we don't have to worry about interrupts here */ 2200 prev = local64_read(&event->hw.prev_count); 2201 delta = check_and_compute_delta(prev, val); 2202 local64_add(delta, &event->count); 2203 2204 /* 2205 * See if the total period for this event has expired, 2206 * and update for the next period. 2207 */ 2208 val = 0; 2209 left = local64_read(&event->hw.period_left) - delta; 2210 if (delta == 0) 2211 left++; 2212 if (period) { 2213 if (left <= 0) { 2214 left += period; 2215 if (left <= 0) 2216 left = period; 2217 2218 /* 2219 * If address is not requested in the sample via 2220 * PERF_SAMPLE_IP, just record that sample irrespective 2221 * of SIAR valid check. 2222 */ 2223 if (event->attr.sample_type & PERF_SAMPLE_IP) 2224 record = siar_valid(regs); 2225 else 2226 record = 1; 2227 2228 event->hw.last_period = event->hw.sample_period; 2229 } 2230 if (left < 0x80000000LL) 2231 val = 0x80000000LL - left; 2232 } 2233 2234 write_pmc(event->hw.idx, val); 2235 local64_set(&event->hw.prev_count, val); 2236 local64_set(&event->hw.period_left, left); 2237 perf_event_update_userpage(event); 2238 2239 /* 2240 * Due to hardware limitation, sometimes SIAR could sample a kernel 2241 * address even when freeze on supervisor state (kernel) is set in 2242 * MMCR2. Check attr.exclude_kernel and address to drop the sample in 2243 * these cases. 2244 */ 2245 if (event->attr.exclude_kernel && 2246 (event->attr.sample_type & PERF_SAMPLE_IP) && 2247 is_kernel_addr(mfspr(SPRN_SIAR))) 2248 record = 0; 2249 2250 /* 2251 * Finally record data if requested. 2252 */ 2253 if (record) { 2254 struct perf_sample_data data; 2255 2256 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2257 2258 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE) 2259 perf_get_data_addr(event, regs, &data.addr); 2260 2261 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2262 struct cpu_hw_events *cpuhw; 2263 cpuhw = this_cpu_ptr(&cpu_hw_events); 2264 power_pmu_bhrb_read(event, cpuhw); 2265 data.br_stack = &cpuhw->bhrb_stack; 2266 } 2267 2268 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2269 ppmu->get_mem_data_src) 2270 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2271 2272 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE && 2273 ppmu->get_mem_weight) 2274 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type); 2275 2276 if (perf_event_overflow(event, &data, regs)) 2277 power_pmu_stop(event, 0); 2278 } else if (period) { 2279 /* Account for interrupt in case of invalid SIAR */ 2280 if (perf_event_account_interrupt(event)) 2281 power_pmu_stop(event, 0); 2282 } 2283 } 2284 2285 /* 2286 * Called from generic code to get the misc flags (i.e. processor mode) 2287 * for an event_id. 2288 */ 2289 unsigned long perf_misc_flags(struct pt_regs *regs) 2290 { 2291 u32 flags = perf_get_misc_flags(regs); 2292 2293 if (flags) 2294 return flags; 2295 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2296 PERF_RECORD_MISC_KERNEL; 2297 } 2298 2299 /* 2300 * Called from generic code to get the instruction pointer 2301 * for an event_id. 2302 */ 2303 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2304 { 2305 unsigned long siar = mfspr(SPRN_SIAR); 2306 2307 if (regs_use_siar(regs) && siar_valid(regs) && siar) 2308 return siar + perf_ip_adjust(regs); 2309 else 2310 return regs->nip; 2311 } 2312 2313 static bool pmc_overflow_power7(unsigned long val) 2314 { 2315 /* 2316 * Events on POWER7 can roll back if a speculative event doesn't 2317 * eventually complete. Unfortunately in some rare cases they will 2318 * raise a performance monitor exception. We need to catch this to 2319 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2320 * cycles from overflow. 