1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 /* 41 * The order of the MMCR array is: 42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 43 * - 32-bit, MMCR0, MMCR1, MMCR2 44 */ 45 unsigned long mmcr[4]; 46 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 47 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 48 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 51 52 unsigned int txn_flags; 53 int n_txn_start; 54 55 /* BHRB bits */ 56 u64 bhrb_filter; /* BHRB HW branch filter */ 57 unsigned int bhrb_users; 58 void *bhrb_context; 59 struct perf_branch_stack bhrb_stack; 60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 61 u64 ic_init; 62 }; 63 64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 65 66 static struct power_pmu *ppmu; 67 68 /* 69 * Normally, to ignore kernel events we set the FCS (freeze counters 70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 71 * hypervisor bit set in the MSR, or if we are running on a processor 72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 73 * then we need to use the FCHV bit to ignore kernel events. 74 */ 75 static unsigned int freeze_events_kernel = MMCR0_FCS; 76 77 /* 78 * 32-bit doesn't have MMCRA but does have an MMCR2, 79 * and a few other names are different. 80 */ 81 #ifdef CONFIG_PPC32 82 83 #define MMCR0_FCHV 0 84 #define MMCR0_PMCjCE MMCR0_PMCnCE 85 #define MMCR0_FC56 0 86 #define MMCR0_PMAO 0 87 #define MMCR0_EBE 0 88 #define MMCR0_BHRBA 0 89 #define MMCR0_PMCC 0 90 #define MMCR0_PMCC_U6 0 91 92 #define SPRN_MMCRA SPRN_MMCR2 93 #define MMCRA_SAMPLE_ENABLE 0 94 95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 96 { 97 return 0; 98 } 99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 100 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 101 { 102 return 0; 103 } 104 static inline void perf_read_regs(struct pt_regs *regs) 105 { 106 regs->result = 0; 107 } 108 static inline int perf_intr_is_nmi(struct pt_regs *regs) 109 { 110 return 0; 111 } 112 113 static inline int siar_valid(struct pt_regs *regs) 114 { 115 return 1; 116 } 117 118 static bool is_ebb_event(struct perf_event *event) { return false; } 119 static int ebb_event_check(struct perf_event *event) { return 0; } 120 static void ebb_event_add(struct perf_event *event) { } 121 static void ebb_switch_out(unsigned long mmcr0) { } 122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 123 { 124 return cpuhw->mmcr[0]; 125 } 126 127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 131 static void pmao_restore_workaround(bool ebb) { } 132 #endif /* CONFIG_PPC32 */ 133 134 bool is_sier_available(void) 135 { 136 if (ppmu->flags & PPMU_HAS_SIER) 137 return true; 138 139 return false; 140 } 141 142 static bool regs_use_siar(struct pt_regs *regs) 143 { 144 /* 145 * When we take a performance monitor exception the regs are setup 146 * using perf_read_regs() which overloads some fields, in particular 147 * regs->result to tell us whether to use SIAR. 148 * 149 * However if the regs are from another exception, eg. a syscall, then 150 * they have not been setup using perf_read_regs() and so regs->result 151 * is something random. 152 */ 153 return ((TRAP(regs) == 0xf00) && regs->result); 154 } 155 156 /* 157 * Things that are specific to 64-bit implementations. 158 */ 159 #ifdef CONFIG_PPC64 160 161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 162 { 163 unsigned long mmcra = regs->dsisr; 164 165 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 166 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 167 if (slot > 1) 168 return 4 * (slot - 1); 169 } 170 171 return 0; 172 } 173 174 /* 175 * The user wants a data address recorded. 