1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 struct mmcr_regs mmcr; 41 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 42 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 43 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 44 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 46 47 unsigned int txn_flags; 48 int n_txn_start; 49 50 /* BHRB bits */ 51 u64 bhrb_filter; /* BHRB HW branch filter */ 52 unsigned int bhrb_users; 53 void *bhrb_context; 54 struct perf_branch_stack bhrb_stack; 55 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 56 u64 ic_init; 57 58 /* Store the PMC values */ 59 unsigned long pmcs[MAX_HWEVENTS]; 60 }; 61 62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 63 64 static struct power_pmu *ppmu; 65 66 /* 67 * Normally, to ignore kernel events we set the FCS (freeze counters 68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 69 * hypervisor bit set in the MSR, or if we are running on a processor 70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 71 * then we need to use the FCHV bit to ignore kernel events. 72 */ 73 static unsigned int freeze_events_kernel = MMCR0_FCS; 74 75 /* 76 * 32-bit doesn't have MMCRA but does have an MMCR2, 77 * and a few other names are different. 78 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. 79 * Define them as zero knowing that any code path accessing 80 * these registers (via mtspr/mfspr) are done under ppmu flag 81 * check for PPMU_ARCH_31 and we will not enter that code path 82 * for 32-bit. 83 */ 84 #ifdef CONFIG_PPC32 85 86 #define MMCR0_FCHV 0 87 #define MMCR0_PMCjCE MMCR0_PMCnCE 88 #define MMCR0_FC56 0 89 #define MMCR0_PMAO 0 90 #define MMCR0_EBE 0 91 #define MMCR0_BHRBA 0 92 #define MMCR0_PMCC 0 93 #define MMCR0_PMCC_U6 0 94 95 #define SPRN_MMCRA SPRN_MMCR2 96 #define SPRN_MMCR3 0 97 #define SPRN_SIER2 0 98 #define SPRN_SIER3 0 99 #define MMCRA_SAMPLE_ENABLE 0 100 #define MMCRA_BHRB_DISABLE 0 101 #define MMCR0_PMCCEXT 0 102 103 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 104 { 105 return 0; 106 } 107 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 108 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 109 { 110 return 0; 111 } 112 static inline void perf_read_regs(struct pt_regs *regs) 113 { 114 regs->result = 0; 115 } 116 117 static inline int siar_valid(struct pt_regs *regs) 118 { 119 return 1; 120 } 121 122 static bool is_ebb_event(struct perf_event *event) { return false; } 123 static int ebb_event_check(struct perf_event *event) { return 0; } 124 static void ebb_event_add(struct perf_event *event) { } 125 static void ebb_switch_out(unsigned long mmcr0) { } 126 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 127 { 128 return cpuhw->mmcr.mmcr0; 129 } 130 131 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 132 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 133 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 134 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 135 static void pmao_restore_workaround(bool ebb) { } 136 #endif /* CONFIG_PPC32 */ 137 138 bool is_sier_available(void) 139 { 140 if (!ppmu) 141 return false; 142 143 if (ppmu->flags & PPMU_HAS_SIER) 144 return true; 145 146 return false; 147 } 148 149 /* 150 * Return PMC value corresponding to the 151 * index passed. 152 */ 153 unsigned long get_pmcs_ext_regs(int idx) 154 { 155 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 156 157 return cpuhw->pmcs[idx]; 158 } 159 160 static bool regs_use_siar(struct pt_regs *regs) 161 { 162 /* 163 * When we take a performance monitor exception the regs are setup 164 * using perf_read_regs() which overloads some fields, in particular 165 * regs->result to tell us whether to use SIAR. 166 * 167 * However if the regs are from another exception, eg. a syscall, then 168 * they have not been setup using perf_read_regs() and so regs->result 169 * is something random. 170 */ 171 return ((TRAP(regs) == 0xf00) && regs->result); 172 } 173 174 /* 175 * Things that are specific to 64-bit implementations. 176 */ 177 #ifdef CONFIG_PPC64 178 179 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 180 { 181 unsigned long mmcra = regs->dsisr; 182 183 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 184 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 185 if (slot > 1) 186 return 4 * (slot - 1); 187 } 188 189 return 0; 190 } 191 192 /* 193 * The user wants a data address recorded. 194 * If we're not doing instruction sampling, give them the SDAR 195 * (sampled data address). If we are doing instruction sampling, then 196 * only give them the SDAR if it corresponds to the instruction 197 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 198 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 199 */ 200 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 201 { 202 unsigned long mmcra = regs->dsisr; 203 bool sdar_valid; 204 205 if (ppmu->flags & PPMU_HAS_SIER) 206 sdar_valid = regs->dar & SIER_SDAR_VALID; 207 else { 208 unsigned long sdsync; 209 210 if (ppmu->flags & PPMU_SIAR_VALID) 211 sdsync = POWER7P_MMCRA_SDAR_VALID; 212 else if (ppmu->flags & PPMU_ALT_SIPR) 213 sdsync = POWER6_MMCRA_SDSYNC; 214 else if (ppmu->flags & PPMU_NO_SIAR) 215 sdsync = MMCRA_SAMPLE_ENABLE; 216 else 217 sdsync = MMCRA_SDSYNC; 218 219 sdar_valid = mmcra & sdsync; 220 } 221 222 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 223 *addrp = mfspr(SPRN_SDAR); 224 225 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 226 *addrp = 0; 227 } 228 229 static bool regs_sihv(struct pt_regs *regs) 230 { 231 unsigned long sihv = MMCRA_SIHV; 232 233 if (ppmu->flags & PPMU_HAS_SIER) 234 return !!(regs->dar & SIER_SIHV); 235 236 if (ppmu->flags & PPMU_ALT_SIPR) 237 sihv = POWER6_MMCRA_SIHV; 238 239 return !!(regs->dsisr & sihv); 240 } 241 242 static bool regs_sipr(struct pt_regs *regs) 243 { 244 unsigned long sipr = MMCRA_SIPR; 245 246 if (ppmu->flags & PPMU_HAS_SIER) 247 return !!(regs->dar & SIER_SIPR); 248 249 if (ppmu->flags & PPMU_ALT_SIPR) 250 sipr = POWER6_MMCRA_SIPR; 251 252 return !!(regs->dsisr & sipr); 253 } 254 255 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 256 { 257 if (regs->msr & MSR_PR) 258 return PERF_RECORD_MISC_USER; 259 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 260 return PERF_RECORD_MISC_HYPERVISOR; 261 return PERF_RECORD_MISC_KERNEL; 262 } 263 264 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 265 { 266 bool use_siar = regs_use_siar(regs); 267 unsigned long mmcra = regs->dsisr; 268 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 269 270 if (!use_siar) 271 return perf_flags_from_msr(regs); 272 273 /* 274 * Check the address in SIAR to identify the 275 * privilege levels since the SIER[MSR_HV, MSR_PR] 276 * bits are not set for marked events in power10 277 * DD1. 278 */ 279 if (marked && (ppmu->flags & PPMU_P10_DD1)) { 280 unsigned long siar = mfspr(SPRN_SIAR); 281 if (siar) { 282 if (is_kernel_addr(siar)) 283 return PERF_RECORD_MISC_KERNEL; 284 return PERF_RECORD_MISC_USER; 285 } else { 286 if (is_kernel_addr(regs->nip)) 287 return PERF_RECORD_MISC_KERNEL; 288 return PERF_RECORD_MISC_USER; 289 } 290 } 291 292 /* 293 * If we don't have flags in MMCRA, rather than using 294 * the MSR, we intuit the flags from the address in 295 * SIAR which should give slightly more reliable 296 * results 297 */ 298 if (ppmu->flags & PPMU_NO_SIPR) { 299 unsigned long siar = mfspr(SPRN_SIAR); 300 if (is_kernel_addr(siar)) 301 return PERF_RECORD_MISC_KERNEL; 302 return PERF_RECORD_MISC_USER; 303 } 304 305 /* PR has priority over HV, so order below is important */ 306 if (regs_sipr(regs)) 307 return PERF_RECORD_MISC_USER; 308 309 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 310 return PERF_RECORD_MISC_HYPERVISOR; 311 312 return PERF_RECORD_MISC_KERNEL; 313 } 314 315 /* 316 * Overload regs->dsisr to store MMCRA so we only need to read it once 317 * on each interrupt. 318 * Overload regs->dar to store SIER if we have it. 319 * Overload regs->result to specify whether we should use the MSR (result 320 * is zero) or the SIAR (result is non zero). 321 */ 322 static inline void perf_read_regs(struct pt_regs *regs) 323 { 324 unsigned long mmcra = mfspr(SPRN_MMCRA); 325 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 326 int use_siar; 327 328 regs->dsisr = mmcra; 329 330 if (ppmu->flags & PPMU_HAS_SIER) 331 regs->dar = mfspr(SPRN_SIER); 332 333 /* 334 * If this isn't a PMU exception (eg a software event) the SIAR is 335 * not valid. Use pt_regs. 336 * 337 * If it is a marked event use the SIAR. 338 * 339 * If the PMU doesn't update the SIAR for non marked events use 340 * pt_regs. 341 * 342 * If the PMU has HV/PR flags then check to see if they 343 * place the exception in userspace. If so, use pt_regs. In 344 * continuous sampling mode the SIAR and the PMU exception are 345 * not synchronised, so they may be many instructions apart. 