1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 /* 40 * The order of the MMCR array is: 41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 42 * - 32-bit, MMCR0, MMCR1, MMCR2 43 */ 44 unsigned long mmcr[4]; 45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 51 unsigned int group_flag; 52 int n_txn_start; 53 54 /* BHRB bits */ 55 u64 bhrb_filter; /* BHRB HW branch filter */ 56 int bhrb_users; 57 void *bhrb_context; 58 struct perf_branch_stack bhrb_stack; 59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 60 }; 61 62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 63 64 static struct power_pmu *ppmu; 65 66 /* 67 * Normally, to ignore kernel events we set the FCS (freeze counters 68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 69 * hypervisor bit set in the MSR, or if we are running on a processor 70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 71 * then we need to use the FCHV bit to ignore kernel events. 72 */ 73 static unsigned int freeze_events_kernel = MMCR0_FCS; 74 75 /* 76 * 32-bit doesn't have MMCRA but does have an MMCR2, 77 * and a few other names are different. 78 */ 79 #ifdef CONFIG_PPC32 80 81 #define MMCR0_FCHV 0 82 #define MMCR0_PMCjCE MMCR0_PMCnCE 83 #define MMCR0_FC56 0 84 #define MMCR0_PMAO 0 85 #define MMCR0_EBE 0 86 #define MMCR0_BHRBA 0 87 #define MMCR0_PMCC 0 88 #define MMCR0_PMCC_U6 0 89 90 #define SPRN_MMCRA SPRN_MMCR2 91 #define MMCRA_SAMPLE_ENABLE 0 92 93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 94 { 95 return 0; 96 } 97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 98 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 99 { 100 return 0; 101 } 102 static inline void perf_read_regs(struct pt_regs *regs) 103 { 104 regs->result = 0; 105 } 106 static inline int perf_intr_is_nmi(struct pt_regs *regs) 107 { 108 return 0; 109 } 110 111 static inline int siar_valid(struct pt_regs *regs) 112 { 113 return 1; 114 } 115 116 static bool is_ebb_event(struct perf_event *event) { return false; } 117 static int ebb_event_check(struct perf_event *event) { return 0; } 118 static void ebb_event_add(struct perf_event *event) { } 119 static void ebb_switch_out(unsigned long mmcr0) { } 120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 121 { 122 return cpuhw->mmcr[0]; 123 } 124 125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 127 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 129 static void pmao_restore_workaround(bool ebb) { } 130 #endif /* CONFIG_PPC32 */ 131 132 static bool regs_use_siar(struct pt_regs *regs) 133 { 134 return !!regs->result; 135 } 136 137 /* 138 * Things that are specific to 64-bit implementations. 139 */ 140 #ifdef CONFIG_PPC64 141 142 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 143 { 144 unsigned long mmcra = regs->dsisr; 145 146 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 147 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 148 if (slot > 1) 149 return 4 * (slot - 1); 150 } 151 152 return 0; 153 } 154 155 /* 156 * The user wants a data address recorded. 157 * If we're not doing instruction sampling, give them the SDAR 158 * (sampled data address). If we are doing instruction sampling, then 159 * only give them the SDAR if it corresponds to the instruction 160 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 161 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 162 */ 163 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 164 { 165 unsigned long mmcra = regs->dsisr; 166 bool sdar_valid; 167 168 if (ppmu->flags & PPMU_HAS_SIER) 169 sdar_valid = regs->dar & SIER_SDAR_VALID; 170 else { 171 unsigned long sdsync; 172 173 if (ppmu->flags & PPMU_SIAR_VALID) 174 sdsync = POWER7P_MMCRA_SDAR_VALID; 175 else if (ppmu->flags & PPMU_ALT_SIPR) 176 sdsync = POWER6_MMCRA_SDSYNC; 177 else 178 sdsync = MMCRA_SDSYNC; 179 180 sdar_valid = mmcra & sdsync; 181 } 182 183 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 184 *addrp = mfspr(SPRN_SDAR); 185 } 186 187 static bool regs_sihv(struct pt_regs *regs) 188 { 189 unsigned long sihv = MMCRA_SIHV; 190 191 if (ppmu->flags & PPMU_HAS_SIER) 192 return !!(regs->dar & SIER_SIHV); 193 194 if (ppmu->flags & PPMU_ALT_SIPR) 195 sihv = POWER6_MMCRA_SIHV; 196 197 return !!(regs->dsisr & sihv); 198 } 199 200 static bool regs_sipr(struct pt_regs *regs) 201 { 202 unsigned long sipr = MMCRA_SIPR; 203 204 if (ppmu->flags & PPMU_HAS_SIER) 205 return !!(regs->dar & SIER_SIPR); 206 207 if (ppmu->flags & PPMU_ALT_SIPR) 208 sipr = POWER6_MMCRA_SIPR; 209 210 return !!(regs->dsisr & sipr); 211 } 212 213 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 214 { 215 if (regs->msr & MSR_PR) 216 return PERF_RECORD_MISC_USER; 217 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 218 return PERF_RECORD_MISC_HYPERVISOR; 219 return PERF_RECORD_MISC_KERNEL; 220 } 221 222 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 223 { 224 bool use_siar = regs_use_siar(regs); 225 226 if (!use_siar) 227 return perf_flags_from_msr(regs); 228 229 /* 230 * If we don't have flags in MMCRA, rather than using 231 * the MSR, we intuit the flags from the address in 232 * SIAR which should give slightly more reliable 233 * results 234 */ 235 if (ppmu->flags & PPMU_NO_SIPR) { 236 unsigned long siar = mfspr(SPRN_SIAR); 237 if (siar >= PAGE_OFFSET) 238 return PERF_RECORD_MISC_KERNEL; 239 return PERF_RECORD_MISC_USER; 240 } 241 242 /* PR has priority over HV, so order below is important */ 243 if (regs_sipr(regs)) 244 return PERF_RECORD_MISC_USER; 245 246 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 247 return PERF_RECORD_MISC_HYPERVISOR; 248 249 return PERF_RECORD_MISC_KERNEL; 250 } 251 252 /* 253 * Overload regs->dsisr to store MMCRA so we only need to read it once 254 * on each interrupt. 255 * Overload regs->dar to store SIER if we have it. 256 * Overload regs->result to specify whether we should use the MSR (result 257 * is zero) or the SIAR (result is non zero). 258 */ 259 static inline void perf_read_regs(struct pt_regs *regs) 260 { 261 unsigned long mmcra = mfspr(SPRN_MMCRA); 262 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 263 int use_siar; 264 265 regs->dsisr = mmcra; 266 267 if (ppmu->flags & PPMU_HAS_SIER) 268 regs->dar = mfspr(SPRN_SIER); 269 270 /* 271 * If this isn't a PMU exception (eg a software event) the SIAR is 272 * not valid. Use pt_regs. 273 * 274 * If it is a marked event use the SIAR. 275 * 276 * If the PMU doesn't update the SIAR for non marked events use 277 * pt_regs. 278 * 279 * If the PMU has HV/PR flags then check to see if they 280 * place the exception in userspace. If so, use pt_regs. In 281 * continuous sampling mode the SIAR and the PMU exception are 282 * not synchronised, so they may be many instructions apart. 283 * This can result in confusing backtraces. We still want 284 * hypervisor samples as well as samples in the kernel with 285 * interrupts off hence the userspace check. 286 */ 287 if (TRAP(regs) != 0xf00) 288 use_siar = 0; 289 else if (marked) 290 use_siar = 1; 291 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 292 use_siar = 0; 293 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 294 use_siar = 0; 295 else 296 use_siar = 1; 297 298 regs->result = use_siar; 299 } 300 301 /* 302 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 303 * it as an NMI. 304 */ 305 static inline int perf_intr_is_nmi(struct pt_regs *regs) 306 { 307 return !regs->softe; 308 } 309 310 /* 311 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 312 * must be sampled only if the SIAR-valid bit is set. 313 * 314 * For unmarked instructions and for processors that don't have the SIAR-Valid 315 * bit, assume that SIAR is valid. 