176 * If we're not doing instruction sampling, give them the SDAR 177 * (sampled data address). If we are doing instruction sampling, then 178 * only give them the SDAR if it corresponds to the instruction 179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 181 */ 182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 183 { 184 unsigned long mmcra = regs->dsisr; 185 bool sdar_valid; 186 187 if (ppmu->flags & PPMU_HAS_SIER) 188 sdar_valid = regs->dar & SIER_SDAR_VALID; 189 else { 190 unsigned long sdsync; 191 192 if (ppmu->flags & PPMU_SIAR_VALID) 193 sdsync = POWER7P_MMCRA_SDAR_VALID; 194 else if (ppmu->flags & PPMU_ALT_SIPR) 195 sdsync = POWER6_MMCRA_SDSYNC; 196 else if (ppmu->flags & PPMU_NO_SIAR) 197 sdsync = MMCRA_SAMPLE_ENABLE; 198 else 199 sdsync = MMCRA_SDSYNC; 200 201 sdar_valid = mmcra & sdsync; 202 } 203 204 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 205 *addrp = mfspr(SPRN_SDAR); 206 207 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 208 *addrp = 0; 209 } 210 211 static bool regs_sihv(struct pt_regs *regs) 212 { 213 unsigned long sihv = MMCRA_SIHV; 214 215 if (ppmu->flags & PPMU_HAS_SIER) 216 return !!(regs->dar & SIER_SIHV); 217 218 if (ppmu->flags & PPMU_ALT_SIPR) 219 sihv = POWER6_MMCRA_SIHV; 220 221 return !!(regs->dsisr & sihv); 222 } 223 224 static bool regs_sipr(struct pt_regs *regs) 225 { 226 unsigned long sipr = MMCRA_SIPR; 227 228 if (ppmu->flags & PPMU_HAS_SIER) 229 return !!(regs->dar & SIER_SIPR); 230 231 if (ppmu->flags & PPMU_ALT_SIPR) 232 sipr = POWER6_MMCRA_SIPR; 233 234 return !!(regs->dsisr & sipr); 235 } 236 237 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 238 { 239 if (regs->msr & MSR_PR) 240 return PERF_RECORD_MISC_USER; 241 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 242 return PERF_RECORD_MISC_HYPERVISOR; 243 return PERF_RECORD_MISC_KERNEL; 244 } 245 246 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 247 { 248 bool use_siar = regs_use_siar(regs); 249 250 if (!use_siar) 251 return perf_flags_from_msr(regs); 252 253 /* 254 * If we don't have flags in MMCRA, rather than using 255 * the MSR, we intuit the flags from the address in 256 * SIAR which should give slightly more reliable 257 * results 258 */ 259 if (ppmu->flags & PPMU_NO_SIPR) { 260 unsigned long siar = mfspr(SPRN_SIAR); 261 if (is_kernel_addr(siar)) 262 return PERF_RECORD_MISC_KERNEL; 263 return PERF_RECORD_MISC_USER; 264 } 265 266 /* PR has priority over HV, so order below is important */ 267 if (regs_sipr(regs)) 268 return PERF_RECORD_MISC_USER; 269 270 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 271 return PERF_RECORD_MISC_HYPERVISOR; 272 273 return PERF_RECORD_MISC_KERNEL; 274 } 275 276 /* 277 * Overload regs->dsisr to store MMCRA so we only need to read it once 278 * on each interrupt. 279 * Overload regs->dar to store SIER if we have it. 280 * Overload regs->result to specify whether we should use the MSR (result 281 * is zero) or the SIAR (result is non zero). 282 */ 283 static inline void perf_read_regs(struct pt_regs *regs) 284 { 285 unsigned long mmcra = mfspr(SPRN_MMCRA); 286 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 287 int use_siar; 288 289 regs->dsisr = mmcra; 290 291 if (ppmu->flags & PPMU_HAS_SIER) 292 regs->dar = mfspr(SPRN_SIER); 293 294 /* 295 * If this isn't a PMU exception (eg a software event) the SIAR is 296 * not valid. Use pt_regs. 297 * 298 * If it is a marked event use the SIAR. 299 * 300 * If the PMU doesn't update the SIAR for non marked events use 301 * pt_regs. 302 * 303 * If the PMU has HV/PR flags then check to see if they 304 * place the exception in userspace. If so, use pt_regs. In 305 * continuous sampling mode the SIAR and the PMU exception are 306 * not synchronised, so they may be many instructions apart. 307 * This can result in confusing backtraces. We still want 308 * hypervisor samples as well as samples in the kernel with 309 * interrupts off hence the userspace check. 310 */ 311 if (TRAP(regs) != 0xf00) 312 use_siar = 0; 313 else if ((ppmu->flags & PPMU_NO_SIAR)) 314 use_siar = 0; 315 else if (marked) 316 use_siar = 1; 317 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 318 use_siar = 0; 319 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 320 use_siar = 0; 321 else 322 use_siar = 1; 323 324 regs->result = use_siar; 325 } 326 327 /* 328 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 329 * it as an NMI. 330 */ 331 static inline int perf_intr_is_nmi(struct pt_regs *regs) 332 { 333 return (regs->softe & IRQS_DISABLED); 334 } 335 336 /* 337 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 338 * must be sampled only if the SIAR-valid bit is set. 339 * 340 * For unmarked instructions and for processors that don't have the SIAR-Valid 341 * bit, assume that SIAR is valid. 