346 * This can result in confusing backtraces. We still want 347 * hypervisor samples as well as samples in the kernel with 348 * interrupts off hence the userspace check. 349 */ 350 if (TRAP(regs) != 0xf00) 351 use_siar = 0; 352 else if ((ppmu->flags & PPMU_NO_SIAR)) 353 use_siar = 0; 354 else if (marked) 355 use_siar = 1; 356 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 357 use_siar = 0; 358 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 359 use_siar = 0; 360 else 361 use_siar = 1; 362 363 regs->result = use_siar; 364 } 365 366 /* 367 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 368 * must be sampled only if the SIAR-valid bit is set. 369 * 370 * For unmarked instructions and for processors that don't have the SIAR-Valid 371 * bit, assume that SIAR is valid. 372 */ 373 static inline int siar_valid(struct pt_regs *regs) 374 { 375 unsigned long mmcra = regs->dsisr; 376 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 377 378 if (marked) { 379 /* 380 * SIER[SIAR_VALID] is not set for some 381 * marked events on power10 DD1, so drop 382 * the check for SIER[SIAR_VALID] and return true. 383 */ 384 if (ppmu->flags & PPMU_P10_DD1) 385 return 0x1; 386 else if (ppmu->flags & PPMU_HAS_SIER) 387 return regs->dar & SIER_SIAR_VALID; 388 389 if (ppmu->flags & PPMU_SIAR_VALID) 390 return mmcra & POWER7P_MMCRA_SIAR_VALID; 391 } 392 393 return 1; 394 } 395 396 397 /* Reset all possible BHRB entries */ 398 static void power_pmu_bhrb_reset(void) 399 { 400 asm volatile(PPC_CLRBHRB); 401 } 402 403 static void power_pmu_bhrb_enable(struct perf_event *event) 404 { 405 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 406 407 if (!ppmu->bhrb_nr) 408 return; 409 410 /* Clear BHRB if we changed task context to avoid data leaks */ 411 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 412 power_pmu_bhrb_reset(); 413 cpuhw->bhrb_context = event->ctx; 414 } 415 cpuhw->bhrb_users++; 416 perf_sched_cb_inc(event->ctx->pmu); 417 } 418 419 static void power_pmu_bhrb_disable(struct perf_event *event) 420 { 421 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 422 423 if (!ppmu->bhrb_nr) 424 return; 425 426 WARN_ON_ONCE(!cpuhw->bhrb_users); 427 cpuhw->bhrb_users--; 428 perf_sched_cb_dec(event->ctx->pmu); 429 430 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 431 /* BHRB cannot be turned off when other 432 * events are active on the PMU. 433 */ 434 435 /* avoid stale pointer */ 436 cpuhw->bhrb_context = NULL; 437 } 438 } 439 440 /* Called from ctxsw to prevent one process's branch entries to 441 * mingle with the other process's entries during context switch. 442 */ 443 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 444 { 445 if (!ppmu->bhrb_nr) 446 return; 447 448 if (sched_in) 449 power_pmu_bhrb_reset(); 450 } 451 /* Calculate the to address for a branch */ 452 static __u64 power_pmu_bhrb_to(u64 addr) 453 { 454 unsigned int instr; 455 __u64 target; 456 457 if (is_kernel_addr(addr)) { 458 if (copy_from_kernel_nofault(&instr, (void *)addr, 459 sizeof(instr))) 460 return 0; 461 462 return branch_target((struct ppc_inst *)&instr); 463 } 464 465 /* Userspace: need copy instruction here then translate it */ 466 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 467 sizeof(instr))) 468 return 0; 469 470 target = branch_target((struct ppc_inst *)&instr); 471 if ((!target) || (instr & BRANCH_ABSOLUTE)) 472 return target; 473 474 /* Translate relative branch target from kernel to user address */ 475 return target - (unsigned long)&instr + addr; 476 } 477 478 /* Processing BHRB entries */ 479 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 480 { 481 u64 val; 482 u64 addr; 483 int r_index, u_index, pred; 484 485 r_index = 0; 486 u_index = 0; 487 while (r_index < ppmu->bhrb_nr) { 488 /* Assembly read function */ 489 val = read_bhrb(r_index++); 490 if (!val) 491 /* Terminal marker: End of valid BHRB entries */ 492 break; 493 else { 494 addr = val & BHRB_EA; 495 pred = val & BHRB_PREDICTION; 496 497 if (!addr) 498 /* invalid entry */ 499 continue; 500 501 /* 502 * BHRB rolling buffer could very much contain the kernel 503 * addresses at this point. Check the privileges before 504 * exporting it to userspace (avoid exposure of regions 505 * where we could have speculative execution) 506 * Incase of ISA v3.1, BHRB will capture only user-space 507 * addresses, hence include a check before filtering code 508 */ 509 if (!(ppmu->flags & PPMU_ARCH_31) && 510 is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 511 continue; 512 513 /* Branches are read most recent first (ie. mfbhrb 0 is 514 * the most recent branch). 515 * There are two types of valid entries: 516 * 1) a target entry which is the to address of a 517 * computed goto like a blr,bctr,btar. The next 518 * entry read from the bhrb will be branch 519 * corresponding to this target (ie. the actual 520 * blr/bctr/btar instruction). 521 * 2) a from address which is an actual branch. If a 522 * target entry proceeds this, then this is the 523 * matching branch for that target. If this is not 524 * following a target entry, then this is a branch 525 * where the target is given as an immediate field 526 * in the instruction (ie. an i or b form branch). 527 * In this case we need to read the instruction from 528 * memory to determine the target/to address. 529 */ 530 531 if (val & BHRB_TARGET) { 532 /* Target branches use two entries 533 * (ie. computed gotos/XL form) 534 */ 535 cpuhw->bhrb_entries[u_index].to = addr; 536 cpuhw->bhrb_entries[u_index].mispred = pred; 537 cpuhw->bhrb_entries[u_index].predicted = ~pred; 538 539 /* Get from address in next entry */ 540 val = read_bhrb(r_index++); 541 addr = val & BHRB_EA; 542 if (val & BHRB_TARGET) { 543 /* Shouldn't have two targets in a 544 row.. Reset index and try again */ 545 r_index--; 546 addr = 0; 547 } 548 cpuhw->bhrb_entries[u_index].from = addr; 549 } else { 550 /* Branches to immediate field 551 (ie I or B form) */ 552 cpuhw->bhrb_entries[u_index].from = addr; 553 cpuhw->bhrb_entries[u_index].to = 554 power_pmu_bhrb_to(addr); 555 cpuhw->bhrb_entries[u_index].mispred = pred; 556 cpuhw->bhrb_entries[u_index].predicted = ~pred; 557 } 558 u_index++; 559 560 } 561 } 562 cpuhw->bhrb_stack.nr = u_index; 563 cpuhw->bhrb_stack.hw_idx = -1ULL; 564 return; 565 } 566 567 static bool is_ebb_event(struct perf_event *event) 568 { 569 /* 570 * This could be a per-PMU callback, but we'd rather avoid the cost. We 571 * check that the PMU supports EBB, meaning those that don't can still 572 * use bit 63 of the event code for something else if they wish. 573 */ 574 return (ppmu->flags & PPMU_ARCH_207S) && 575 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 576 } 577 578 static int ebb_event_check(struct perf_event *event) 579 { 580 struct perf_event *leader = event->group_leader; 581 582 /* Event and group leader must agree on EBB */ 583 if (is_ebb_event(leader) != is_ebb_event(event)) 584 return -EINVAL; 585 586 if (is_ebb_event(event)) { 587 if (!(event->attach_state & PERF_ATTACH_TASK)) 588 return -EINVAL; 589 590 if (!leader->attr.pinned || !leader->attr.exclusive) 591 return -EINVAL; 592 593 if (event->attr.freq || 594 event->attr.inherit || 595 event->attr.sample_type || 596 event->attr.sample_period || 597 event->attr.enable_on_exec) 598 return -EINVAL; 599 } 600 601 return 0; 602 } 603 604 static void ebb_event_add(struct perf_event *event) 605 { 606 if (!is_ebb_event(event) || current->thread.used_ebb) 607 return; 608 609 /* 610 * IFF this is the first time we've added an EBB event, set 611 * PMXE in the user MMCR0 so we can detect when it's cleared by 612 * userspace. We need this so that we can context switch while 613 * userspace is in the EBB handler (where PMXE is 0). 614 */ 615 current->thread.used_ebb = 1; 616 current->thread.mmcr0 |= MMCR0_PMXE; 617 } 618 619 static void ebb_switch_out(unsigned long mmcr0) 620 { 621 if (!