316 */ 317 static inline int siar_valid(struct pt_regs *regs) 318 { 319 unsigned long mmcra = regs->dsisr; 320 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 321 322 if (marked) { 323 if (ppmu->flags & PPMU_HAS_SIER) 324 return regs->dar & SIER_SIAR_VALID; 325 326 if (ppmu->flags & PPMU_SIAR_VALID) 327 return mmcra & POWER7P_MMCRA_SIAR_VALID; 328 } 329 330 return 1; 331 } 332 333 334 /* Reset all possible BHRB entries */ 335 static void power_pmu_bhrb_reset(void) 336 { 337 asm volatile(PPC_CLRBHRB); 338 } 339 340 static void power_pmu_bhrb_enable(struct perf_event *event) 341 { 342 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 343 344 if (!ppmu->bhrb_nr) 345 return; 346 347 /* Clear BHRB if we changed task context to avoid data leaks */ 348 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 349 power_pmu_bhrb_reset(); 350 cpuhw->bhrb_context = event->ctx; 351 } 352 cpuhw->bhrb_users++; 353 perf_sched_cb_inc(event->ctx->pmu); 354 } 355 356 static void power_pmu_bhrb_disable(struct perf_event *event) 357 { 358 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 359 360 if (!ppmu->bhrb_nr) 361 return; 362 363 cpuhw->bhrb_users--; 364 WARN_ON_ONCE(cpuhw->bhrb_users < 0); 365 perf_sched_cb_dec(event->ctx->pmu); 366 367 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 368 /* BHRB cannot be turned off when other 369 * events are active on the PMU. 370 */ 371 372 /* avoid stale pointer */ 373 cpuhw->bhrb_context = NULL; 374 } 375 } 376 377 /* Called from ctxsw to prevent one process's branch entries to 378 * mingle with the other process's entries during context switch. 379 */ 380 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 381 { 382 if (!ppmu->bhrb_nr) 383 return; 384 385 if (sched_in) 386 power_pmu_bhrb_reset(); 387 } 388 /* Calculate the to address for a branch */ 389 static __u64 power_pmu_bhrb_to(u64 addr) 390 { 391 unsigned int instr; 392 int ret; 393 __u64 target; 394 395 if (is_kernel_addr(addr)) 396 return branch_target((unsigned int *)addr); 397 398 /* Userspace: need copy instruction here then translate it */ 399 pagefault_disable(); 400 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 401 if (ret) { 402 pagefault_enable(); 403 return 0; 404 } 405 pagefault_enable(); 406 407 target = branch_target(&instr); 408 if ((!target) || (instr & BRANCH_ABSOLUTE)) 409 return target; 410 411 /* Translate relative branch target from kernel to user address */ 412 return target - (unsigned long)&instr + addr; 413 } 414 415 /* Processing BHRB entries */ 416 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 417 { 418 u64 val; 419 u64 addr; 420 int r_index, u_index, pred; 421 422 r_index = 0; 423 u_index = 0; 424 while (r_index < ppmu->bhrb_nr) { 425 /* Assembly read function */ 426 val = read_bhrb(r_index++); 427 if (!val) 428 /* Terminal marker: End of valid BHRB entries */ 429 break; 430 else { 431 addr = val & BHRB_EA; 432 pred = val & BHRB_PREDICTION; 433 434 if (!addr) 435 /* invalid entry */ 436 continue; 437 438 /* Branches are read most recent first (ie. mfbhrb 0 is 439 * the most recent branch). 440 * There are two types of valid entries: 441 * 1) a target entry which is the to address of a 442 * computed goto like a blr,bctr,btar. The next 443 * entry read from the bhrb will be branch 444 * corresponding to this target (ie. the actual 445 * blr/bctr/btar instruction). 446 * 2) a from address which is an actual branch. If a 447 * target entry proceeds this, then this is the 448 * matching branch for that target. If this is not 449 * following a target entry, then this is a branch 450 * where the target is given as an immediate field 451 * in the instruction (ie. an i or b form branch). 452 * In this case we need to read the instruction from 453 * memory to determine the target/to address. 454 */ 455 456 if (val & BHRB_TARGET) { 457 /* Target branches use two entries 458 * (ie. computed gotos/XL form) 459 */ 460 cpuhw->bhrb_entries[u_index].to = addr; 461 cpuhw->bhrb_entries[u_index].mispred = pred; 462 cpuhw->bhrb_entries[u_index].predicted = ~pred; 463 464 /* Get from address in next entry */ 465 val = read_bhrb(r_index++); 466 addr = val & BHRB_EA; 467 if (val & BHRB_TARGET) { 468 /* Shouldn't have two targets in a 469 row.. Reset index and try again */ 470 r_index--; 471 addr = 0; 472 } 473 cpuhw->bhrb_entries[u_index].from = addr; 474 } else { 475 /* Branches to immediate field 476 (ie I or B form) */ 477 cpuhw->bhrb_entries[u_index].from = addr; 478 cpuhw->bhrb_entries[u_index].to = 479 power_pmu_bhrb_to(addr); 480 cpuhw->bhrb_entries[u_index].mispred = pred; 481 cpuhw->bhrb_entries[u_index].predicted = ~pred; 482 } 483 u_index++; 484 485 } 486 } 487 cpuhw->bhrb_stack.nr = u_index; 488 return; 489 } 490 491 static bool is_ebb_event(struct perf_event *event) 492 { 493 /* 494 * This could be a per-PMU callback, but we'd rather avoid the cost. We 495 * check that the PMU supports EBB, meaning those that don't can still 496 * use bit 63 of the event code for something else if they wish. 497 */ 498 return (ppmu->flags & PPMU_ARCH_207S) && 499 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 500 } 501 502 static int ebb_event_check(struct perf_event *event) 503 { 504 struct perf_event *leader = event->group_leader; 505 506 /* Event and group leader must agree on EBB */ 507 if (is_ebb_event(leader) != is_ebb_event(event)) 508 return -EINVAL; 509 510 if (is_ebb_event(event)) { 511 if (!(event->attach_state & PERF_ATTACH_TASK)) 512 return -EINVAL; 513 514 if (!leader->attr.pinned || !leader->attr.exclusive) 515 return -EINVAL; 516 517 if (event->attr.freq || 518 event->attr.inherit || 519 event->attr.sample_type || 520 event->attr.sample_period || 521 event->attr.enable_on_exec) 522 return -EINVAL; 523 } 524 525 return 0; 526 } 527 528 static void ebb_event_add(struct perf_event *event) 529 { 530 if (!is_ebb_event(event) || current->thread.used_ebb) 531 return; 532 533 /* 534 * IFF this is the first time we've added an EBB event, set 535 * PMXE in the user MMCR0 so we can detect when it's cleared by 536 * userspace. We need this so that we can context switch while 537 * userspace is in the EBB handler (where PMXE is 0). 538 */ 539 current->thread.used_ebb = 1; 540 current->thread.mmcr0 |= MMCR0_PMXE; 541 } 542 543 static void ebb_switch_out(unsigned long mmcr0) 544 { 545 if (!(mmcr0 & MMCR0_EBE)) 546 return; 547 548 current->thread.siar = mfspr(SPRN_SIAR); 549 current->thread.sier = mfspr(SPRN_SIER); 550 current->thread.sdar = mfspr(SPRN_SDAR); 551 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 552 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 553 } 554 555 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 556 { 557 unsigned long mmcr0 = cpuhw->mmcr[0]; 558 559 if (!ebb) 560 goto out; 561 562 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 563 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 564 565 /* 566 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 567 * with pmao_restore_workaround() because we may add PMAO but we never 568 * clear it here. 569 */ 570 mmcr0 |= current->thread.mmcr0; 571 572 /* 573 * Be careful not to set PMXE if userspace had it cleared. This is also 574 * compatible with pmao_restore_workaround() because it has already 575 * cleared PMXE and we leave PMAO alone. 