342 */ 343 static inline int siar_valid(struct pt_regs *regs) 344 { 345 unsigned long mmcra = regs->dsisr; 346 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 347 348 if (marked) { 349 if (ppmu->flags & PPMU_HAS_SIER) 350 return regs->dar & SIER_SIAR_VALID; 351 352 if (ppmu->flags & PPMU_SIAR_VALID) 353 return mmcra & POWER7P_MMCRA_SIAR_VALID; 354 } 355 356 return 1; 357 } 358 359 360 /* Reset all possible BHRB entries */ 361 static void power_pmu_bhrb_reset(void) 362 { 363 asm volatile(PPC_CLRBHRB); 364 } 365 366 static void power_pmu_bhrb_enable(struct perf_event *event) 367 { 368 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 369 370 if (!ppmu->bhrb_nr) 371 return; 372 373 /* Clear BHRB if we changed task context to avoid data leaks */ 374 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 375 power_pmu_bhrb_reset(); 376 cpuhw->bhrb_context = event->ctx; 377 } 378 cpuhw->bhrb_users++; 379 perf_sched_cb_inc(event->ctx->pmu); 380 } 381 382 static void power_pmu_bhrb_disable(struct perf_event *event) 383 { 384 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 385 386 if (!ppmu->bhrb_nr) 387 return; 388 389 WARN_ON_ONCE(!cpuhw->bhrb_users); 390 cpuhw->bhrb_users--; 391 perf_sched_cb_dec(event->ctx->pmu); 392 393 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 394 /* BHRB cannot be turned off when other 395 * events are active on the PMU. 396 */ 397 398 /* avoid stale pointer */ 399 cpuhw->bhrb_context = NULL; 400 } 401 } 402 403 /* Called from ctxsw to prevent one process's branch entries to 404 * mingle with the other process's entries during context switch. 405 */ 406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 407 { 408 if (!ppmu->bhrb_nr) 409 return; 410 411 if (sched_in) 412 power_pmu_bhrb_reset(); 413 } 414 /* Calculate the to address for a branch */ 415 static __u64 power_pmu_bhrb_to(u64 addr) 416 { 417 unsigned int instr; 418 __u64 target; 419 420 if (is_kernel_addr(addr)) { 421 if (copy_from_kernel_nofault(&instr, (void *)addr, 422 sizeof(instr))) 423 return 0; 424 425 return branch_target((struct ppc_inst *)&instr); 426 } 427 428 /* Userspace: need copy instruction here then translate it */ 429 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 430 sizeof(instr))) 431 return 0; 432 433 target = branch_target((struct ppc_inst *)&instr); 434 if ((!target) || (instr & BRANCH_ABSOLUTE)) 435 return target; 436 437 /* Translate relative branch target from kernel to user address */ 438 return target - (unsigned long)&instr + addr; 439 } 440 441 /* Processing BHRB entries */ 442 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 443 { 444 u64 val; 445 u64 addr; 446 int r_index, u_index, pred; 447 448 r_index = 0; 449 u_index = 0; 450 while (r_index < ppmu->bhrb_nr) { 451 /* Assembly read function */ 452 val = read_bhrb(r_index++); 453 if (!val) 454 /* Terminal marker: End of valid BHRB entries */ 455 break; 456 else { 457 addr = val & BHRB_EA; 458 pred = val & BHRB_PREDICTION; 459 460 if (!addr) 461 /* invalid entry */ 462 continue; 463 464 /* 465 * BHRB rolling buffer could very much contain the kernel 466 * addresses at this point. Check the privileges before 467 * exporting it to userspace (avoid exposure of regions 468 * where we could have speculative execution) 469 */ 470 if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 471 continue; 472 473 /* Branches are read most recent first (ie. mfbhrb 0 is 474 * the most recent branch). 475 * There are two types of valid entries: 476 * 1) a target entry which is the to address of a 477 * computed goto like a blr,bctr,btar. The next 478 * entry read from the bhrb will be branch 479 * corresponding to this target (ie. the actual 480 * blr/bctr/btar instruction). 