(mmcr0 & MMCR0_EBE)) 622 return; 623 624 current->thread.siar = mfspr(SPRN_SIAR); 625 current->thread.sier = mfspr(SPRN_SIER); 626 current->thread.sdar = mfspr(SPRN_SDAR); 627 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 628 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 629 if (ppmu->flags & PPMU_ARCH_31) { 630 current->thread.mmcr3 = mfspr(SPRN_MMCR3); 631 current->thread.sier2 = mfspr(SPRN_SIER2); 632 current->thread.sier3 = mfspr(SPRN_SIER3); 633 } 634 } 635 636 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 637 { 638 unsigned long mmcr0 = cpuhw->mmcr.mmcr0; 639 640 if (!ebb) 641 goto out; 642 643 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 644 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 645 646 /* 647 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 648 * with pmao_restore_workaround() because we may add PMAO but we never 649 * clear it here. 650 */ 651 mmcr0 |= current->thread.mmcr0; 652 653 /* 654 * Be careful not to set PMXE if userspace had it cleared. This is also 655 * compatible with pmao_restore_workaround() because it has already 656 * cleared PMXE and we leave PMAO alone. 657 */ 658 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 659 mmcr0 &= ~MMCR0_PMXE; 660 661 mtspr(SPRN_SIAR, current->thread.siar); 662 mtspr(SPRN_SIER, current->thread.sier); 663 mtspr(SPRN_SDAR, current->thread.sdar); 664 665 /* 666 * Merge the kernel & user values of MMCR2. The semantics we implement 667 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 668 * but not clear bits. If a task wants to be able to clear bits, ie. 669 * unfreeze counters, it should not set exclude_xxx in its events and 670 * instead manage the MMCR2 entirely by itself. 671 */ 672 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); 673 674 if (ppmu->flags & PPMU_ARCH_31) { 675 mtspr(SPRN_MMCR3, current->thread.mmcr3); 676 mtspr(SPRN_SIER2, current->thread.sier2); 677 mtspr(SPRN_SIER3, current->thread.sier3); 678 } 679 out: 680 return mmcr0; 681 } 682 683 static void pmao_restore_workaround(bool ebb) 684 { 685 unsigned pmcs[6]; 686 687 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 688 return; 689 690 /* 691 * On POWER8E there is a hardware defect which affects the PMU context 692 * switch logic, ie. power_pmu_disable/enable(). 693 * 694 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 695 * by the hardware. Sometime later the actual PMU exception is 696 * delivered. 697 * 698 * If we context switch, or simply disable/enable, the PMU prior to the 699 * exception arriving, the exception will be lost when we clear PMAO. 700 * 701 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 702 * set, and this _should_ generate an exception. However because of the 703 * defect no exception is generated when we write PMAO, and we get 704 * stuck with no counters counting but no exception delivered. 705 * 706 * The workaround is to detect this case and tweak the hardware to 707 * create another pending PMU exception. 708 * 709 * We do that by setting up PMC6 (cycles) for an imminent overflow and 710 * enabling the PMU. That causes a new exception to be generated in the 711 * chip, but we don't take it yet because we have interrupts hard 712 * disabled. We then write back the PMU state as we want it to be seen 713 * by the exception handler. When we reenable interrupts the exception 714 * handler will be called and see the correct state. 715 * 716 * The logic is the same for EBB, except that the exception is gated by 717 * us having interrupts hard disabled as well as the fact that we are 718 * not in userspace. The exception is finally delivered when we return 719 * to userspace. 720 */ 721 722 /* Only if PMAO is set and PMAO_SYNC is clear */ 723 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 724 return; 725 726 /* If we're doing EBB, only if BESCR[GE] is set */ 727 if (ebb && !(current->thread.bescr & BESCR_GE)) 728 return; 729 730 /* 731 * We are already soft-disabled in power_pmu_enable(). We need to hard 732 * disable to actually prevent the PMU exception from firing. 733 */ 734 hard_irq_disable(); 735 736 /* 737 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 738 * Using read/write_pmc() in a for loop adds 12 function calls and 739 * almost doubles our code size. 740 */ 741 pmcs[0] = mfspr(SPRN_PMC1); 742 pmcs[1] = mfspr(SPRN_PMC2); 743 pmcs[2] = mfspr(SPRN_PMC3); 744 pmcs[3] = mfspr(SPRN_PMC4); 745 pmcs[4] = mfspr(SPRN_PMC5); 746 pmcs[5] = mfspr(SPRN_PMC6); 747 748 /* Ensure all freeze bits are unset */ 749 mtspr(SPRN_MMCR2, 0); 750 751 /* Set up PMC6 to overflow in one cycle */ 752 mtspr(SPRN_PMC6, 0x7FFFFFFE); 753 754 /* Enable exceptions and unfreeze PMC6 */ 755 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 756 757 /* Now we need to refreeze and restore the PMCs */ 758 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 759 760 mtspr(SPRN_PMC1, pmcs[0]); 761 mtspr(SPRN_PMC2, pmcs[1]); 762 mtspr(SPRN_PMC3, pmcs[2]); 763 mtspr(SPRN_PMC4, pmcs[3]); 764 mtspr(SPRN_PMC5, pmcs[4]); 765 mtspr(SPRN_PMC6, pmcs[5]); 766 } 767 768 #endif /* CONFIG_PPC64 */ 769 770 static void perf_event_interrupt(struct pt_regs *regs); 771 772 /* 773 * Read one performance monitor counter (PMC). 774 */ 775 static unsigned long read_pmc(int idx) 776 { 777 unsigned long val; 778 779 switch (idx) { 780 case 1: 781 val = mfspr(SPRN_PMC1); 782 break; 783 case 2: 784 val = mfspr(SPRN_PMC2); 785 break; 786 case 3: 787 val = mfspr(SPRN_PMC3); 788 break; 789 case 4: 790 val = mfspr(SPRN_PMC4); 791 break; 792 case 5: 793 val = mfspr(SPRN_PMC5); 794 break; 795 case 6: 796 val = mfspr(SPRN_PMC6); 797 break; 798 #ifdef CONFIG_PPC64 799 case 7: 800 val = mfspr(SPRN_PMC7); 801 break; 802 case 8: 803 val = mfspr(SPRN_PMC8); 804 break; 805 #endif /* CONFIG_PPC64 */ 806 default: 807 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 808 val = 0; 809 } 810 return val; 811 } 812 813 /* 814 * Write one PMC. 815 */ 816 static void write_pmc(int idx, unsigned long val) 817 { 818 switch (idx) { 819 case 1: 820 mtspr(SPRN_PMC1, val); 821 break; 822 case 2: 823 mtspr(SPRN_PMC2, val); 824 break; 825 case 3: 826 mtspr(SPRN_PMC3, val); 827 break; 828 case 4: 829 mtspr(SPRN_PMC4, val); 830 break; 831 case 5: 832 mtspr(SPRN_PMC5, val); 833 break; 834 case 6: 835 mtspr(SPRN_PMC6, val); 836 break; 837 #ifdef CONFIG_PPC64 838 case 7: 839 mtspr(SPRN_PMC7, val); 840 break; 841 case 8: 842 mtspr(SPRN_PMC8, val); 843 break; 844 #endif /* CONFIG_PPC64 */ 845 default: 846 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 847 } 848 } 849 850 /* Called from sysrq_handle_showregs() */ 851 void perf_event_print_debug(void) 852 { 853 unsigned long sdar, sier, flags; 854 u32 pmcs[MAX_HWEVENTS]; 855 int i; 856 857 if (!ppmu) { 858 pr_info("Performance monitor hardware not registered.\n"); 859 return; 860 } 861 862 if (!ppmu->n_counter) 863 return; 864 865 local_irq_save(flags); 866 867 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 868 smp_processor_id(), ppmu->name, ppmu->n_counter); 869 870 for (i = 0; i < ppmu->n_counter; i++) 871 pmcs[i] = read_pmc(i + 1); 872 873 for (; i < MAX_HWEVENTS; i++) 874 pmcs[i] = 0xdeadbeef; 875 876 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 877 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 878 879 if (ppmu->n_counter > 4) 880 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 881 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 882 883 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 884 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 885 886 sdar = sier = 0; 887 #ifdef CONFIG_PPC64 888 sdar = mfspr(SPRN_SDAR); 889 890 if (ppmu->flags & PPMU_HAS_SIER) 891 sier = mfspr(SPRN_SIER); 892 893 if (ppmu->flags & PPMU_ARCH_207S) { 894 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 895 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 896 pr_info("EBBRR: %016lx BESCR: %016lx\n", 897 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 898 } 899 900 if (ppmu->flags & PPMU_ARCH_31) { 901 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", 902 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); 903 } 904 #endif 905 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 906 mfspr(SPRN_SIAR), sdar, sier); 907 908 local_irq_restore(flags); 909 } 910 911 /* 912 * Check if a set of events can all go on the PMU at once. 913 * If they can't, this will look at alternative codes for the events 914 * and see if any combination of alternative codes is feasible. 915 * The feasible set is returned in event_id[]. 