576 */ 577 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 578 mmcr0 &= ~MMCR0_PMXE; 579 580 mtspr(SPRN_SIAR, current->thread.siar); 581 mtspr(SPRN_SIER, current->thread.sier); 582 mtspr(SPRN_SDAR, current->thread.sdar); 583 584 /* 585 * Merge the kernel & user values of MMCR2. The semantics we implement 586 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 587 * but not clear bits. If a task wants to be able to clear bits, ie. 588 * unfreeze counters, it should not set exclude_xxx in its events and 589 * instead manage the MMCR2 entirely by itself. 590 */ 591 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 592 out: 593 return mmcr0; 594 } 595 596 static void pmao_restore_workaround(bool ebb) 597 { 598 unsigned pmcs[6]; 599 600 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 601 return; 602 603 /* 604 * On POWER8E there is a hardware defect which affects the PMU context 605 * switch logic, ie. power_pmu_disable/enable(). 606 * 607 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 608 * by the hardware. Sometime later the actual PMU exception is 609 * delivered. 610 * 611 * If we context switch, or simply disable/enable, the PMU prior to the 612 * exception arriving, the exception will be lost when we clear PMAO. 613 * 614 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 615 * set, and this _should_ generate an exception. However because of the 616 * defect no exception is generated when we write PMAO, and we get 617 * stuck with no counters counting but no exception delivered. 618 * 619 * The workaround is to detect this case and tweak the hardware to 620 * create another pending PMU exception. 621 * 622 * We do that by setting up PMC6 (cycles) for an imminent overflow and 623 * enabling the PMU. That causes a new exception to be generated in the 624 * chip, but we don't take it yet because we have interrupts hard 625 * disabled. We then write back the PMU state as we want it to be seen 626 * by the exception handler. When we reenable interrupts the exception 627 * handler will be called and see the correct state. 628 * 629 * The logic is the same for EBB, except that the exception is gated by 630 * us having interrupts hard disabled as well as the fact that we are 631 * not in userspace. The exception is finally delivered when we return 632 * to userspace. 633 */ 634 635 /* Only if PMAO is set and PMAO_SYNC is clear */ 636 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 637 return; 638 639 /* If we're doing EBB, only if BESCR[GE] is set */ 640 if (ebb && !(current->thread.bescr & BESCR_GE)) 641 return; 642 643 /* 644 * We are already soft-disabled in power_pmu_enable(). We need to hard 645 * enable to actually prevent the PMU exception from firing. 646 */ 647 hard_irq_disable(); 648 649 /* 650 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 651 * Using read/write_pmc() in a for loop adds 12 function calls and 652 * almost doubles our code size. 653 */ 654 pmcs[0] = mfspr(SPRN_PMC1); 655 pmcs[1] = mfspr(SPRN_PMC2); 656 pmcs[2] = mfspr(SPRN_PMC3); 657 pmcs[3] = mfspr(SPRN_PMC4); 658 pmcs[4] = mfspr(SPRN_PMC5); 659 pmcs[5] = mfspr(SPRN_PMC6); 660 661 /* Ensure all freeze bits are unset */ 662 mtspr(SPRN_MMCR2, 0); 663 664 /* Set up PMC6 to overflow in one cycle */ 665 mtspr(SPRN_PMC6, 0x7FFFFFFE); 666 667 /* Enable exceptions and unfreeze PMC6 */ 668 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 669 670 /* Now we need to refreeze and restore the PMCs */ 671 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 672 673 mtspr(SPRN_PMC1, pmcs[0]); 674 mtspr(SPRN_PMC2, pmcs[1]); 675 mtspr(SPRN_PMC3, pmcs[2]); 676 mtspr(SPRN_PMC4, pmcs[3]); 677 mtspr(SPRN_PMC5, pmcs[4]); 678 mtspr(SPRN_PMC6, pmcs[5]); 679 } 680 #endif /* CONFIG_PPC64 */ 681 682 static void perf_event_interrupt(struct pt_regs *regs); 683 684 /* 685 * Read one performance monitor counter (PMC). 686 */ 687 static unsigned long read_pmc(int idx) 688 { 689 unsigned long val; 690 691 switch (idx) { 692 case 1: 693 val = mfspr(SPRN_PMC1); 694 break; 695 case 2: 696 val = mfspr(SPRN_PMC2); 697 break; 698 case 3: 699 val = mfspr(SPRN_PMC3); 700 break; 701 case 4: 702 val = mfspr(SPRN_PMC4); 703 break; 704 case 5: 705 val = mfspr(SPRN_PMC5); 706 break; 707 case 6: 708 val = mfspr(SPRN_PMC6); 709 break; 710 #ifdef CONFIG_PPC64 711 case 7: 712 val = mfspr(SPRN_PMC7); 713 break; 714 case 8: 715 val = mfspr(SPRN_PMC8); 716 break; 717 #endif /* CONFIG_PPC64 */ 718 default: 719 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 720 val = 0; 721 } 722 return val; 723 } 724 725 /* 726 * Write one PMC. 727 */ 728 static void write_pmc(int idx, unsigned long val) 729 { 730 switch (idx) { 731 case 1: 732 mtspr(SPRN_PMC1, val); 733 break; 734 case 2: 735 mtspr(SPRN_PMC2, val); 736 break; 737 case 3: 738 mtspr(SPRN_PMC3, val); 739 break; 740 case 4: 741 mtspr(SPRN_PMC4, val); 742 break; 743 case 5: 744 mtspr(SPRN_PMC5, val); 745 break; 746 case 6: 747 mtspr(SPRN_PMC6, val); 748 break; 749 #ifdef CONFIG_PPC64 750 case 7: 751 mtspr(SPRN_PMC7, val); 752 break; 753 case 8: 754 mtspr(SPRN_PMC8, val); 755 break; 756 #endif /* CONFIG_PPC64 */ 757 default: 758 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 759 } 760 } 761 762 /* Called from sysrq_handle_showregs() */ 763 void perf_event_print_debug(void) 764 { 765 unsigned long sdar, sier, flags; 766 u32 pmcs[MAX_HWEVENTS]; 767 int i; 768 769 if (!ppmu->n_counter) 770 return; 771 772 local_irq_save(flags); 773 774 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 775 smp_processor_id(), ppmu->name, ppmu->n_counter); 776 777 for (i = 0; i < ppmu->n_counter; i++) 778 pmcs[i] = read_pmc(i + 1); 779 780 for (; i < MAX_HWEVENTS; i++) 781 pmcs[i] = 0xdeadbeef; 782 783 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 784 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 785 786 if (ppmu->n_counter > 4) 787 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 788 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 789 790 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 791 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 792 793 sdar = sier = 0; 794 #ifdef CONFIG_PPC64 795 sdar = mfspr(SPRN_SDAR); 796 797 if (ppmu->flags & PPMU_HAS_SIER) 798 sier = mfspr(SPRN_SIER); 799 800 if (ppmu->flags & PPMU_ARCH_207S) { 801 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 802 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 803 pr_info("EBBRR: %016lx BESCR: %016lx\n", 804 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 805 } 806 #endif 807 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 808 mfspr(SPRN_SIAR), sdar, sier); 809 810 local_irq_restore(flags); 811 } 812 813 /* 814 * Check if a set of events can all go on the PMU at once. 815 * If they can't, this will look at alternative codes for the events 816 * and see if any combination of alternative codes is feasible. 817 * The feasible set is returned in event_id[]. 