481 * 2) a from address which is an actual branch. If a 482 * target entry proceeds this, then this is the 483 * matching branch for that target. If this is not 484 * following a target entry, then this is a branch 485 * where the target is given as an immediate field 486 * in the instruction (ie. an i or b form branch). 487 * In this case we need to read the instruction from 488 * memory to determine the target/to address. 489 */ 490 491 if (val & BHRB_TARGET) { 492 /* Target branches use two entries 493 * (ie. computed gotos/XL form) 494 */ 495 cpuhw->bhrb_entries[u_index].to = addr; 496 cpuhw->bhrb_entries[u_index].mispred = pred; 497 cpuhw->bhrb_entries[u_index].predicted = ~pred; 498 499 /* Get from address in next entry */ 500 val = read_bhrb(r_index++); 501 addr = val & BHRB_EA; 502 if (val & BHRB_TARGET) { 503 /* Shouldn't have two targets in a 504 row.. Reset index and try again */ 505 r_index--; 506 addr = 0; 507 } 508 cpuhw->bhrb_entries[u_index].from = addr; 509 } else { 510 /* Branches to immediate field 511 (ie I or B form) */ 512 cpuhw->bhrb_entries[u_index].from = addr; 513 cpuhw->bhrb_entries[u_index].to = 514 power_pmu_bhrb_to(addr); 515 cpuhw->bhrb_entries[u_index].mispred = pred; 516 cpuhw->bhrb_entries[u_index].predicted = ~pred; 517 } 518 u_index++; 519 520 } 521 } 522 cpuhw->bhrb_stack.nr = u_index; 523 cpuhw->bhrb_stack.hw_idx = -1ULL; 524 return; 525 } 526 527 static bool is_ebb_event(struct perf_event *event) 528 { 529 /* 530 * This could be a per-PMU callback, but we'd rather avoid the cost. We 531 * check that the PMU supports EBB, meaning those that don't can still 532 * use bit 63 of the event code for something else if they wish. 533 */ 534 return (ppmu->flags & PPMU_ARCH_207S) && 535 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 536 } 537 538 static int ebb_event_check(struct perf_event *event) 539 { 540 struct perf_event *leader = event->group_leader; 541 542 /* Event and group leader must agree on EBB */ 543 if (is_ebb_event(leader) != is_ebb_event(event)) 544 return -EINVAL; 545 546 if (is_ebb_event(event)) { 547 if (!(event->attach_state & PERF_ATTACH_TASK)) 548 return -EINVAL; 549 550 if (!leader->attr.pinned || !leader->attr.exclusive) 551 return -EINVAL; 552 553 if (event->attr.freq || 554 event->attr.inherit || 555 event->attr.sample_type || 556 event->attr.sample_period || 557 event->attr.enable_on_exec) 558 return -EINVAL; 559 } 560 561 return 0; 562 } 563 564 static void ebb_event_add(struct perf_event *event) 565 { 566 if (!is_ebb_event(event) || current->thread.used_ebb) 567 return; 568 569 /* 570 * IFF this is the first time we've added an EBB event, set 571 * PMXE in the user MMCR0 so we can detect when it's cleared by 572 * userspace. We need this so that we can context switch while 573 * userspace is in the EBB handler (where PMXE is 0). 574 */ 575 current->thread.used_ebb = 1; 576 current->thread.mmcr0 |= MMCR0_PMXE; 577 } 578 579 static void ebb_switch_out(unsigned long mmcr0) 580 { 581 if (!(mmcr0 & MMCR0_EBE)) 582 return; 583 584 current->thread.siar = mfspr(SPRN_SIAR); 585 current->thread.sier = mfspr(SPRN_SIER); 586 current->thread.sdar = mfspr(SPRN_SDAR); 587 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 588 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 589 } 590 591 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 592 { 593 unsigned long mmcr0 = cpuhw->mmcr[0]; 594 595 if (!ebb) 596 goto out; 597 598 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 599 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 600 601 /* 602 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 603 * with pmao_restore_workaround() because we may add PMAO but we never 604 * clear it here. 605 */ 606 mmcr0 |= current->thread.mmcr0; 607 608 /* 609 * Be careful not to set PMXE if userspace had it cleared. This is also 610 * compatible with pmao_restore_workaround() because it has already 611 * cleared PMXE and we leave PMAO alone. 