916 */ 917 static int power_check_constraints(struct cpu_hw_events *cpuhw, 918 u64 event_id[], unsigned int cflags[], 919 int n_ev, struct perf_event **event) 920 { 921 unsigned long mask, value, nv; 922 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 923 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 924 int i, j; 925 unsigned long addf = ppmu->add_fields; 926 unsigned long tadd = ppmu->test_adder; 927 unsigned long grp_mask = ppmu->group_constraint_mask; 928 unsigned long grp_val = ppmu->group_constraint_val; 929 930 if (n_ev > ppmu->n_counter) 931 return -1; 932 933 /* First see if the events will go on as-is */ 934 for (i = 0; i < n_ev; ++i) { 935 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 936 && !ppmu->limited_pmc_event(event_id[i])) { 937 ppmu->get_alternatives(event_id[i], cflags[i], 938 cpuhw->alternatives[i]); 939 event_id[i] = cpuhw->alternatives[i][0]; 940 } 941 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 942 &cpuhw->avalues[i][0], event[i]->attr.config1)) 943 return -1; 944 } 945 value = mask = 0; 946 for (i = 0; i < n_ev; ++i) { 947 nv = (value | cpuhw->avalues[i][0]) + 948 (value & cpuhw->avalues[i][0] & addf); 949 950 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 951 break; 952 953 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 954 & (~grp_mask)) != 0) 955 break; 956 957 value = nv; 958 mask |= cpuhw->amasks[i][0]; 959 } 960 if (i == n_ev) { 961 if ((value & mask & grp_mask) != (mask & grp_val)) 962 return -1; 963 else 964 return 0; /* all OK */ 965 } 966 967 /* doesn't work, gather alternatives... */ 968 if (!ppmu->get_alternatives) 969 return -1; 970 for (i = 0; i < n_ev; ++i) { 971 choice[i] = 0; 972 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 973 cpuhw->alternatives[i]); 974 for (j = 1; j < n_alt[i]; ++j) 975 ppmu->get_constraint(cpuhw->alternatives[i][j], 976 &cpuhw->amasks[i][j], 977 &cpuhw->avalues[i][j], 978 event[i]->attr.config1); 979 } 980 981 /* enumerate all possibilities and see if any will work */ 982 i = 0; 983 j = -1; 984 value = mask = nv = 0; 985 while (i < n_ev) { 986 if (j >= 0) { 987 /* we're backtracking, restore context */ 988 value = svalues[i]; 989 mask = smasks[i]; 990 j = choice[i]; 991 } 992 /* 993 * See if any alternative k for event_id i, 994 * where k > j, will satisfy the constraints. 995 */ 996 while (++j < n_alt[i]) { 997 nv = (value | cpuhw->avalues[i][j]) + 998 (value & cpuhw->avalues[i][j] & addf); 999 if ((((nv + tadd) ^ value) & mask) == 0 && 1000 (((nv + tadd) ^ cpuhw->avalues[i][j]) 1001 & cpuhw->amasks[i][j]) == 0) 1002 break; 1003 } 1004 if (j >= n_alt[i]) { 1005 /* 1006 * No feasible alternative, backtrack 1007 * to event_id i-1 and continue enumerating its 1008 * alternatives from where we got up to. 1009 */ 1010 if (--i < 0) 1011 return -1; 1012 } else { 1013 /* 1014 * Found a feasible alternative for event_id i, 1015 * remember where we got up to with this event_id, 1016 * go on to the next event_id, and start with 1017 * the first alternative for it. 1018 */ 1019 choice[i] = j; 1020 svalues[i] = value; 1021 smasks[i] = mask; 1022 value = nv; 1023 mask |= cpuhw->amasks[i][j]; 1024 ++i; 1025 j = -1; 1026 } 1027 } 1028 1029 /* OK, we have a feasible combination, tell the caller the solution */ 1030 for (i = 0; i < n_ev; ++i) 1031 event_id[i] = cpuhw->alternatives[i][choice[i]]; 1032 return 0; 1033 } 1034 1035 /* 1036 * Check if newly-added events have consistent settings for 1037 * exclude_{user,kernel,hv} with each other and any previously 1038 * added events. 1039 */ 1040 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 1041 int n_prev, int n_new) 1042 { 1043 int eu = 0, ek = 0, eh = 0; 1044 int i, n, first; 1045 struct perf_event *event; 1046 1047 /* 1048 * If the PMU we're on supports per event exclude settings then we 1049 * don't need to do any of this logic. NB. This assumes no PMU has both 1050 * per event exclude and limited PMCs. 1051 */ 1052 if (ppmu->flags & PPMU_ARCH_207S) 1053 return 0; 1054 1055 n = n_prev + n_new; 1056 if (n <= 1) 1057 return 0; 1058 1059 first = 1; 1060 for (i = 0; i < n; ++i) { 1061 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1062 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1063 continue; 1064 } 1065 event = ctrs[i]; 1066 if (first) { 1067 eu = event->attr.exclude_user; 1068 ek = event->attr.exclude_kernel; 1069 eh = event->attr.exclude_hv; 1070 first = 0; 1071 } else if (event->attr.exclude_user != eu || 1072 event->attr.exclude_kernel != ek || 1073 event->attr.exclude_hv != eh) { 1074 return -EAGAIN; 1075 } 1076 } 1077 1078 if (eu || ek || eh) 1079 for (i = 0; i < n; ++i) 1080 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1081 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1082 1083 return 0; 1084 } 1085 1086 static u64 check_and_compute_delta(u64 prev, u64 val) 1087 { 1088 u64 delta = (val - prev) & 0xfffffffful; 1089 1090 /* 1091 * POWER7 can roll back counter values, if the new value is smaller 1092 * than the previous value it will cause the delta and the counter to 1093 * have bogus values unless we rolled a counter over. If a coutner is 1094 * rolled back, it will be smaller, but within 256, which is the maximum 1095 * number of events to rollback at once. If we detect a rollback 1096 * return 0. This can lead to a small lack of precision in the 1097 * counters. 1098 */ 1099 if (prev > val && (prev - val) < 256) 1100 delta = 0; 1101 1102 return delta; 1103 } 1104 1105 static void power_pmu_read(struct perf_event *event) 1106 { 1107 s64 val, delta, prev; 1108 1109 if (event->hw.state & PERF_HES_STOPPED) 1110 return; 1111 1112 if (!event->hw.idx) 1113 return; 1114 1115 if (is_ebb_event(event)) { 1116 val = read_pmc(event->hw.idx); 1117 local64_set(&event->hw.prev_count, val); 1118 return; 1119 } 1120 1121 /* 1122 * Performance monitor interrupts come even when interrupts 1123 * are soft-disabled, as long as interrupts are hard-enabled. 1124 * Therefore we treat them like NMIs. 1125 */ 1126 do { 1127 prev = local64_read(&event->hw.prev_count); 1128 barrier(); 1129 val = read_pmc(event->hw.idx); 1130 delta = check_and_compute_delta(prev, val); 1131 if (!delta) 1132 return; 1133 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1134 1135 local64_add(delta, &event->count); 1136 1137 /* 1138 * A number of places program the PMC with (0x80000000 - period_left). 1139 * We never want period_left to be less than 1 because we will program 1140 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1141 * roll around to 0 before taking an exception. We have seen this 1142 * on POWER8. 1143 * 1144 * To fix this, clamp the minimum value of period_left to 1. 1145 */ 1146 do { 1147 prev = local64_read(&event->hw.period_left); 1148 val = prev - delta; 1149 if (val < 1) 1150 val = 1; 1151 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1152 } 1153 1154 /* 1155 * On some machines, PMC5 and PMC6 can't be written, don't respect 1156 * the freeze conditions, and don't generate interrupts. This tells 1157 * us if `event' is using such a PMC. 1158 */ 1159 static int is_limited_pmc(int pmcnum) 1160 { 1161 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1162 && (pmcnum == 5 || pmcnum == 6); 1163 } 1164 1165 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1166 unsigned long pmc5, unsigned long pmc6) 1167 { 1168 struct perf_event *event; 1169 u64 val, prev, delta; 1170 int i; 1171 1172 for (i = 0; i < cpuhw->n_limited; ++i) { 1173 event = cpuhw->limited_counter[i]; 1174 if (!event->hw.idx) 1175 continue; 1176 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1177 prev = local64_read(&event->hw.prev_count); 1178 event->hw.idx = 0; 1179 delta = check_and_compute_delta(prev, val); 1180 if (delta) 1181 local64_add(delta, &event->count); 1182 } 1183 } 1184 1185 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1186 unsigned long pmc5, unsigned long pmc6) 1187 { 1188 struct perf_event *event; 1189 u64 val, prev; 1190 int i; 1191 1192 for (i = 0; i < cpuhw->n_limited; ++i) { 1193 event = cpuhw->limited_counter[i]; 1194 event->hw.idx = cpuhw->limited_hwidx[i]; 1195 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1196 prev = local64_read(&event->hw.prev_count); 1197 if (check_and_compute_delta(prev, val)) 1198 local64_set(&event->hw.prev_count, val); 1199 perf_event_update_userpage(event); 1200 } 1201 } 1202 1203 /* 1204 * Since limited events don't respect the freeze conditions, we 1205 * have to read them immediately after freezing or unfreezing the 1206 * other events. We try to keep the values from the limited 1207 * events as consistent as possible by keeping the delay (in 1208 * cycles and instructions) between freezing/unfreezing and reading 1209 * the limited events as small and consistent as possible. 