818 */ 819 static int power_check_constraints(struct cpu_hw_events *cpuhw, 820 u64 event_id[], unsigned int cflags[], 821 int n_ev) 822 { 823 unsigned long mask, value, nv; 824 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 825 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 826 int i, j; 827 unsigned long addf = ppmu->add_fields; 828 unsigned long tadd = ppmu->test_adder; 829 830 if (n_ev > ppmu->n_counter) 831 return -1; 832 833 /* First see if the events will go on as-is */ 834 for (i = 0; i < n_ev; ++i) { 835 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 836 && !ppmu->limited_pmc_event(event_id[i])) { 837 ppmu->get_alternatives(event_id[i], cflags[i], 838 cpuhw->alternatives[i]); 839 event_id[i] = cpuhw->alternatives[i][0]; 840 } 841 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 842 &cpuhw->avalues[i][0])) 843 return -1; 844 } 845 value = mask = 0; 846 for (i = 0; i < n_ev; ++i) { 847 nv = (value | cpuhw->avalues[i][0]) + 848 (value & cpuhw->avalues[i][0] & addf); 849 if ((((nv + tadd) ^ value) & mask) != 0 || 850 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 851 cpuhw->amasks[i][0]) != 0) 852 break; 853 value = nv; 854 mask |= cpuhw->amasks[i][0]; 855 } 856 if (i == n_ev) 857 return 0; /* all OK */ 858 859 /* doesn't work, gather alternatives... */ 860 if (!ppmu->get_alternatives) 861 return -1; 862 for (i = 0; i < n_ev; ++i) { 863 choice[i] = 0; 864 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 865 cpuhw->alternatives[i]); 866 for (j = 1; j < n_alt[i]; ++j) 867 ppmu->get_constraint(cpuhw->alternatives[i][j], 868 &cpuhw->amasks[i][j], 869 &cpuhw->avalues[i][j]); 870 } 871 872 /* enumerate all possibilities and see if any will work */ 873 i = 0; 874 j = -1; 875 value = mask = nv = 0; 876 while (i < n_ev) { 877 if (j >= 0) { 878 /* we're backtracking, restore context */ 879 value = svalues[i]; 880 mask = smasks[i]; 881 j = choice[i]; 882 } 883 /* 884 * See if any alternative k for event_id i, 885 * where k > j, will satisfy the constraints. 886 */ 887 while (++j < n_alt[i]) { 888 nv = (value | cpuhw->avalues[i][j]) + 889 (value & cpuhw->avalues[i][j] & addf); 890 if ((((nv + tadd) ^ value) & mask) == 0 && 891 (((nv + tadd) ^ cpuhw->avalues[i][j]) 892 & cpuhw->amasks[i][j]) == 0) 893 break; 894 } 895 if (j >= n_alt[i]) { 896 /* 897 * No feasible alternative, backtrack 898 * to event_id i-1 and continue enumerating its 899 * alternatives from where we got up to. 900 */ 901 if (--i < 0) 902 return -1; 903 } else { 904 /* 905 * Found a feasible alternative for event_id i, 906 * remember where we got up to with this event_id, 907 * go on to the next event_id, and start with 908 * the first alternative for it. 909 */ 910 choice[i] = j; 911 svalues[i] = value; 912 smasks[i] = mask; 913 value = nv; 914 mask |= cpuhw->amasks[i][j]; 915 ++i; 916 j = -1; 917 } 918 } 919 920 /* OK, we have a feasible combination, tell the caller the solution */ 921 for (i = 0; i < n_ev; ++i) 922 event_id[i] = cpuhw->alternatives[i][choice[i]]; 923 return 0; 924 } 925 926 /* 927 * Check if newly-added events have consistent settings for 928 * exclude_{user,kernel,hv} with each other and any previously 929 * added events. 930 */ 931 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 932 int n_prev, int n_new) 933 { 934 int eu = 0, ek = 0, eh = 0; 935 int i, n, first; 936 struct perf_event *event; 937 938 /* 939 * If the PMU we're on supports per event exclude settings then we 940 * don't need to do any of this logic. NB. This assumes no PMU has both 941 * per event exclude and limited PMCs. 942 */ 943 if (ppmu->flags & PPMU_ARCH_207S) 944 return 0; 945 946 n = n_prev + n_new; 947 if (n <= 1) 948 return 0; 949 950 first = 1; 951 for (i = 0; i < n; ++i) { 952 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 953 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 954 continue; 955 } 956 event = ctrs[i]; 957 if (first) { 958 eu = event->attr.exclude_user; 959 ek = event->attr.exclude_kernel; 960 eh = event->attr.exclude_hv; 961 first = 0; 962 } else if (event->attr.exclude_user != eu || 963 event->attr.exclude_kernel != ek || 964 event->attr.exclude_hv != eh) { 965 return -EAGAIN; 966 } 967 } 968 969 if (eu || ek || eh) 970 for (i = 0; i < n; ++i) 971 if (cflags[i] & PPMU_LIMITED_PMC_OK) 972 cflags[i] |= PPMU_LIMITED_PMC_REQD; 973 974 return 0; 975 } 976 977 static u64 check_and_compute_delta(u64 prev, u64 val) 978 { 979 u64 delta = (val - prev) & 0xfffffffful; 980 981 /* 982 * POWER7 can roll back counter values, if the new value is smaller 983 * than the previous value it will cause the delta and the counter to 984 * have bogus values unless we rolled a counter over. If a coutner is 985 * rolled back, it will be smaller, but within 256, which is the maximum 986 * number of events to rollback at once. If we dectect a rollback 987 * return 0. This can lead to a small lack of precision in the 988 * counters. 989 */ 990 if (prev > val && (prev - val) < 256) 991 delta = 0; 992 993 return delta; 994 } 995 996 static void power_pmu_read(struct perf_event *event) 997 { 998 s64 val, delta, prev; 999 1000 if (event->hw.state & PERF_HES_STOPPED) 1001 return; 1002 1003 if (!event->hw.idx) 1004 return; 1005 1006 if (is_ebb_event(event)) { 1007 val = read_pmc(event->hw.idx); 1008 local64_set(&event->hw.prev_count, val); 1009 return; 1010 } 1011 1012 /* 1013 * Performance monitor interrupts come even when interrupts 1014 * are soft-disabled, as long as interrupts are hard-enabled. 1015 * Therefore we treat them like NMIs. 1016 */ 1017 do { 1018 prev = local64_read(&event->hw.prev_count); 1019 barrier(); 1020 val = read_pmc(event->hw.idx); 1021 delta = check_and_compute_delta(prev, val); 1022 if (!delta) 1023 return; 1024 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1025 1026 local64_add(delta, &event->count); 1027 1028 /* 1029 * A number of places program the PMC with (0x80000000 - period_left). 1030 * We never want period_left to be less than 1 because we will program 1031 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1032 * roll around to 0 before taking an exception. We have seen this 1033 * on POWER8. 1034 * 1035 * To fix this, clamp the minimum value of period_left to 1. 1036 */ 1037 do { 1038 prev = local64_read(&event->hw.period_left); 1039 val = prev - delta; 1040 if (val < 1) 1041 val = 1; 1042 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1043 } 1044 1045 /* 1046 * On some machines, PMC5 and PMC6 can't be written, don't respect 1047 * the freeze conditions, and don't generate interrupts. This tells 1048 * us if `event' is using such a PMC. 1049 */ 1050 static int is_limited_pmc(int pmcnum) 1051 { 1052 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1053 && (pmcnum == 5 || pmcnum == 6); 1054 } 1055 1056 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1057 unsigned long pmc5, unsigned long pmc6) 1058 { 1059 struct perf_event *event; 1060 u64 val, prev, delta; 1061 int i; 1062 1063 for (i = 0; i < cpuhw->n_limited; ++i) { 1064 event = cpuhw->limited_counter[i]; 1065 if (!event->hw.idx) 1066 continue; 1067 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1068 prev = local64_read(&event->hw.prev_count); 1069 event->hw.idx = 0; 1070 delta = check_and_compute_delta(prev, val); 1071 if (delta) 1072 local64_add(delta, &event->count); 1073 } 1074 } 1075 1076 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1077 unsigned long pmc5, unsigned long pmc6) 1078 { 1079 struct perf_event *event; 1080 u64 val, prev; 1081 int i; 1082 1083 for (i = 0; i < cpuhw->n_limited; ++i) { 1084 event = cpuhw->limited_counter[i]; 1085 event->hw.idx = cpuhw->limited_hwidx[i]; 1086 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1087 prev = local64_read(&event->hw.prev_count); 1088 if (check_and_compute_delta(prev, val)) 1089 local64_set(&event->hw.prev_count, val); 1090 perf_event_update_userpage(event); 1091 } 1092 } 1093 1094 /* 1095 * Since limited events don't respect the freeze conditions, we 1096 * have to read them immediately after freezing or unfreezing the 1097 * other events. We try to keep the values from the limited 1098 * events as consistent as possible by keeping the delay (in 1099 * cycles and instructions) between freezing/unfreezing and reading 1100 * the limited events as small and consistent as possible. 