612 */ 613 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 614 mmcr0 &= ~MMCR0_PMXE; 615 616 mtspr(SPRN_SIAR, current->thread.siar); 617 mtspr(SPRN_SIER, current->thread.sier); 618 mtspr(SPRN_SDAR, current->thread.sdar); 619 620 /* 621 * Merge the kernel & user values of MMCR2. The semantics we implement 622 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 623 * but not clear bits. If a task wants to be able to clear bits, ie. 624 * unfreeze counters, it should not set exclude_xxx in its events and 625 * instead manage the MMCR2 entirely by itself. 626 */ 627 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 628 out: 629 return mmcr0; 630 } 631 632 static void pmao_restore_workaround(bool ebb) 633 { 634 unsigned pmcs[6]; 635 636 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 637 return; 638 639 /* 640 * On POWER8E there is a hardware defect which affects the PMU context 641 * switch logic, ie. power_pmu_disable/enable(). 642 * 643 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 644 * by the hardware. Sometime later the actual PMU exception is 645 * delivered. 646 * 647 * If we context switch, or simply disable/enable, the PMU prior to the 648 * exception arriving, the exception will be lost when we clear PMAO. 649 * 650 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 651 * set, and this _should_ generate an exception. However because of the 652 * defect no exception is generated when we write PMAO, and we get 653 * stuck with no counters counting but no exception delivered. 654 * 655 * The workaround is to detect this case and tweak the hardware to 656 * create another pending PMU exception. 657 * 658 * We do that by setting up PMC6 (cycles) for an imminent overflow and 659 * enabling the PMU. That causes a new exception to be generated in the 660 * chip, but we don't take it yet because we have interrupts hard 661 * disabled. We then write back the PMU state as we want it to be seen 662 * by the exception handler. When we reenable interrupts the exception 663 * handler will be called and see the correct state. 664 * 665 * The logic is the same for EBB, except that the exception is gated by 666 * us having interrupts hard disabled as well as the fact that we are 667 * not in userspace. The exception is finally delivered when we return 668 * to userspace. 669 */ 670 671 /* Only if PMAO is set and PMAO_SYNC is clear */ 672 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 673 return; 674 675 /* If we're doing EBB, only if BESCR[GE] is set */ 676 if (ebb && !(current->thread.bescr & BESCR_GE)) 677 return; 678 679 /* 680 * We are already soft-disabled in power_pmu_enable(). We need to hard 681 * disable to actually prevent the PMU exception from firing. 682 */ 683 hard_irq_disable(); 684 685 /* 686 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 687 * Using read/write_pmc() in a for loop adds 12 function calls and 688 * almost doubles our code size. 689 */ 690 pmcs[0] = mfspr(SPRN_PMC1); 691 pmcs[1] = mfspr(SPRN_PMC2); 692 pmcs[2] = mfspr(SPRN_PMC3); 693 pmcs[3] = mfspr(SPRN_PMC4); 694 pmcs[4] = mfspr(SPRN_PMC5); 695 pmcs[5] = mfspr(SPRN_PMC6); 696 697 /* Ensure all freeze bits are unset */ 698 mtspr(SPRN_MMCR2, 0); 699 700 /* Set up PMC6 to overflow in one cycle */ 701 mtspr(SPRN_PMC6, 0x7FFFFFFE); 702 703 /* Enable exceptions and unfreeze PMC6 */ 704 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 705 706 /* Now we need to refreeze and restore the PMCs */ 707 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 708 709 mtspr(SPRN_PMC1, pmcs[0]); 710 mtspr(SPRN_PMC2, pmcs[1]); 711 mtspr(SPRN_PMC3, pmcs[2]); 712 mtspr(SPRN_PMC4, pmcs[3]); 713 mtspr(SPRN_PMC5, pmcs[4]); 714 mtspr(SPRN_PMC6, pmcs[5]); 715 } 716 717 #endif /* CONFIG_PPC64 */ 718 719 static void perf_event_interrupt(struct pt_regs *regs); 720 721 /* 722 * Read one performance monitor counter (PMC). 