1210 * Therefore, if any limited events are in use, we read them 1211 * both, and always in the same order, to minimize variability, 1212 * and do it inside the same asm that writes MMCR0. 1213 */ 1214 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1215 { 1216 unsigned long pmc5, pmc6; 1217 1218 if (!cpuhw->n_limited) { 1219 mtspr(SPRN_MMCR0, mmcr0); 1220 return; 1221 } 1222 1223 /* 1224 * Write MMCR0, then read PMC5 and PMC6 immediately. 1225 * To ensure we don't get a performance monitor interrupt 1226 * between writing MMCR0 and freezing/thawing the limited 1227 * events, we first write MMCR0 with the event overflow 1228 * interrupt enable bits turned off. 1229 */ 1230 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1231 : "=&r" (pmc5), "=&r" (pmc6) 1232 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1233 "i" (SPRN_MMCR0), 1234 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1235 1236 if (mmcr0 & MMCR0_FC) 1237 freeze_limited_counters(cpuhw, pmc5, pmc6); 1238 else 1239 thaw_limited_counters(cpuhw, pmc5, pmc6); 1240 1241 /* 1242 * Write the full MMCR0 including the event overflow interrupt 1243 * enable bits, if necessary. 1244 */ 1245 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1246 mtspr(SPRN_MMCR0, mmcr0); 1247 } 1248 1249 /* 1250 * Disable all events to prevent PMU interrupts and to allow 1251 * events to be added or removed. 1252 */ 1253 static void power_pmu_disable(struct pmu *pmu) 1254 { 1255 struct cpu_hw_events *cpuhw; 1256 unsigned long flags, mmcr0, val, mmcra; 1257 1258 if (!ppmu) 1259 return; 1260 local_irq_save(flags); 1261 cpuhw = this_cpu_ptr(&cpu_hw_events); 1262 1263 if (!cpuhw->disabled) { 1264 /* 1265 * Check if we ever enabled the PMU on this cpu. 1266 */ 1267 if (!cpuhw->pmcs_enabled) { 1268 ppc_enable_pmcs(); 1269 cpuhw->pmcs_enabled = 1; 1270 } 1271 1272 /* 1273 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1274 */ 1275 val = mmcr0 = mfspr(SPRN_MMCR0); 1276 val |= MMCR0_FC; 1277 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1278 MMCR0_FC56); 1279 /* Set mmcr0 PMCCEXT for p10 */ 1280 if (ppmu->flags & PPMU_ARCH_31) 1281 val |= MMCR0_PMCCEXT; 1282 1283 /* 1284 * The barrier is to make sure the mtspr has been 1285 * executed and the PMU has frozen the events etc. 1286 * before we return. 1287 */ 1288 write_mmcr0(cpuhw, val); 1289 mb(); 1290 isync(); 1291 1292 val = mmcra = cpuhw->mmcr.mmcra; 1293 1294 /* 1295 * Disable instruction sampling if it was enabled 1296 */ 1297 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) 1298 val &= ~MMCRA_SAMPLE_ENABLE; 1299 1300 /* Disable BHRB via mmcra (BHRBRD) for p10 */ 1301 if (ppmu->flags & PPMU_ARCH_31) 1302 val |= MMCRA_BHRB_DISABLE; 1303 1304 /* 1305 * Write SPRN_MMCRA if mmcra has either disabled 1306 * instruction sampling or BHRB. 1307 */ 1308 if (val != mmcra) { 1309 mtspr(SPRN_MMCRA, mmcra); 1310 mb(); 1311 isync(); 1312 } 1313 1314 cpuhw->disabled = 1; 1315 cpuhw->n_added = 0; 1316 1317 ebb_switch_out(mmcr0); 1318 1319 #ifdef CONFIG_PPC64 1320 /* 1321 * These are readable by userspace, may contain kernel 1322 * addresses and are not switched by context switch, so clear 1323 * them now to avoid leaking anything to userspace in general 1324 * including to another process. 1325 */ 1326 if (ppmu->flags & PPMU_ARCH_207S) { 1327 mtspr(SPRN_SDAR, 0); 1328 mtspr(SPRN_SIAR, 0); 1329 } 1330 #endif 1331 } 1332 1333 local_irq_restore(flags); 1334 } 1335 1336 /* 1337 * Re-enable all events if disable == 0. 1338 * If we were previously disabled and events were added, then 1339 * put the new config on the PMU. 1340 */ 1341 static void power_pmu_enable(struct pmu *pmu) 1342 { 1343 struct perf_event *event; 1344 struct cpu_hw_events *cpuhw; 1345 unsigned long flags; 1346 long i; 1347 unsigned long val, mmcr0; 1348 s64 left; 1349 unsigned int hwc_index[MAX_HWEVENTS]; 1350 int n_lim; 1351 int idx; 1352 bool ebb; 1353 1354 if (!ppmu) 1355 return; 1356 local_irq_save(flags); 1357 1358 cpuhw = this_cpu_ptr(&cpu_hw_events); 1359 if (!cpuhw->disabled) 1360 goto out; 1361 1362 if (cpuhw->n_events == 0) { 1363 ppc_set_pmu_inuse(0); 1364 goto out; 1365 } 1366 1367 cpuhw->disabled = 0; 1368 1369 /* 1370 * EBB requires an exclusive group and all events must have the EBB 1371 * flag set, or not set, so we can just check a single event. Also we 1372 * know we have at least one event. 1373 */ 1374 ebb = is_ebb_event(cpuhw->event[0]); 1375 1376 /* 1377 * If we didn't change anything, or only removed events, 1378 * no need to recalculate MMCR* settings and reset the PMCs. 1379 * Just reenable the PMU with the current MMCR* settings 1380 * (possibly updated for removal of events). 1381 */ 1382 if (!cpuhw->n_added) { 1383 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1384 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1385 if (ppmu->flags & PPMU_ARCH_31) 1386 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1387 goto out_enable; 1388 } 1389 1390 /* 1391 * Clear all MMCR settings and recompute them for the new set of events. 1392 */ 1393 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1394 1395 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1396 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) { 1397 /* shouldn't ever get here */ 1398 printk(KERN_ERR "oops compute_mmcr failed\n"); 1399 goto out; 1400 } 1401 1402 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1403 /* 1404 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1405 * bits for the first event. We have already checked that all 1406 * events have the same value for these bits as the first event. 1407 */ 1408 event = cpuhw->event[0]; 1409 if (event->attr.exclude_user) 1410 cpuhw->mmcr.mmcr0 |= MMCR0_FCP; 1411 if (event->attr.exclude_kernel) 1412 cpuhw->mmcr.mmcr0 |= freeze_events_kernel; 1413 if (event->attr.exclude_hv) 1414 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; 1415 } 1416 1417 /* 1418 * Write the new configuration to MMCR* with the freeze 1419 * bit set and set the hardware events to their initial values. 1420 * Then unfreeze the events. 1421 */ 1422 ppc_set_pmu_inuse(1); 1423 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1424 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1425 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1426 | MMCR0_FC); 1427 if (ppmu->flags & PPMU_ARCH_207S) 1428 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); 1429 1430 if (ppmu->flags & PPMU_ARCH_31) 1431 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1432 1433 /* 1434 * Read off any pre-existing events that need to move 1435 * to another PMC. 1436 */ 1437 for (i = 0; i < cpuhw->n_events; ++i) { 1438 event = cpuhw->event[i]; 1439 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1440 power_pmu_read(event); 1441 write_pmc(event->hw.idx, 0); 1442 event->hw.idx = 0; 1443 } 1444 } 1445 1446 /* 1447 * Initialize the PMCs for all the new and moved events. 1448 */ 1449 cpuhw->n_limited = n_lim = 0; 1450 for (i = 0; i < cpuhw->n_events; ++i) { 1451 event = cpuhw->event[i]; 1452 if (event->hw.idx) 1453 continue; 1454 idx = hwc_index[i] + 1; 1455 if (is_limited_pmc(idx)) { 1456 cpuhw->limited_counter[n_lim] = event; 1457 cpuhw->limited_hwidx[n_lim] = idx; 1458 ++n_lim; 1459 continue; 1460 } 1461 1462 if (ebb) 1463 val = local64_read(&event->hw.prev_count); 1464 else { 1465 val = 0; 1466 if (event->hw.sample_period) { 1467 left = local64_read(&event->hw.period_left); 1468 if (left < 0x80000000L) 1469 val = 0x80000000L - left; 1470 } 1471 local64_set(&event->hw.prev_count, val); 1472 } 1473 1474 event->hw.idx = idx; 1475 if (event->hw.state & PERF_HES_STOPPED) 1476 val = 0; 1477 write_pmc(idx, val); 1478 1479 perf_event_update_userpage(event); 1480 } 1481 cpuhw->n_limited = n_lim; 1482 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; 1483 1484 out_enable: 1485 pmao_restore_workaround(ebb); 1486 1487 mmcr0 = ebb_switch_in(ebb, cpuhw); 1488 1489 mb(); 1490 if (cpuhw->bhrb_users) 1491 ppmu->config_bhrb(cpuhw->bhrb_filter); 1492 1493 write_mmcr0(cpuhw, mmcr0); 1494 1495 /* 1496 * Enable instruction sampling if necessary 1497 */ 1498 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { 1499 mb(); 1500 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); 1501 } 1502 1503 out: 1504 1505 local_irq_restore(flags); 1506 } 1507 1508 static int collect_events(struct perf_event *group, int max_count, 1509 struct perf_event *ctrs[], u64 *events, 1510 unsigned int *flags) 1511 { 1512 int n = 0; 1513 struct perf_event *event; 1514 1515 if (group->pmu->task_ctx_nr == perf_hw_context) { 1516 if (n >= max_count) 1517 return -1; 1518 ctrs[n] = group; 1519 flags[n] = group->hw.event_base; 1520 events[n++] = group->hw.config; 1521 } 1522 for_each_sibling_event(event, group) { 1523 if (event->pmu->task_ctx_nr == perf_hw_context && 1524 event->state != PERF_EVENT_STATE_OFF) { 1525 if (n >= max_count) 1526 return -1; 1527 ctrs[n] = event; 1528 flags[n] = event->hw.event_base; 1529 events[n++] = event->hw.config; 1530 } 1531 } 1532 return n; 1533 } 1534 1535 /* 1536 * Add an event to the PMU. 1537 * If all events are not already frozen, then we disable and 1538 * re-enable the PMU in order to get hw_perf_enable to do the 1539 * actual work of reconfiguring the PMU. 1540 */ 1541 static int power_pmu_add(struct perf_event *event, int ef_flags) 1542 { 1543 struct cpu_hw_events *cpuhw; 1544 unsigned long flags; 1545 int n0; 1546 int ret = -EAGAIN; 1547 1548 local_irq_save(flags); 1549 perf_pmu_disable(event->pmu); 1550 1551 /* 1552 * Add the event to the list (if there is room) 1553 * and check whether the total set is still feasible. 