1101 * Therefore, if any limited events are in use, we read them 1102 * both, and always in the same order, to minimize variability, 1103 * and do it inside the same asm that writes MMCR0. 1104 */ 1105 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1106 { 1107 unsigned long pmc5, pmc6; 1108 1109 if (!cpuhw->n_limited) { 1110 mtspr(SPRN_MMCR0, mmcr0); 1111 return; 1112 } 1113 1114 /* 1115 * Write MMCR0, then read PMC5 and PMC6 immediately. 1116 * To ensure we don't get a performance monitor interrupt 1117 * between writing MMCR0 and freezing/thawing the limited 1118 * events, we first write MMCR0 with the event overflow 1119 * interrupt enable bits turned off. 1120 */ 1121 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1122 : "=&r" (pmc5), "=&r" (pmc6) 1123 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1124 "i" (SPRN_MMCR0), 1125 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1126 1127 if (mmcr0 & MMCR0_FC) 1128 freeze_limited_counters(cpuhw, pmc5, pmc6); 1129 else 1130 thaw_limited_counters(cpuhw, pmc5, pmc6); 1131 1132 /* 1133 * Write the full MMCR0 including the event overflow interrupt 1134 * enable bits, if necessary. 1135 */ 1136 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1137 mtspr(SPRN_MMCR0, mmcr0); 1138 } 1139 1140 /* 1141 * Disable all events to prevent PMU interrupts and to allow 1142 * events to be added or removed. 1143 */ 1144 static void power_pmu_disable(struct pmu *pmu) 1145 { 1146 struct cpu_hw_events *cpuhw; 1147 unsigned long flags, mmcr0, val; 1148 1149 if (!ppmu) 1150 return; 1151 local_irq_save(flags); 1152 cpuhw = this_cpu_ptr(&cpu_hw_events); 1153 1154 if (!cpuhw->disabled) { 1155 /* 1156 * Check if we ever enabled the PMU on this cpu. 1157 */ 1158 if (!cpuhw->pmcs_enabled) { 1159 ppc_enable_pmcs(); 1160 cpuhw->pmcs_enabled = 1; 1161 } 1162 1163 /* 1164 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1165 */ 1166 val = mmcr0 = mfspr(SPRN_MMCR0); 1167 val |= MMCR0_FC; 1168 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1169 MMCR0_FC56); 1170 1171 /* 1172 * The barrier is to make sure the mtspr has been 1173 * executed and the PMU has frozen the events etc. 1174 * before we return. 1175 */ 1176 write_mmcr0(cpuhw, val); 1177 mb(); 1178 1179 /* 1180 * Disable instruction sampling if it was enabled 1181 */ 1182 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1183 mtspr(SPRN_MMCRA, 1184 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1185 mb(); 1186 } 1187 1188 cpuhw->disabled = 1; 1189 cpuhw->n_added = 0; 1190 1191 ebb_switch_out(mmcr0); 1192 } 1193 1194 local_irq_restore(flags); 1195 } 1196 1197 /* 1198 * Re-enable all events if disable == 0. 1199 * If we were previously disabled and events were added, then 1200 * put the new config on the PMU. 1201 */ 1202 static void power_pmu_enable(struct pmu *pmu) 1203 { 1204 struct perf_event *event; 1205 struct cpu_hw_events *cpuhw; 1206 unsigned long flags; 1207 long i; 1208 unsigned long val, mmcr0; 1209 s64 left; 1210 unsigned int hwc_index[MAX_HWEVENTS]; 1211 int n_lim; 1212 int idx; 1213 bool ebb; 1214 1215 if (!ppmu) 1216 return; 1217 local_irq_save(flags); 1218 1219 cpuhw = this_cpu_ptr(&cpu_hw_events); 1220 if (!cpuhw->disabled) 1221 goto out; 1222 1223 if (cpuhw->n_events == 0) { 1224 ppc_set_pmu_inuse(0); 1225 goto out; 1226 } 1227 1228 cpuhw->disabled = 0; 1229 1230 /* 1231 * EBB requires an exclusive group and all events must have the EBB 1232 * flag set, or not set, so we can just check a single event. Also we 1233 * know we have at least one event. 1234 */ 1235 ebb = is_ebb_event(cpuhw->event[0]); 1236 1237 /* 1238 * If we didn't change anything, or only removed events, 1239 * no need to recalculate MMCR* settings and reset the PMCs. 1240 * Just reenable the PMU with the current MMCR* settings 1241 * (possibly updated for removal of events). 1242 */ 1243 if (!cpuhw->n_added) { 1244 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1245 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1246 goto out_enable; 1247 } 1248 1249 /* 1250 * Clear all MMCR settings and recompute them for the new set of events. 1251 */ 1252 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1253 1254 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1255 cpuhw->mmcr, cpuhw->event)) { 1256 /* shouldn't ever get here */ 1257 printk(KERN_ERR "oops compute_mmcr failed\n"); 1258 goto out; 1259 } 1260 1261 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1262 /* 1263 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1264 * bits for the first event. We have already checked that all 1265 * events have the same value for these bits as the first event. 1266 */ 1267 event = cpuhw->event[0]; 1268 if (event->attr.exclude_user) 1269 cpuhw->mmcr[0] |= MMCR0_FCP; 1270 if (event->attr.exclude_kernel) 1271 cpuhw->mmcr[0] |= freeze_events_kernel; 1272 if (event->attr.exclude_hv) 1273 cpuhw->mmcr[0] |= MMCR0_FCHV; 1274 } 1275 1276 /* 1277 * Write the new configuration to MMCR* with the freeze 1278 * bit set and set the hardware events to their initial values. 1279 * Then unfreeze the events. 1280 */ 1281 ppc_set_pmu_inuse(1); 1282 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1283 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1284 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1285 | MMCR0_FC); 1286 if (ppmu->flags & PPMU_ARCH_207S) 1287 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1288 1289 /* 1290 * Read off any pre-existing events that need to move 1291 * to another PMC. 1292 */ 1293 for (i = 0; i < cpuhw->n_events; ++i) { 1294 event = cpuhw->event[i]; 1295 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1296 power_pmu_read(event); 1297 write_pmc(event->hw.idx, 0); 1298 event->hw.idx = 0; 1299 } 1300 } 1301 1302 /* 1303 * Initialize the PMCs for all the new and moved events. 1304 */ 1305 cpuhw->n_limited = n_lim = 0; 1306 for (i = 0; i < cpuhw->n_events; ++i) { 1307 event = cpuhw->event[i]; 1308 if (event->hw.idx) 1309 continue; 1310 idx = hwc_index[i] + 1; 1311 if (is_limited_pmc(idx)) { 1312 cpuhw->limited_counter[n_lim] = event; 1313 cpuhw->limited_hwidx[n_lim] = idx; 1314 ++n_lim; 1315 continue; 1316 } 1317 1318 if (ebb) 1319 val = local64_read(&event->hw.prev_count); 1320 else { 1321 val = 0; 1322 if (event->hw.sample_period) { 1323 left = local64_read(&event->hw.period_left); 1324 if (left < 0x80000000L) 1325 val = 0x80000000L - left; 1326 } 1327 local64_set(&event->hw.prev_count, val); 1328 } 1329 1330 event->hw.idx = idx; 1331 if (event->hw.state & PERF_HES_STOPPED) 1332 val = 0; 1333 write_pmc(idx, val); 1334 1335 perf_event_update_userpage(event); 1336 } 1337 cpuhw->n_limited = n_lim; 1338 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1339 1340 out_enable: 1341 pmao_restore_workaround(ebb); 1342 1343 mmcr0 = ebb_switch_in(ebb, cpuhw); 1344 1345 mb(); 1346 if (cpuhw->bhrb_users) 1347 ppmu->config_bhrb(cpuhw->bhrb_filter); 1348 1349 write_mmcr0(cpuhw, mmcr0); 1350 1351 /* 1352 * Enable instruction sampling if necessary 1353 */ 1354 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1355 mb(); 1356 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1357 } 1358 1359 out: 1360 1361 local_irq_restore(flags); 1362 } 1363 1364 static int collect_events(struct perf_event *group, int