723 */ 724 static unsigned long read_pmc(int idx) 725 { 726 unsigned long val; 727 728 switch (idx) { 729 case 1: 730 val = mfspr(SPRN_PMC1); 731 break; 732 case 2: 733 val = mfspr(SPRN_PMC2); 734 break; 735 case 3: 736 val = mfspr(SPRN_PMC3); 737 break; 738 case 4: 739 val = mfspr(SPRN_PMC4); 740 break; 741 case 5: 742 val = mfspr(SPRN_PMC5); 743 break; 744 case 6: 745 val = mfspr(SPRN_PMC6); 746 break; 747 #ifdef CONFIG_PPC64 748 case 7: 749 val = mfspr(SPRN_PMC7); 750 break; 751 case 8: 752 val = mfspr(SPRN_PMC8); 753 break; 754 #endif /* CONFIG_PPC64 */ 755 default: 756 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 757 val = 0; 758 } 759 return val; 760 } 761 762 /* 763 * Write one PMC. 764 */ 765 static void write_pmc(int idx, unsigned long val) 766 { 767 switch (idx) { 768 case 1: 769 mtspr(SPRN_PMC1, val); 770 break; 771 case 2: 772 mtspr(SPRN_PMC2, val); 773 break; 774 case 3: 775 mtspr(SPRN_PMC3, val); 776 break; 777 case 4: 778 mtspr(SPRN_PMC4, val); 779 break; 780 case 5: 781 mtspr(SPRN_PMC5, val); 782 break; 783 case 6: 784 mtspr(SPRN_PMC6, val); 785 break; 786 #ifdef CONFIG_PPC64 787 case 7: 788 mtspr(SPRN_PMC7, val); 789 break; 790 case 8: 791 mtspr(SPRN_PMC8, val); 792 break; 793 #endif /* CONFIG_PPC64 */ 794 default: 795 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 796 } 797 } 798 799 /* Called from sysrq_handle_showregs() */ 800 void perf_event_print_debug(void) 801 { 802 unsigned long sdar, sier, flags; 803 u32 pmcs[MAX_HWEVENTS]; 804 int i; 805 806 if (!ppmu) { 807 pr_info("Performance monitor hardware not registered.\n"); 808 return; 809 } 810 811 if (!ppmu->n_counter) 812 return; 813 814 local_irq_save(flags); 815 816 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 817 smp_processor_id(), ppmu->name, ppmu->n_counter); 818 819 for (i = 0; i < ppmu->n_counter; i++) 820 pmcs[i] = read_pmc(i + 1); 821 822 for (; i < MAX_HWEVENTS; i++) 823 pmcs[i] = 0xdeadbeef; 824 825 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 826 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 827 828 if (ppmu->n_counter > 4) 829 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 830 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 831 832 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 833 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 834 835 sdar = sier = 0; 836 #ifdef CONFIG_PPC64 837 sdar = mfspr(SPRN_SDAR); 838 839 if (ppmu->flags & PPMU_HAS_SIER) 840 sier = mfspr(SPRN_SIER); 841 842 if (ppmu->flags & PPMU_ARCH_207S) { 843 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 844 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 845 pr_info("EBBRR: %016lx BESCR: %016lx\n", 846 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 847 } 848 #endif 849 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 850 mfspr(SPRN_SIAR), sdar, sier); 851 852 local_irq_restore(flags); 853 } 854 855 /* 856 * Check if a set of events can all go on the PMU at once. 857 * If they can't, this will look at alternative codes for the events 858 * and see if any combination of alternative codes is feasible. 859 * The feasible set is returned in event_id[]. 860 */ 861 static int power_check_constraints(struct cpu_hw_events *cpuhw, 862 u64 event_id[], unsigned int cflags[], 863 int n_ev) 864 { 865 unsigned long mask, value, nv; 866 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 867 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 868 int i, j; 869 unsigned long addf = ppmu->add_fields; 870 unsigned long tadd = ppmu->test_adder; 871 unsigned long grp_mask = ppmu->group_constraint_mask; 872 unsigned long grp_val = ppmu->group_constraint_val; 873 874 if (n_ev > ppmu->n_counter) 875 return -1; 876 877 /* First see if the events will go on as-is */ 878 for (i = 0; i < n_ev; ++i) { 879 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 880 && !ppmu->limited_pmc_event(event_id[i])) { 881 ppmu->get_alternatives(event_id[i], cflags[i], 882 cpuhw->alternatives[i]); 883 event_id[i] = cpuhw->alternatives[i][0]; 884 } 885 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 886 &cpuhw->avalues[i][0])) 887 return -1; 888 } 889 value = mask = 0; 890 for (i = 0; i < n_ev; ++i) { 891 nv = (value | cpuhw->avalues[i][0]) + 892 (value & cpuhw->avalues[i][0] & addf); 893 894 