1554 */ 1555 cpuhw = this_cpu_ptr(&cpu_hw_events); 1556 n0 = cpuhw->n_events; 1557 if (n0 >= ppmu->n_counter) 1558 goto out; 1559 cpuhw->event[n0] = event; 1560 cpuhw->events[n0] = event->hw.config; 1561 cpuhw->flags[n0] = event->hw.event_base; 1562 1563 /* 1564 * This event may have been disabled/stopped in record_and_restart() 1565 * because we exceeded the ->event_limit. If re-starting the event, 1566 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1567 * notification is re-enabled. 1568 */ 1569 if (!(ef_flags & PERF_EF_START)) 1570 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1571 else 1572 event->hw.state = 0; 1573 1574 /* 1575 * If group events scheduling transaction was started, 1576 * skip the schedulability test here, it will be performed 1577 * at commit time(->commit_txn) as a whole 1578 */ 1579 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1580 goto nocheck; 1581 1582 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1583 goto out; 1584 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event)) 1585 goto out; 1586 event->hw.config = cpuhw->events[n0]; 1587 1588 nocheck: 1589 ebb_event_add(event); 1590 1591 ++cpuhw->n_events; 1592 ++cpuhw->n_added; 1593 1594 ret = 0; 1595 out: 1596 if (has_branch_stack(event)) { 1597 u64 bhrb_filter = -1; 1598 1599 if (ppmu->bhrb_filter_map) 1600 bhrb_filter = ppmu->bhrb_filter_map( 1601 event->attr.branch_sample_type); 1602 1603 if (bhrb_filter != -1) { 1604 cpuhw->bhrb_filter = bhrb_filter; 1605 power_pmu_bhrb_enable(event); 1606 } 1607 } 1608 1609 perf_pmu_enable(event->pmu); 1610 local_irq_restore(flags); 1611 return ret; 1612 } 1613 1614 /* 1615 * Remove an event from the PMU. 1616 */ 1617 static void power_pmu_del(struct perf_event *event, int ef_flags) 1618 { 1619 struct cpu_hw_events *cpuhw; 1620 long i; 1621 unsigned long flags; 1622 1623 local_irq_save(flags); 1624 perf_pmu_disable(event->pmu); 1625 1626 power_pmu_read(event); 1627 1628 cpuhw = this_cpu_ptr(&cpu_hw_events); 1629 for (i = 0; i < cpuhw->n_events; ++i) { 1630 if (event == cpuhw->event[i]) { 1631 while (++i < cpuhw->n_events) { 1632 cpuhw->event[i-1] = cpuhw->event[i]; 1633 cpuhw->events[i-1] = cpuhw->events[i]; 1634 cpuhw->flags[i-1] = cpuhw->flags[i]; 1635 } 1636 --cpuhw->n_events; 1637 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); 1638 if (event->hw.idx) { 1639 write_pmc(event->hw.idx, 0); 1640 event->hw.idx = 0; 1641 } 1642 perf_event_update_userpage(event); 1643 break; 1644 } 1645 } 1646 for (i = 0; i < cpuhw->n_limited; ++i) 1647 if (event == cpuhw->limited_counter[i]) 1648 break; 1649 if (i < cpuhw->n_limited) { 1650 while (++i < cpuhw->n_limited) { 1651 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1652 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1653 } 1654 --cpuhw->n_limited; 1655 } 1656 if (cpuhw->n_events == 0) { 1657 /* disable exceptions if no events are running */ 1658 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); 1659 } 1660 1661 if (has_branch_stack(event)) 1662 power_pmu_bhrb_disable(event); 1663 1664 perf_pmu_enable(event->pmu); 1665 local_irq_restore(flags); 1666 } 1667 1668 /* 1669 * POWER-PMU does not support disabling individual counters, hence 1670 * program their cycle counter to their max value and ignore the interrupts. 1671 */ 1672 1673 static void power_pmu_start(struct perf_event *event, int ef_flags) 1674 { 1675 unsigned long flags; 1676 s64 left; 1677 unsigned long val; 1678 1679 if (!event->hw.idx || !event->hw.sample_period) 1680 return; 1681 1682 if (!(event->hw.state & PERF_HES_STOPPED)) 1683 return; 1684 1685 if (ef_flags & PERF_EF_RELOAD) 1686 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1687 1688 local_irq_save(flags); 1689 perf_pmu_disable(event->pmu); 1690 1691 event->hw.state = 0; 1692 left = local64_read(&event->hw.period_left); 1693 1694 val = 0; 1695 if (left < 0x80000000L) 1696 val = 0x80000000L - left; 1697 1698 write_pmc(event->hw.idx, val); 1699 1700 perf_event_update_userpage(event); 1701 perf_pmu_enable(event->pmu); 1702 local_irq_restore(flags); 1703 } 1704 1705 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1706 { 1707 unsigned long flags; 1708 1709 if (!event->hw.idx || !event->hw.sample_period) 1710 return; 1711 1712 if (event->hw.state & PERF_HES_STOPPED) 1713 return; 1714 1715 local_irq_save(flags); 1716 perf_pmu_disable(event->pmu); 1717 1718 power_pmu_read(event); 1719 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1720 write_pmc(event->hw.idx, 0); 1721 1722 perf_event_update_userpage(event); 1723 perf_pmu_enable(event->pmu); 1724 local_irq_restore(flags); 1725 } 1726 1727 /* 1728 * Start group events scheduling transaction 1729 * Set the flag to make pmu::enable() not perform the 1730 * schedulability test, it will be performed at commit time 1731 * 1732 * We only support PERF_PMU_TXN_ADD transactions. Save the 1733 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1734 * transactions. 1735 */ 1736 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1737 { 1738 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1739 1740 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1741 1742 cpuhw->txn_flags = txn_flags; 1743 if (txn_flags & ~PERF_PMU_TXN_ADD) 1744 return; 1745 1746 perf_pmu_disable(pmu); 1747 cpuhw->n_txn_start = cpuhw->n_events; 1748 } 1749 1750 /* 1751 * Stop group events scheduling transaction 1752 * Clear the flag and pmu::enable() will perform the 1753 * schedulability test. 1754 */ 1755 static void power_pmu_cancel_txn(struct pmu *pmu) 1756 { 1757 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1758 unsigned int txn_flags; 1759 1760 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1761 1762 txn_flags = cpuhw->txn_flags; 1763 cpuhw->txn_flags = 0; 1764 if (txn_flags & ~PERF_PMU_TXN_ADD) 1765 return; 1766 1767 perf_pmu_enable(pmu); 1768 } 1769 1770 /* 1771 * Commit group events scheduling transaction 1772 * Perform the group schedulability test as a whole 1773 * Return 0 if success 1774 */ 1775 static int power_pmu_commit_txn(struct pmu *pmu) 1776 { 1777 struct cpu_hw_events *cpuhw; 1778 long i, n; 1779 1780 if (!ppmu) 1781 return -EAGAIN; 1782 1783 cpuhw = this_cpu_ptr(&cpu_hw_events); 1784 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1785 1786 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1787 cpuhw->txn_flags = 0; 1788 return 0; 1789 } 1790 1791 n = cpuhw->n_events; 1792 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1793 return -EAGAIN; 1794 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event); 1795 if (i < 0) 1796 return -EAGAIN; 1797 1798 for (i = cpuhw->n_txn_start; i < n; ++i) 1799 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1800 1801 cpuhw->txn_flags = 0; 1802 perf_pmu_enable(pmu); 1803 return 0; 1804 } 1805 1806 /* 1807 * Return 1 if we might be able to put event on a limited PMC, 1808 * or 0 if not. 1809 * An event can only go on a limited PMC if it counts something 1810 * that a limited PMC can count, doesn't require interrupts, and 1811 * doesn't exclude any processor mode. 1812 */ 1813 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1814 unsigned int flags) 1815 { 1816 int n; 1817 u64 alt[MAX_EVENT_ALTERNATIVES]; 1818 1819 if (event->attr.exclude_user 1820 || event->attr.exclude_kernel 1821 || event->attr.exclude_hv 1822 || event->attr.sample_period) 1823 return 0; 1824 1825 if (ppmu->limited_pmc_event(ev)) 1826 return 1; 1827 1828 /* 1829 * The requested event_id isn't on a limited PMC already; 1830 * see if any alternative code goes on a limited PMC. 1831 */ 1832 if (!ppmu->get_alternatives) 1833 return 0; 1834 1835 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1836 n = ppmu->get_alternatives(ev, flags, alt); 1837 1838 return n > 0; 1839 } 1840 1841 /* 1842 * Find an alternative event_id that goes on a normal PMC, if possible, 1843 * and return the event_id code, or 0 if there is no such alternative. 