max_count, 1365 struct perf_event *ctrs[], u64 *events, 1366 unsigned int *flags) 1367 { 1368 int n = 0; 1369 struct perf_event *event; 1370 1371 if (!is_software_event(group)) { 1372 if (n >= max_count) 1373 return -1; 1374 ctrs[n] = group; 1375 flags[n] = group->hw.event_base; 1376 events[n++] = group->hw.config; 1377 } 1378 list_for_each_entry(event, &group->sibling_list, group_entry) { 1379 if (!is_software_event(event) && 1380 event->state != PERF_EVENT_STATE_OFF) { 1381 if (n >= max_count) 1382 return -1; 1383 ctrs[n] = event; 1384 flags[n] = event->hw.event_base; 1385 events[n++] = event->hw.config; 1386 } 1387 } 1388 return n; 1389 } 1390 1391 /* 1392 * Add a event to the PMU. 1393 * If all events are not already frozen, then we disable and 1394 * re-enable the PMU in order to get hw_perf_enable to do the 1395 * actual work of reconfiguring the PMU. 1396 */ 1397 static int power_pmu_add(struct perf_event *event, int ef_flags) 1398 { 1399 struct cpu_hw_events *cpuhw; 1400 unsigned long flags; 1401 int n0; 1402 int ret = -EAGAIN; 1403 1404 local_irq_save(flags); 1405 perf_pmu_disable(event->pmu); 1406 1407 /* 1408 * Add the event to the list (if there is room) 1409 * and check whether the total set is still feasible. 1410 */ 1411 cpuhw = this_cpu_ptr(&cpu_hw_events); 1412 n0 = cpuhw->n_events; 1413 if (n0 >= ppmu->n_counter) 1414 goto out; 1415 cpuhw->event[n0] = event; 1416 cpuhw->events[n0] = event->hw.config; 1417 cpuhw->flags[n0] = event->hw.event_base; 1418 1419 /* 1420 * This event may have been disabled/stopped in record_and_restart() 1421 * because we exceeded the ->event_limit. If re-starting the event, 1422 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1423 * notification is re-enabled. 1424 */ 1425 if (!(ef_flags & PERF_EF_START)) 1426 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1427 else 1428 event->hw.state = 0; 1429 1430 /* 1431 * If group events scheduling transaction was started, 1432 * skip the schedulability test here, it will be performed 1433 * at commit time(->commit_txn) as a whole 1434 */ 1435 if (cpuhw->group_flag & PERF_EVENT_TXN) 1436 goto nocheck; 1437 1438 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1439 goto out; 1440 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1441 goto out; 1442 event->hw.config = cpuhw->events[n0]; 1443 1444 nocheck: 1445 ebb_event_add(event); 1446 1447 ++cpuhw->n_events; 1448 ++cpuhw->n_added; 1449 1450 ret = 0; 1451 out: 1452 if (has_branch_stack(event)) { 1453 power_pmu_bhrb_enable(event); 1454 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1455 event->attr.branch_sample_type); 1456 } 1457 1458 perf_pmu_enable(event->pmu); 1459 local_irq_restore(flags); 1460 return ret; 1461 } 1462 1463 /* 1464 * Remove a event from the PMU. 1465 */ 1466 static void power_pmu_del(struct perf_event *event, int ef_flags) 1467 { 1468 struct cpu_hw_events *cpuhw; 1469 long i; 1470 unsigned long flags; 1471 1472 local_irq_save(flags); 1473 perf_pmu_disable(event->pmu); 1474 1475 power_pmu_read(event); 1476 1477 cpuhw = this_cpu_ptr(&cpu_hw_events); 1478 for (i = 0; i < cpuhw->n_events; ++i) { 1479 if (event == cpuhw->event[i]) { 1480 while (++i < cpuhw->n_events) { 1481 cpuhw->event[i-1] = cpuhw->event[i]; 1482 cpuhw->events[i-1] = cpuhw->events[i]; 1483 cpuhw->flags[i-1] = cpuhw->flags[i]; 1484 } 1485 --cpuhw->n_events; 1486 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1487 if (event->hw.idx) { 1488 write_pmc(event->hw.idx, 0); 1489 event->hw.idx = 0; 1490 } 1491 perf_event_update_userpage(event); 1492 break; 1493 } 1494 } 1495 for (i = 0; i < cpuhw->n_limited; ++i) 1496 if (event == cpuhw->limited_counter[i]) 1497 break; 1498 if (i < cpuhw->n_limited) { 1499 while (++i < cpuhw->n_limited) { 1500 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1501 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1502 } 1503 --cpuhw->n_limited; 1504 } 1505 if (cpuhw->n_events == 0) { 1506 /* disable exceptions if no events are running */ 1507 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1508 } 1509 1510 if (has_branch_stack(event)) 1511 power_pmu_bhrb_disable(event); 1512 1513 perf_pmu_enable(event->pmu); 1514 local_irq_restore(flags); 1515 } 1516 1517 /* 1518 * POWER-PMU does not support disabling individual counters, hence 1519 * program their cycle counter to their max value and ignore the interrupts. 1520 */ 1521 1522 static void power_pmu_start(struct perf_event *event, int ef_flags) 1523 { 1524 unsigned long flags; 1525 s64 left; 1526 unsigned long val; 1527 1528 if (!event->hw.idx || !event->hw.sample_period) 1529 return; 1530 1531 if (!(event->hw.state & PERF_HES_STOPPED)) 1532 return; 1533 1534 if (ef_flags & PERF_EF_RELOAD) 1535 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1536 1537 local_irq_save(flags); 1538 perf_pmu_disable(event->pmu); 1539 1540 event->hw.state = 0; 1541 left = local64_read(&event->hw.period_left); 1542 1543 val = 0; 1544 if (left < 0x80000000L) 1545 val = 0x80000000L - left; 1546 1547 write_pmc(event->hw.idx, val); 1548 1549 perf_event_update_userpage(event); 1550 perf_pmu_enable(event->pmu); 1551 local_irq_restore(flags); 1552 } 1553 1554 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1555 { 1556 unsigned long flags; 1557 1558 if (!event->hw.idx || !event->hw.sample_period) 1559 return; 1560 1561 if (event->hw.state & PERF_HES_STOPPED) 1562 return; 1563 1564 local_irq_save(flags); 1565 perf_pmu_disable(event->pmu); 1566 1567 power_pmu_read(event); 1568 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1569 write_pmc(event->hw.idx, 0); 1570 1571 perf_event_update_userpage(event); 1572 perf_pmu_enable(event->pmu); 1573 local_irq_restore(flags); 1574 } 1575 1576 /* 1577 * Start group events scheduling transaction 1578 * Set the flag to make pmu::enable() not perform the 1579 * schedulability test, it will be performed at commit time 1580 */ 1581 static void power_pmu_start_txn(struct pmu *pmu) 1582 { 1583 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1584 1585 perf_pmu_disable(pmu); 1586 cpuhw->group_flag |= PERF_EVENT_TXN; 1587 cpuhw->n_txn_start = cpuhw->n_events; 1588 } 1589 1590 /* 1591 * Stop group events scheduling transaction 1592 * Clear the flag and pmu::enable() will perform the 1593 * schedulability test. 1594 */ 1595 static void power_pmu_cancel_txn(struct pmu *pmu) 1596 { 1597 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1598 1599 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1600 perf_pmu_enable(pmu); 1601 } 1602 1603 /* 1604 * Commit group events scheduling transaction 1605 * Perform the group schedulability test as a whole 1606 * Return 0 if success 1607 */ 1608 static int power_pmu_commit_txn(struct pmu *pmu) 1609 { 1610 struct cpu_hw_events *cpuhw; 1611 long i, n; 1612 1613 if (!ppmu) 1614 return -EAGAIN; 1615 cpuhw = this_cpu_ptr(&cpu_hw_events); 1616 n = cpuhw->n_events; 1617 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1618 return -EAGAIN; 1619 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1620 if (i < 0) 1621 return -EAGAIN; 1622 1623 for (i = cpuhw->n_txn_start; i < n; ++i) 1624 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1625 1626 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1627 perf_pmu_enable(pmu); 1628 return 0; 1629 } 1630 1631 /* 1632 * Return 1 if we might be able to put event on a limited PMC, 1633 * or 0 if not. 1634 * A event can only go on a limited PMC if it counts something 1635 * that a limited PMC can count, doesn't require interrupts, and 1636 * doesn't exclude any processor mode. 1637 */ 1638 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1639 unsigned int flags) 1640 { 1641 int n; 1642 u64 alt[MAX_EVENT_ALTERNATIVES]; 1643 1644 if (event->attr.exclude_user 1645 || event->attr.exclude_kernel 1646 || event->attr.exclude_hv 1647 || event->attr.sample_period) 1648 return 0; 1649 1650 if (ppmu->limited_pmc_event(ev)) 1651 return 1; 1652 1653 /* 1654 * The requested event_id isn't on a limited PMC already; 1655 * see if any alternative code goes on a limited PMC. 1656 */ 1657 if (!ppmu->get_alternatives) 1658 return 0; 1659 1660 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1661 n = ppmu->get_alternatives(ev, flags, alt); 1662 1663 return n > 0; 1664 } 1665 1666 /* 1667 * Find an alternative event_id that goes on a normal PMC, if possible, 1668 * and return the event_id code, or 0 if there is no such alternative. 