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 895 break; 896 897 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 898 & (~grp_mask)) != 0) 899 break; 900 901 value = nv; 902 mask |= cpuhw->amasks[i][0]; 903 } 904 if (i == n_ev) { 905 if ((value & mask & grp_mask) != (mask & grp_val)) 906 return -1; 907 else 908 return 0; /* all OK */ 909 } 910 911 /* doesn't work, gather alternatives... */ 912 if (!ppmu->get_alternatives) 913 return -1; 914 for (i = 0; i < n_ev; ++i) { 915 choice[i] = 0; 916 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 917 cpuhw->alternatives[i]); 918 for (j = 1; j < n_alt[i]; ++j) 919 ppmu->get_constraint(cpuhw->alternatives[i][j], 920 &cpuhw->amasks[i][j], 921 &cpuhw->avalues[i][j]); 922 } 923 924 /* enumerate all possibilities and see if any will work */ 925 i = 0; 926 j = -1; 927 value = mask = nv = 0; 928 while (i < n_ev) { 929 if (j >= 0) { 930 /* we're backtracking, restore context */ 931 value = svalues[i]; 932 mask = smasks[i]; 933 j = choice[i]; 934 } 935 /* 936 * See if any alternative k for event_id i, 937 * where k > j, will satisfy the constraints. 938 */ 939 while (++j < n_alt[i]) { 940 nv = (value | cpuhw->avalues[i][j]) + 941 (value & cpuhw->avalues[i][j] & addf); 942 if ((((nv + tadd) ^ value) & mask) == 0 && 943 (((nv + tadd) ^ cpuhw->avalues[i][j]) 944 & cpuhw->amasks[i][j]) == 0) 945 break; 946 } 947 if (j >= n_alt[i]) { 948 /* 949 * No feasible alternative, backtrack 950 * to event_id i-1 and continue enumerating its 951 * alternatives from where we got up to. 952 */ 953 if (--i < 0) 954 return -1; 955 } else { 956 /* 957 * Found a feasible alternative for event_id i, 958 * remember where we got up to with this event_id, 959 * go on to the next event_id, and start with 960 * the first alternative for it. 961 */ 962 choice[i] = j; 963 svalues[i] = value; 964 smasks[i] = mask; 965 value = nv; 966 mask |= cpuhw->amasks[i][j]; 967 ++i; 968 j = -1; 969 } 970 } 971 972 /* OK, we have a feasible combination, tell the caller the solution */ 973 for (i = 0; i < n_ev; ++i) 974 event_id[i] = cpuhw->alternatives[i][choice[i]]; 975 return 0; 976 } 977 978 /* 979 * Check if newly-added events have consistent settings for 980 * exclude_{user,kernel,hv} with each other and any previously 981 * added events. 982 */ 983 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 984 int n_prev, int n_new) 985 { 986 int eu = 0, ek = 0, eh = 0; 987 int i, n, first; 988 struct perf_event *event; 989 990 /* 991 * If the PMU we're on supports per event exclude settings then we 992 * don't need to do any of this logic. NB. This assumes no PMU has both 993 * per event exclude and limited PMCs. 994 */ 995 if (ppmu->flags & PPMU_ARCH_207S) 996 return 0; 997 998 n = n_prev + n_new; 999 if (n <= 1) 1000 return 0; 1001 1002 first = 1; 1003 for (i = 0; i < n; ++i) { 1004 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1005 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1006 continue; 1007 } 1008 event = ctrs[i]; 1009 if (first) { 1010 eu = event->attr.exclude_user; 1011 ek = event->attr.exclude_kernel; 1012 eh = event->attr.exclude_hv; 1013 first = 0; 1014 } else if (event->attr.exclude_user != eu || 1015 event->attr.exclude_kernel != ek || 1016 event->attr.exclude_hv != eh) { 1017 return -EAGAIN; 1018 } 1019 } 1020 1021 if (eu || ek || eh) 1022 for (i = 0; i < n; ++i) 1023 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1024 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1025 1026 return 0; 1027 } 1028 1029 static u64 check_and_compute_delta(u64 prev, u64 val) 1030 { 1031 u64 delta = (val - prev) & 0xfffffffful; 1032 1033 /* 1034 * POWER7 can roll back counter values, if the new value is smaller 1035 * than the previous value it will cause the delta and the counter to 1036 * have bogus values unless we rolled a counter over. If a coutner is 1037 * rolled back, it will be smaller, but within 256, which is the maximum 1038 * number of events to rollback at once. If we detect a rollback 1039 * return 0. This can lead to a small lack of precision in the 1040 * counters. 