1844 * (Note: event_id code 0 is "don't count" on all machines.) 1845 */ 1846 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1847 { 1848 u64 alt[MAX_EVENT_ALTERNATIVES]; 1849 int n; 1850 1851 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1852 n = ppmu->get_alternatives(ev, flags, alt); 1853 if (!n) 1854 return 0; 1855 return alt[0]; 1856 } 1857 1858 /* Number of perf_events counting hardware events */ 1859 static atomic_t num_events; 1860 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1861 static DEFINE_MUTEX(pmc_reserve_mutex); 1862 1863 /* 1864 * Release the PMU if this is the last perf_event. 1865 */ 1866 static void hw_perf_event_destroy(struct perf_event *event) 1867 { 1868 if (!atomic_add_unless(&num_events, -1, 1)) { 1869 mutex_lock(&pmc_reserve_mutex); 1870 if (atomic_dec_return(&num_events) == 0) 1871 release_pmc_hardware(); 1872 mutex_unlock(&pmc_reserve_mutex); 1873 } 1874 } 1875 1876 /* 1877 * Translate a generic cache event_id config to a raw event_id code. 1878 */ 1879 static int hw_perf_cache_event(u64 config, u64 *eventp) 1880 { 1881 unsigned long type, op, result; 1882 u64 ev; 1883 1884 if (!ppmu->cache_events) 1885 return -EINVAL; 1886 1887 /* unpack config */ 1888 type = config & 0xff; 1889 op = (config >> 8) & 0xff; 1890 result = (config >> 16) & 0xff; 1891 1892 if (type >= PERF_COUNT_HW_CACHE_MAX || 1893 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1894 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1895 return -EINVAL; 1896 1897 ev = (*ppmu->cache_events)[type][op][result]; 1898 if (ev == 0) 1899 return -EOPNOTSUPP; 1900 if (ev == -1) 1901 return -EINVAL; 1902 *eventp = ev; 1903 return 0; 1904 } 1905 1906 static bool is_event_blacklisted(u64 ev) 1907 { 1908 int i; 1909 1910 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1911 if (ppmu->blacklist_ev[i] == ev) 1912 return true; 1913 } 1914 1915 return false; 1916 } 1917 1918 static int power_pmu_event_init(struct perf_event *event) 1919 { 1920 u64 ev; 1921 unsigned long flags, irq_flags; 1922 struct perf_event *ctrs[MAX_HWEVENTS]; 1923 u64 events[MAX_HWEVENTS]; 1924 unsigned int cflags[MAX_HWEVENTS]; 1925 int n; 1926 int err; 1927 struct cpu_hw_events *cpuhw; 1928 1929 if (!ppmu) 1930 return -ENOENT; 1931 1932 if (has_branch_stack(event)) { 1933 /* PMU has BHRB enabled */ 1934 if (!(ppmu->flags & PPMU_ARCH_207S)) 1935 return -EOPNOTSUPP; 1936 } 1937 1938 switch (event->attr.type) { 1939 case PERF_TYPE_HARDWARE: 1940 ev = event->attr.config; 1941 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1942 return -EOPNOTSUPP; 1943 1944 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1945 return -EINVAL; 1946 ev = ppmu->generic_events[ev]; 1947 break; 1948 case PERF_TYPE_HW_CACHE: 1949 err = hw_perf_cache_event(event->attr.config, &ev); 1950 if (err) 1951 return err; 1952 1953 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1954 return -EINVAL; 1955 break; 1956 case PERF_TYPE_RAW: 1957 ev = event->attr.config; 1958 1959 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1960 return -EINVAL; 1961 break; 1962 default: 1963 return -ENOENT; 1964 } 1965 1966 event->hw.config_base = ev; 1967 event->hw.idx = 0; 1968 1969 /* 1970 * If we are not running on a hypervisor, force the 1971 * exclude_hv bit to 0 so that we don't care what 1972 * the user set it to. 1973 */ 1974 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1975 event->attr.exclude_hv = 0; 1976 1977 /* 1978 * If this is a per-task event, then we can use 1979 * PM_RUN_* events interchangeably with their non RUN_* 1980 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1981 * XXX we should check if the task is an idle task. 1982 */ 1983 flags = 0; 1984 if (event->attach_state & PERF_ATTACH_TASK) 1985 flags |= PPMU_ONLY_COUNT_RUN; 1986 1987 /* 1988 * If this machine has limited events, check whether this 1989 * event_id could go on a limited event. 1990 */ 1991 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1992 if (can_go_on_limited_pmc(event, ev, flags)) { 1993 flags |= PPMU_LIMITED_PMC_OK; 1994 } else if (ppmu->limited_pmc_event(ev)) { 1995 /* 1996 * The requested event_id is on a limited PMC, 1997 * but we can't use a limited PMC; see if any 1998 * alternative goes on a normal PMC. 1999 */ 2000 ev = normal_pmc_alternative(ev, flags); 2001 if (!ev) 2002 return -EINVAL; 2003 } 2004 } 2005 2006 /* Extra checks for EBB */ 2007 err = ebb_event_check(event); 2008 if (err) 2009 return err; 2010 2011 /* 2012 * If this is in a group, check if it can go on with all the 2013 * other hardware events in the group. We assume the event 2014 * hasn't been linked into its leader's sibling list at this point. 2015 */ 2016 n = 0; 2017 if (event->group_leader != event) { 2018 n = collect_events(event->group_leader, ppmu->n_counter - 1, 2019 ctrs, events, cflags); 2020 if (n < 0) 2021 return -EINVAL; 2022 } 2023 events[n] = ev; 2024 ctrs[n] = event; 2025 cflags[n] = flags; 2026 if (check_excludes(ctrs, cflags, n, 1)) 2027 return -EINVAL; 2028 2029 local_irq_save(irq_flags); 2030 cpuhw = this_cpu_ptr(&cpu_hw_events); 2031 2032 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs); 2033 2034 if (has_branch_stack(event)) { 2035 u64 bhrb_filter = -1; 2036 2037 if (ppmu->bhrb_filter_map) 2038 bhrb_filter = ppmu->bhrb_filter_map( 2039 event->attr.branch_sample_type); 2040 2041 if (bhrb_filter == -1) { 2042 local_irq_restore(irq_flags); 2043 return -EOPNOTSUPP; 2044 } 2045 cpuhw->bhrb_filter = bhrb_filter; 2046 } 2047 2048 local_irq_restore(irq_flags); 2049 if (err) 2050 return -EINVAL; 2051 2052 event->hw.config = events[n]; 2053 event->hw.event_base = cflags[n]; 2054 event->hw.last_period = event->hw.sample_period; 2055 local64_set(&event->hw.period_left, event->hw.last_period); 2056 2057 /* 2058 * For EBB events we just context switch the PMC value, we don't do any 2059 * of the sample_period logic. We use hw.prev_count for this. 2060 */ 2061 if (is_ebb_event(event)) 2062 local64_set(&event->hw.prev_count, 0); 2063 2064 /* 2065 * See if we need to reserve the PMU. 2066 * If no events are currently in use, then we have to take a 2067 * mutex to ensure that we don't race with another task doing 2068 * reserve_pmc_hardware or release_pmc_hardware. 2069 */ 2070 err = 0; 2071 if (!atomic_inc_not_zero(&num_events)) { 2072 mutex_lock(&pmc_reserve_mutex); 2073 if (atomic_read(&num_events) == 0 && 2074 reserve_pmc_hardware(perf_event_interrupt)) 2075 err = -EBUSY; 2076 else 2077 atomic_inc(&num_events); 2078 mutex_unlock(&pmc_reserve_mutex); 2079 } 2080 event->destroy = hw_perf_event_destroy; 2081 2082 return err; 2083 } 2084 2085 static int power_pmu_event_idx(struct perf_event *event) 2086 { 2087 return event->hw.idx; 2088 } 2089 2090 ssize_t power_events_sysfs_show(struct device *dev, 2091 struct device_attribute *attr, char *page) 2092 { 2093 struct perf_pmu_events_attr *pmu_attr; 2094 2095 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2096 2097 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2098 } 2099 2100 static struct pmu power_pmu = { 2101 .pmu_enable = power_pmu_enable, 2102 .pmu_disable = power_pmu_disable, 2103 .event_init = power_pmu_event_init, 2104 .add = power_pmu_add, 2105 .del = power_pmu_del, 2106 .start = power_pmu_start, 2107 .stop = power_pmu_stop, 2108 .read = power_pmu_read, 2109 .start_txn = power_pmu_start_txn, 2110 .cancel_txn = power_pmu_cancel_txn, 2111 .commit_txn = power_pmu_commit_txn, 2112 .event_idx = power_pmu_event_idx, 2113 .sched_task = power_pmu_sched_task, 2114 }; 2115 2116 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 2117 PERF_SAMPLE_PHYS_ADDR | \ 2118 PERF_SAMPLE_DATA_PAGE_SIZE) 2119 /* 2120 * A counter has overflowed; update its count and record 2121 * things if requested. Note that interrupts are hard-disabled 2122 * here so there is no possibility of being interrupted. 2123 */ 2124 static void record_and_restart(struct perf_event *event, unsigned long val, 2125 struct pt_regs *regs) 2126 { 2127 u64 period = event->hw.sample_period; 2128 s64 prev, delta, left; 2129 int record = 0; 2130 2131 if (event->hw.state & PERF_HES_STOPPED) { 2132 write_pmc(event->hw.idx, 0); 2133 return; 2134 } 2135 2136 /* we don't have to worry about interrupts here */ 2137 prev = local64_read(&event->hw.prev_count); 2138 delta = check_and_compute_delta(prev, val); 2139 local64_add(delta, &event->count); 2140 2141 /* 2142 * See if the total period for this event has expired, 2143 * and update for the next period. 