1669 * (Note: event_id code 0 is "don't count" on all machines.) 1670 */ 1671 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1672 { 1673 u64 alt[MAX_EVENT_ALTERNATIVES]; 1674 int n; 1675 1676 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1677 n = ppmu->get_alternatives(ev, flags, alt); 1678 if (!n) 1679 return 0; 1680 return alt[0]; 1681 } 1682 1683 /* Number of perf_events counting hardware events */ 1684 static atomic_t num_events; 1685 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1686 static DEFINE_MUTEX(pmc_reserve_mutex); 1687 1688 /* 1689 * Release the PMU if this is the last perf_event. 1690 */ 1691 static void hw_perf_event_destroy(struct perf_event *event) 1692 { 1693 if (!atomic_add_unless(&num_events, -1, 1)) { 1694 mutex_lock(&pmc_reserve_mutex); 1695 if (atomic_dec_return(&num_events) == 0) 1696 release_pmc_hardware(); 1697 mutex_unlock(&pmc_reserve_mutex); 1698 } 1699 } 1700 1701 /* 1702 * Translate a generic cache event_id config to a raw event_id code. 1703 */ 1704 static int hw_perf_cache_event(u64 config, u64 *eventp) 1705 { 1706 unsigned long type, op, result; 1707 int ev; 1708 1709 if (!ppmu->cache_events) 1710 return -EINVAL; 1711 1712 /* unpack config */ 1713 type = config & 0xff; 1714 op = (config >> 8) & 0xff; 1715 result = (config >> 16) & 0xff; 1716 1717 if (type >= PERF_COUNT_HW_CACHE_MAX || 1718 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1719 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1720 return -EINVAL; 1721 1722 ev = (*ppmu->cache_events)[type][op][result]; 1723 if (ev == 0) 1724 return -EOPNOTSUPP; 1725 if (ev == -1) 1726 return -EINVAL; 1727 *eventp = ev; 1728 return 0; 1729 } 1730 1731 static int power_pmu_event_init(struct perf_event *event) 1732 { 1733 u64 ev; 1734 unsigned long flags; 1735 struct perf_event *ctrs[MAX_HWEVENTS]; 1736 u64 events[MAX_HWEVENTS]; 1737 unsigned int cflags[MAX_HWEVENTS]; 1738 int n; 1739 int err; 1740 struct cpu_hw_events *cpuhw; 1741 1742 if (!ppmu) 1743 return -ENOENT; 1744 1745 if (has_branch_stack(event)) { 1746 /* PMU has BHRB enabled */ 1747 if (!(ppmu->flags & PPMU_ARCH_207S)) 1748 return -EOPNOTSUPP; 1749 } 1750 1751 switch (event->attr.type) { 1752 case PERF_TYPE_HARDWARE: 1753 ev = event->attr.config; 1754 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1755 return -EOPNOTSUPP; 1756 ev = ppmu->generic_events[ev]; 1757 break; 1758 case PERF_TYPE_HW_CACHE: 1759 err = hw_perf_cache_event(event->attr.config, &ev); 1760 if (err) 1761 return err; 1762 break; 1763 case PERF_TYPE_RAW: 1764 ev = event->attr.config; 1765 break; 1766 default: 1767 return -ENOENT; 1768 } 1769 1770 event->hw.config_base = ev; 1771 event->hw.idx = 0; 1772 1773 /* 1774 * If we are not running on a hypervisor, force the 1775 * exclude_hv bit to 0 so that we don't care what 1776 * the user set it to. 1777 */ 1778 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1779 event->attr.exclude_hv = 0; 1780 1781 /* 1782 * If this is a per-task event, then we can use 1783 * PM_RUN_* events interchangeably with their non RUN_* 1784 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1785 * XXX we should check if the task is an idle task. 1786 */ 1787 flags = 0; 1788 if (event->attach_state & PERF_ATTACH_TASK) 1789 flags |= PPMU_ONLY_COUNT_RUN; 1790 1791 /* 1792 * If this machine has limited events, check whether this 1793 * event_id could go on a limited event. 1794 */ 1795 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1796 if (can_go_on_limited_pmc(event, ev, flags)) { 1797 flags |= PPMU_LIMITED_PMC_OK; 1798 } else if (ppmu->limited_pmc_event(ev)) { 1799 /* 1800 * The requested event_id is on a limited PMC, 1801 * but we can't use a limited PMC; see if any 1802 * alternative goes on a normal PMC. 1803 */ 1804 ev = normal_pmc_alternative(ev, flags); 1805 if (!ev) 1806 return -EINVAL; 1807 } 1808 } 1809 1810 /* Extra checks for EBB */ 1811 err = ebb_event_check(event); 1812 if (err) 1813 return err; 1814 1815 /* 1816 * If this is in a group, check if it can go on with all the 1817 * other hardware events in the group. We assume the event 1818 * hasn't been linked into its leader's sibling list at this point. 1819 */ 1820 n = 0; 1821 if (event->group_leader != event) { 1822 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1823 ctrs, events, cflags); 1824 if (n < 0) 1825 return -EINVAL; 1826 } 1827 events[n] = ev; 1828 ctrs[n] = event; 1829 cflags[n] = flags; 1830 if (check_excludes(ctrs, cflags, n, 1)) 1831 return -EINVAL; 1832 1833 cpuhw = &get_cpu_var(cpu_hw_events); 1834 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1835 1836 if (has_branch_stack(event)) { 1837 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1838 event->attr.branch_sample_type); 1839 1840 if (cpuhw->bhrb_filter == -1) { 1841 put_cpu_var(cpu_hw_events); 1842 return -EOPNOTSUPP; 1843 } 1844 } 1845 1846 put_cpu_var(cpu_hw_events); 1847 if (err) 1848 return -EINVAL; 1849 1850 event->hw.config = events[n]; 1851 event->hw.event_base = cflags[n]; 1852 event->hw.last_period = event->hw.sample_period; 1853 local64_set(&event->hw.period_left, event->hw.last_period); 1854 1855 /* 1856 * For EBB events we just context switch the PMC value, we don't do any 1857 * of the sample_period logic. We use hw.prev_count for this. 1858 */ 1859 if (is_ebb_event(event)) 1860 local64_set(&event->hw.prev_count, 0); 1861 1862 /* 1863 * See if we need to reserve the PMU. 1864 * If no events are currently in use, then we have to take a 1865 * mutex to ensure that we don't race with another task doing 1866 * reserve_pmc_hardware or release_pmc_hardware. 1867 */ 1868 err = 0; 1869 if (!atomic_inc_not_zero(&num_events)) { 1870 mutex_lock(&pmc_reserve_mutex); 1871 if (atomic_read(&num_events) == 0 && 1872 reserve_pmc_hardware(perf_event_interrupt)) 1873 err = -EBUSY; 1874 else 1875 atomic_inc(&num_events); 1876 mutex_unlock(&pmc_reserve_mutex); 1877 } 1878 event->destroy = hw_perf_event_destroy; 1879 1880 return err; 1881 } 1882 1883 static int power_pmu_event_idx(struct perf_event *event) 1884 { 1885 return event->hw.idx; 1886 } 1887 1888 ssize_t power_events_sysfs_show(struct device *dev, 1889 struct device_attribute *attr, char *page) 1890 { 1891 struct perf_pmu_events_attr *pmu_attr; 1892 1893 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1894 1895 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1896 } 1897 1898 static struct pmu power_pmu = { 1899 .pmu_enable = power_pmu_enable, 1900 .pmu_disable = power_pmu_disable, 1901 .event_init = power_pmu_event_init, 1902 .add = power_pmu_add, 1903 .del = power_pmu_del, 1904 .start = power_pmu_start, 1905 .stop = power_pmu_stop, 1906 .read = power_pmu_read, 1907 .start_txn = power_pmu_start_txn, 1908 .cancel_txn = power_pmu_cancel_txn, 1909 .commit_txn = power_pmu_commit_txn, 1910 .event_idx = power_pmu_event_idx, 1911 .sched_task = power_pmu_sched_task, 1912 }; 1913 1914 /* 1915 * A counter has overflowed; update its count and record 1916 * things if requested. Note that interrupts are hard-disabled 1917 * here so there is no possibility of being interrupted. 