2321 * 2322 * We only do this if the first pass fails to find any overflowing 2323 * PMCs because a user might set a period of less than 256 and we 2324 * don't want to mistakenly reset them. 2325 */ 2326 if ((0x80000000 - val) <= 256) 2327 return true; 2328 2329 return false; 2330 } 2331 2332 static bool pmc_overflow(unsigned long val) 2333 { 2334 if ((int)val < 0) 2335 return true; 2336 2337 return false; 2338 } 2339 2340 /* 2341 * Performance monitor interrupt stuff 2342 */ 2343 static void __perf_event_interrupt(struct pt_regs *regs) 2344 { 2345 int i, j; 2346 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2347 struct perf_event *event; 2348 int found, active; 2349 2350 if (cpuhw->n_limited) 2351 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2352 mfspr(SPRN_PMC6)); 2353 2354 perf_read_regs(regs); 2355 2356 /* Read all the PMCs since we'll need them a bunch of times */ 2357 for (i = 0; i < ppmu->n_counter; ++i) 2358 cpuhw->pmcs[i] = read_pmc(i + 1); 2359 2360 /* Try to find what caused the IRQ */ 2361 found = 0; 2362 for (i = 0; i < ppmu->n_counter; ++i) { 2363 if (!pmc_overflow(cpuhw->pmcs[i])) 2364 continue; 2365 if (is_limited_pmc(i + 1)) 2366 continue; /* these won't generate IRQs */ 2367 /* 2368 * We've found one that's overflowed. For active 2369 * counters we need to log this. For inactive 2370 * counters, we need to reset it anyway 2371 */ 2372 found = 1; 2373 active = 0; 2374 for (j = 0; j < cpuhw->n_events; ++j) { 2375 event = cpuhw->event[j]; 2376 if (event->hw.idx == (i + 1)) { 2377 active = 1; 2378 record_and_restart(event, cpuhw->pmcs[i], regs); 2379 break; 2380 } 2381 } 2382 2383 /* 2384 * Clear PACA_IRQ_PMI in case it was set by 2385 * set_pmi_irq_pending() when PMU was enabled 2386 * after accounting for interrupts. 2387 */ 2388 clear_pmi_irq_pending(); 2389 2390 if (!active) 2391 /* reset non active counters that have overflowed */ 2392 write_pmc(i + 1, 0); 2393 } 2394 if (!found && pvr_version_is(PVR_POWER7)) { 2395 /* check active counters for special buggy p7 overflow */ 2396 for (i = 0; i < cpuhw->n_events; ++i) { 2397 event = cpuhw->event[i]; 2398 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2399 continue; 2400 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) { 2401 /* event has overflowed in a buggy way*/ 2402 found = 1; 2403 record_and_restart(event, 2404 cpuhw->pmcs[event->hw.idx - 1], 2405 regs); 2406 } 2407 } 2408 } 2409 2410 /* 2411 * During system wide profling or while specific CPU is monitored for an 2412 * event, some corner cases could cause PMC to overflow in idle path. This 2413 * will trigger a PMI after waking up from idle. Since counter values are _not_ 2414 * saved/restored in idle path, can lead to below "Can't find PMC" message. 2415 */ 2416 if (unlikely(!found) && !arch_irq_disabled_regs(regs)) 2417 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2418 2419 /* 2420 * Reset MMCR0 to its normal value. This will set PMXE and 2421 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2422 * and thus allow interrupts to occur again. 2423 * XXX might want to use MSR.PM to keep the events frozen until 2424 * we get back out of this interrupt. 