2144 */ 2145 val = 0; 2146 left = local64_read(&event->hw.period_left) - delta; 2147 if (delta == 0) 2148 left++; 2149 if (period) { 2150 if (left <= 0) { 2151 left += period; 2152 if (left <= 0) 2153 left = period; 2154 2155 /* 2156 * If address is not requested in the sample via 2157 * PERF_SAMPLE_IP, just record that sample irrespective 2158 * of SIAR valid check. 2159 */ 2160 if (event->attr.sample_type & PERF_SAMPLE_IP) 2161 record = siar_valid(regs); 2162 else 2163 record = 1; 2164 2165 event->hw.last_period = event->hw.sample_period; 2166 } 2167 if (left < 0x80000000LL) 2168 val = 0x80000000LL - left; 2169 } 2170 2171 write_pmc(event->hw.idx, val); 2172 local64_set(&event->hw.prev_count, val); 2173 local64_set(&event->hw.period_left, left); 2174 perf_event_update_userpage(event); 2175 2176 /* 2177 * Due to hardware limitation, sometimes SIAR could sample a kernel 2178 * address even when freeze on supervisor state (kernel) is set in 2179 * MMCR2. Check attr.exclude_kernel and address to drop the sample in 2180 * these cases. 2181 */ 2182 if (event->attr.exclude_kernel && 2183 (event->attr.sample_type & PERF_SAMPLE_IP) && 2184 is_kernel_addr(mfspr(SPRN_SIAR))) 2185 record = 0; 2186 2187 /* 2188 * Finally record data if requested. 2189 */ 2190 if (record) { 2191 struct perf_sample_data data; 2192 2193 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2194 2195 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE) 2196 perf_get_data_addr(event, regs, &data.addr); 2197 2198 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2199 struct cpu_hw_events *cpuhw; 2200 cpuhw = this_cpu_ptr(&cpu_hw_events); 2201 power_pmu_bhrb_read(event, cpuhw); 2202 data.br_stack = &cpuhw->bhrb_stack; 2203 } 2204 2205 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2206 ppmu->get_mem_data_src) 2207 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2208 2209 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2210 ppmu->get_mem_weight) 2211 ppmu->get_mem_weight(&data.weight.full); 2212 2213 if (perf_event_overflow(event, &data, regs)) 2214 power_pmu_stop(event, 0); 2215 } else if (period) { 2216 /* Account for interrupt in case of invalid SIAR */ 2217 if (perf_event_account_interrupt(event)) 2218 power_pmu_stop(event, 0); 2219 } 2220 } 2221 2222 /* 2223 * Called from generic code to get the misc flags (i.e. processor mode) 2224 * for an event_id. 2225 */ 2226 unsigned long perf_misc_flags(struct pt_regs *regs) 2227 { 2228 u32 flags = perf_get_misc_flags(regs); 2229 2230 if (flags) 2231 return flags; 2232 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2233 PERF_RECORD_MISC_KERNEL; 2234 } 2235 2236 /* 2237 * Called from generic code to get the instruction pointer 2238 * for an event_id. 2239 */ 2240 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2241 { 2242 bool use_siar = regs_use_siar(regs); 2243 unsigned long siar = mfspr(SPRN_SIAR); 2244 2245 if (ppmu->flags & PPMU_P10_DD1) { 2246 if (siar) 2247 return siar; 2248 else 2249 return regs->nip; 2250 } else if (use_siar && siar_valid(regs)) 2251 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2252 else if (use_siar) 2253 return 0; // no valid instruction pointer 2254 else 2255 return regs->nip; 2256 } 2257 2258 static bool pmc_overflow_power7(unsigned long val) 2259 { 2260 /* 2261 * Events on POWER7 can roll back if a speculative event doesn't 2262 * eventually complete. Unfortunately in some rare cases they will 2263 * raise a performance monitor exception. We need to catch this to 2264 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2265 * cycles from overflow. 2266 * 2267 * We only do this if the first pass fails to find any overflowing 2268 * PMCs because a user might set a period of less than 256 and we 2269 * don't want to mistakenly reset them. 2270 */ 2271 if ((0x80000000 - val) <= 256) 2272 return true; 2273 2274 return false; 2275 } 2276 2277 static bool pmc_overflow(unsigned long val) 2278 { 2279 if ((int)val < 0) 2280 return true; 2281 2282 return false; 2283 } 2284 2285 /* 2286 * Performance monitor interrupt stuff 2287 */ 2288 static void __perf_event_interrupt(struct pt_regs *regs) 2289 { 2290 int i, j; 2291 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2292 struct perf_event *event; 2293 int found, active; 2294 2295 if (cpuhw->n_limited) 2296 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2297 mfspr(SPRN_PMC6)); 2298 2299 perf_read_regs(regs); 2300 2301 /* Read all the PMCs since we'll need them a bunch of times */ 2302 for (i = 0; i < ppmu->n_counter; ++i) 2303 cpuhw->pmcs[i] = read_pmc(i + 1); 2304 2305 /* Try to find what caused the IRQ */ 2306 found = 0; 2307 for (i = 0; i < ppmu->n_counter; ++i) { 2308 if (!pmc_overflow(cpuhw->pmcs[i])) 2309 continue; 2310 if (is_limited_pmc(i + 1)) 2311 continue; /* these won't generate IRQs */ 2312 /* 2313 * We've found one that's overflowed. For active 2314 * counters we need to log this. For inactive 2315 * counters, we need to reset it anyway 2316 */ 2317 found = 1; 2318 active = 0; 2319 for (j = 0; j < cpuhw->n_events; ++j) { 2320 event = cpuhw->event[j]; 2321 if (event->hw.idx == (i + 1)) { 2322 active = 1; 2323 record_and_restart(event, cpuhw->pmcs[i], regs); 2324 break; 2325 } 2326 } 2327 if (!active) 2328 /* reset non active counters that have overflowed */ 2329 write_pmc(i + 1, 0); 2330 } 2331 if (!found && pvr_version_is(PVR_POWER7)) { 2332 /* check active counters for special buggy p7 overflow */ 2333 for (i = 0; i < cpuhw->n_events; ++i) { 2334 event = cpuhw->event[i]; 2335 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2336 continue; 2337 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) { 2338 /* event has overflowed in a buggy way*/ 2339 found = 1; 2340 record_and_restart(event, 2341 cpuhw->pmcs[event->hw.idx - 1], 2342 regs); 2343 } 2344 } 2345 } 2346 if (unlikely(!found) && !arch_irq_disabled_regs(regs)) 2347 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2348 2349 /* 2350 * Reset MMCR0 to its normal value. This will set PMXE and 2351 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2352 * and thus allow interrupts to occur again. 2353 * XXX might want to use MSR.PM to keep the events frozen until 2354 * we get back out of this interrupt. 2355 */ 2356 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); 2357 2358 /* Clear the cpuhw->pmcs */ 2359 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs)); 2360 2361 } 2362 2363 static void perf_event_interrupt(struct pt_regs *regs) 2364 { 2365 u64 start_clock = sched_clock(); 2366 2367 __perf_event_interrupt(regs); 2368 perf_sample_event_took(sched_clock() - start_clock); 2369 } 2370 2371 static int power_pmu_prepare_cpu(unsigned int cpu) 2372 { 2373 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2374 2375 if (ppmu) { 2376 memset(cpuhw, 0, sizeof(*cpuhw)); 2377 cpuhw->mmcr.mmcr0 = MMCR0_FC; 2378 } 2379 return 0; 2380 } 2381 2382 int register_power_pmu(struct power_pmu *pmu) 2383 { 2384 if (ppmu) 2385 return -EBUSY; /* something's already registered */ 2386 2387 ppmu = pmu; 2388 pr_info("%s performance monitor hardware support registered\n", 2389 pmu->name); 2390 2391 power_pmu.attr_groups = ppmu->attr_groups; 2392 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS); 2393 2394 #ifdef MSR_HV 2395 /* 2396 * Use FCHV to ignore kernel events if MSR.HV is set. 2397 */ 2398 if (mfmsr() & MSR_HV) 2399 freeze_events_kernel = MMCR0_FCHV; 2400 #endif /* CONFIG_PPC64 */ 2401 2402 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2403 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2404 power_pmu_prepare_cpu, NULL); 2405 return 0; 2406 } 2407 2408 #ifdef CONFIG_PPC64 2409 static int __init init_ppc64_pmu(void) 2410 { 2411 /* run through all the pmu drivers one at a time */ 2412 if (!init_power5_pmu()) 2413 return 0; 2414 else if (!init_power5p_pmu()) 2415 return 0; 2416 else if (!init_power6_pmu()) 2417 return 0; 2418 else if (!init_power7_pmu()) 2419 return 0; 2420 else if (!init_power8_pmu()) 2421 return 0; 2422 else if (!init_power9_pmu()) 2423 return 0; 2424 else if (!init_power10_pmu()) 2425 return 0; 2426 else if (!init_ppc970_pmu()) 2427 return 0; 2428 else 2429 return init_generic_compat_pmu(); 2430 } 2431 early_initcall(init_ppc64_pmu); 2432 #endif 2433