1918 */ 1919 static void record_and_restart(struct perf_event *event, unsigned long val, 1920 struct pt_regs *regs) 1921 { 1922 u64 period = event->hw.sample_period; 1923 s64 prev, delta, left; 1924 int record = 0; 1925 1926 if (event->hw.state & PERF_HES_STOPPED) { 1927 write_pmc(event->hw.idx, 0); 1928 return; 1929 } 1930 1931 /* we don't have to worry about interrupts here */ 1932 prev = local64_read(&event->hw.prev_count); 1933 delta = check_and_compute_delta(prev, val); 1934 local64_add(delta, &event->count); 1935 1936 /* 1937 * See if the total period for this event has expired, 1938 * and update for the next period. 1939 */ 1940 val = 0; 1941 left = local64_read(&event->hw.period_left) - delta; 1942 if (delta == 0) 1943 left++; 1944 if (period) { 1945 if (left <= 0) { 1946 left += period; 1947 if (left <= 0) 1948 left = period; 1949 record = siar_valid(regs); 1950 event->hw.last_period = event->hw.sample_period; 1951 } 1952 if (left < 0x80000000LL) 1953 val = 0x80000000LL - left; 1954 } 1955 1956 write_pmc(event->hw.idx, val); 1957 local64_set(&event->hw.prev_count, val); 1958 local64_set(&event->hw.period_left, left); 1959 perf_event_update_userpage(event); 1960 1961 /* 1962 * Finally record data if requested. 1963 */ 1964 if (record) { 1965 struct perf_sample_data data; 1966 1967 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 1968 1969 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 1970 perf_get_data_addr(regs, &data.addr); 1971 1972 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 1973 struct cpu_hw_events *cpuhw; 1974 cpuhw = this_cpu_ptr(&cpu_hw_events); 1975 power_pmu_bhrb_read(cpuhw); 1976 data.br_stack = &cpuhw->bhrb_stack; 1977 } 1978 1979 if (perf_event_overflow(event, &data, regs)) 1980 power_pmu_stop(event, 0); 1981 } 1982 } 1983 1984 /* 1985 * Called from generic code to get the misc flags (i.e. processor mode) 1986 * for an event_id. 1987 */ 1988 unsigned long perf_misc_flags(struct pt_regs *regs) 1989 { 1990 u32 flags = perf_get_misc_flags(regs); 1991 1992 if (flags) 1993 return flags; 1994 return user_mode(regs) ? PERF_RECORD_MISC_USER : 1995 PERF_RECORD_MISC_KERNEL; 1996 } 1997 1998 /* 1999 * Called from generic code to get the instruction pointer 2000 * for an event_id. 2001 */ 2002 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2003 { 2004 bool use_siar = regs_use_siar(regs); 2005 2006 if (use_siar && siar_valid(regs)) 2007 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2008 else if (use_siar) 2009 return 0; // no valid instruction pointer 2010 else 2011 return regs->nip; 2012 } 2013 2014 static bool pmc_overflow_power7(unsigned long val) 2015 { 2016 /* 2017 * Events on POWER7 can roll back if a speculative event doesn't 2018 * eventually complete. Unfortunately in some rare cases they will 2019 * raise a performance monitor exception. We need to catch this to 2020 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2021 * cycles from overflow. 2022 * 2023 * We only do this if the first pass fails to find any overflowing 2024 * PMCs because a user might set a period of less than 256 and we 2025 * don't want to mistakenly reset them. 2026 */ 2027 if ((0x80000000 - val) <= 256) 2028 return true; 2029 2030 return false; 2031 } 2032 2033 static bool pmc_overflow(unsigned long val) 2034 { 2035 if ((int)val < 0) 2036 return true; 2037 2038 return false; 2039 } 2040 2041 /* 2042 * Performance monitor interrupt stuff 2043 */ 2044 static void perf_event_interrupt(struct pt_regs *regs) 2045 { 2046 int i, j; 2047 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2048 struct perf_event *event; 2049 unsigned long val[8]; 2050 int found, active; 2051 int nmi; 2052 2053 if (cpuhw->n_limited) 2054 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2055 mfspr(SPRN_PMC6)); 2056 2057 perf_read_regs(regs); 2058 2059 nmi = perf_intr_is_nmi(regs); 2060 if (nmi) 2061 nmi_enter(); 2062 else 2063 irq_enter(); 2064 2065 /* Read all the PMCs since we'll need them a bunch of times */ 2066 for (i = 0; i < ppmu->n_counter; ++i) 2067 val[i] = read_pmc(i + 1); 2068 2069 /* Try to find what caused the IRQ */ 2070 found = 0; 2071 for (i = 0; i < ppmu->n_counter; ++i) { 2072 if (!pmc_overflow(val[i])) 2073 continue; 2074 if (is_limited_pmc(i + 1)) 2075 continue; /* these won't generate IRQs */ 2076 /* 2077 * We've found one that's overflowed. For active 2078 * counters we need to log this. For inactive 2079 * counters, we need to reset it anyway 2080 */ 2081 found = 1; 2082 active = 0; 2083 for (j = 0; j < cpuhw->n_events; ++j) { 2084 event = cpuhw->event[j]; 2085 if (event->hw.idx == (i + 1)) { 2086 active = 1; 2087 record_and_restart(event, val[i], regs); 2088 break; 2089 } 2090 } 2091 if (!active) 2092 /* reset non active counters that have overflowed */ 2093 write_pmc(i + 1, 0); 2094 } 2095 if (!found && pvr_version_is(PVR_POWER7)) { 2096 /* check active counters for special buggy p7 overflow */ 2097 for (i = 0; i < cpuhw->n_events; ++i) { 2098 event = cpuhw->event[i]; 2099 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2100 continue; 2101 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2102 /* event has overflowed in a buggy way*/ 2103 found = 1; 2104 record_and_restart(event, 2105 val[event->hw.idx - 1], 2106 regs); 2107 } 2108 } 2109 } 2110 if (!found && !nmi && printk_ratelimit()) 2111 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2112 2113 /* 2114 * Reset MMCR0 to its normal value. This will set PMXE and 2115 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2116 * and thus allow interrupts to occur again. 2117 * XXX might want to use MSR.PM to keep the events frozen until 2118 * we get back out of this interrupt. 2119 */ 2120 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2121 2122 if (nmi) 2123 nmi_exit(); 2124 else 2125 irq_exit(); 2126 } 2127 2128 static void power_pmu_setup(int cpu) 2129 { 2130 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2131 2132 if (!ppmu) 2133 return; 2134 memset(cpuhw, 0, sizeof(*cpuhw)); 2135 cpuhw->mmcr[0] = MMCR0_FC; 2136 } 2137 2138 static int 2139 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 2140 { 2141 unsigned int cpu = (long)hcpu; 2142 2143 switch (action & ~CPU_TASKS_FROZEN) { 2144 case CPU_UP_PREPARE: 2145 power_pmu_setup(cpu); 2146 break; 2147 2148 default: 2149 break; 2150 } 2151 2152 return NOTIFY_OK; 2153 } 2154 2155 int register_power_pmu(struct power_pmu *pmu) 2156 { 2157 if (ppmu) 2158 return -EBUSY; /* something's already registered */ 2159 2160 ppmu = pmu; 2161 pr_info("%s performance monitor hardware support registered\n", 2162 pmu->name); 2163 2164 power_pmu.attr_groups = ppmu->attr_groups; 2165 2166 #ifdef MSR_HV 2167 /* 2168 * Use FCHV to ignore kernel events if MSR.HV is set. 2169 */ 2170 if (mfmsr() & MSR_HV) 2171 freeze_events_kernel = MMCR0_FCHV; 2172 #endif /* CONFIG_PPC64 */ 2173 2174 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2175 perf_cpu_notifier(power_pmu_notifier); 2176 2177 return 0; 2178 } 2179