2425 */ 2426 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); 2427 2428 /* Clear the cpuhw->pmcs */ 2429 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs)); 2430 2431 } 2432 2433 static void perf_event_interrupt(struct pt_regs *regs) 2434 { 2435 u64 start_clock = sched_clock(); 2436 2437 __perf_event_interrupt(regs); 2438 perf_sample_event_took(sched_clock() - start_clock); 2439 } 2440 2441 /* 2442 * If the perf subsystem wants performance monitor interrupts as soon as 2443 * possible (e.g., to sample the instruction address and stack chain), 2444 * this should return true. The IRQ masking code can then enable MSR[EE] 2445 * in some places (e.g., interrupt handlers) that allows PMI interrupts 2446 * though to improve accuracy of profiles, at the cost of some performance. 2447 * 2448 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR 2449 * access), but in that case there is no need for prompt PMI handling. 2450 * 2451 * This currently returns true if any perf counter is being used. It 2452 * could possibly return false if only events are being counted rather than 2453 * samples being taken, but for now this is good enough. 2454 */ 2455 bool power_pmu_wants_prompt_pmi(void) 2456 { 2457 struct cpu_hw_events *cpuhw; 2458 2459 /* 2460 * This could simply test local_paca->pmcregs_in_use if that were not 2461 * under ifdef KVM. 2462 */ 2463 2464 if (!ppmu) 2465 return false; 2466 2467 cpuhw = this_cpu_ptr(&cpu_hw_events); 2468 return cpuhw->n_events; 2469 } 2470 2471 static int power_pmu_prepare_cpu(unsigned int cpu) 2472 { 2473 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2474 2475 if (ppmu) { 2476 memset(cpuhw, 0, sizeof(*cpuhw)); 2477 cpuhw->mmcr.mmcr0 = MMCR0_FC; 2478 } 2479 return 0; 2480 } 2481 2482 int __init register_power_pmu(struct power_pmu *pmu) 2483 { 2484 if (ppmu) 2485 return -EBUSY; /* something's already registered */ 2486 2487 ppmu = pmu; 2488 pr_info("%s performance monitor hardware support registered\n", 2489 pmu->name); 2490 2491 power_pmu.attr_groups = ppmu->attr_groups; 2492 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS); 2493 2494 #ifdef MSR_HV 2495 /* 2496 * Use FCHV to ignore kernel events if MSR.HV is set. 2497 */ 2498 if (mfmsr() & MSR_HV) 2499 freeze_events_kernel = MMCR0_FCHV; 2500 #endif /* CONFIG_PPC64 */ 2501 2502 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2503 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2504 power_pmu_prepare_cpu, NULL); 2505 return 0; 2506 } 2507 2508 #ifdef CONFIG_PPC64 2509 static bool pmu_override = false; 2510 static unsigned long pmu_override_val; 2511 static void do_pmu_override(void *data) 2512 { 2513 ppc_set_pmu_inuse(1); 2514 if (pmu_override_val) 2515 mtspr(SPRN_MMCR1, pmu_override_val); 2516 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC); 2517 } 2518 2519 static int __init init_ppc64_pmu(void) 2520 { 2521 if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) { 2522 pr_warn("disabling perf due to pmu_override= command line option.\n"); 2523 on_each_cpu(do_pmu_override, NULL, 1); 2524 return 0; 2525 } 2526 2527 /* run through all the pmu drivers one at a time */ 2528 if (!init_power5_pmu()) 2529 return 0; 2530 else if (!init_power5p_pmu()) 2531 return 0; 2532 else if (!init_power6_pmu()) 2533 return 0; 2534 else if (!init_power7_pmu()) 2535 return 0; 2536 else if (!init_power8_pmu()) 2537 return 0; 2538 else if (!init_power9_pmu()) 2539 return 0; 2540 else if (!init_power10_pmu()) 2541 return 0; 2542 else if (!init_ppc970_pmu()) 2543 return 0; 2544 else 2545 return init_generic_compat_pmu(); 2546 } 2547 early_initcall(init_ppc64_pmu); 2548 2549 static int __init pmu_setup(char *str) 2550 { 2551 unsigned long val; 2552 2553 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) 2554 return 0; 2555 2556 pmu_override = true; 2557 2558 if (kstrtoul(str, 0, &val)) 2559 val = 0; 2560 2561 pmu_override_val = val; 2562 2563 return 1; 2564 } 2565 __setup("pmu_override=", pmu_setup); 2566 2567 #endif 2568