1041 */ 1042 if (prev > val && (prev - val) < 256) 1043 delta = 0; 1044 1045 return delta; 1046 } 1047 1048 static void power_pmu_read(struct perf_event *event) 1049 { 1050 s64 val, delta, prev; 1051 1052 if (event->hw.state & PERF_HES_STOPPED) 1053 return; 1054 1055 if (!event->hw.idx) 1056 return; 1057 1058 if (is_ebb_event(event)) { 1059 val = read_pmc(event->hw.idx); 1060 local64_set(&event->hw.prev_count, val); 1061 return; 1062 } 1063 1064 /* 1065 * Performance monitor interrupts come even when interrupts 1066 * are soft-disabled, as long as interrupts are hard-enabled. 1067 * Therefore we treat them like NMIs. 1068 */ 1069 do { 1070 prev = local64_read(&event->hw.prev_count); 1071 barrier(); 1072 val = read_pmc(event->hw.idx); 1073 delta = check_and_compute_delta(prev, val); 1074 if (!delta) 1075 return; 1076 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1077 1078 local64_add(delta, &event->count); 1079 1080 /* 1081 * A number of places program the PMC with (0x80000000 - period_left). 1082 * We never want period_left to be less than 1 because we will program 1083 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1084 * roll around to 0 before taking an exception. We have seen this 1085 * on POWER8. 1086 * 1087 * To fix this, clamp the minimum value of period_left to 1. 1088 */ 1089 do { 1090 prev = local64_read(&event->hw.period_left); 1091 val = prev - delta; 1092 if (val < 1) 1093 val = 1; 1094 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1095 } 1096 1097 /* 1098 * On some machines, PMC5 and PMC6 can't be written, don't respect 1099 * the freeze conditions, and don't generate interrupts. This tells 1100 * us if `event' is using such a PMC. 1101 */ 1102 static int is_limited_pmc(int pmcnum) 1103 { 1104 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1105 && (pmcnum == 5 || pmcnum == 6); 1106 } 1107 1108 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1109 unsigned long pmc5, unsigned long pmc6) 1110 { 1111 struct perf_event *event; 1112 u64 val, prev, delta; 1113 int i; 1114 1115 for (i = 0; i < cpuhw->n_limited; ++i) { 1116 event = cpuhw->limited_counter[i]; 1117 if (!event->hw.idx) 1118 continue; 1119 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1120 prev = local64_read(&event->hw.prev_count); 1121 event->hw.idx = 0; 1122 delta = check_and_compute_delta(prev, val); 1123 if (delta) 1124 local64_add(delta, &event->count); 1125 } 1126 } 1127 1128 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1129 unsigned long pmc5, unsigned long pmc6) 1130 { 1131 struct perf_event *event; 1132 u64 val, prev; 1133 int i; 1134 1135 for (i = 0; i < cpuhw->n_limited; ++i) { 1136 event = cpuhw->limited_counter[i]; 1137 event->hw.idx = cpuhw->limited_hwidx[i]; 1138 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1139 prev = local64_read(&event->hw.prev_count); 1140 if (check_and_compute_delta(prev, val)) 1141 local64_set(&event->hw.prev_count, val); 1142 perf_event_update_userpage(event); 1143 } 1144 } 1145 1146 /* 1147 * Since limited events don't respect the freeze conditions, we 1148 * have to read them immediately after freezing or unfreezing the 1149 * other events. We try to keep the values from the limited 1150 * events as consistent as possible by keeping the delay (in 1151 * cycles and instructions) between freezing/unfreezing and reading 1152 * the limited events as small and consistent as possible. 1153 * Therefore, if any limited events are in use, we read them 1154 * both, and always in the same order, to minimize variability, 1155 * and do it inside the same asm that writes MMCR0. 1156 */ 1157 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1158 { 1159 unsigned long pmc5, pmc6; 1160 1161 if (!cpuhw->n_limited) { 1162 mtspr(SPRN_MMCR0, mmcr0); 1163 return; 1164 } 1165 1166 /* 1167 * Write MMCR0, then read PMC5 and PMC6 immediately. 1168 * To ensure we don't get a performance monitor interrupt 1169 * between writing MMCR0 and freezing/thawing the limited 1170 * events, we first write MMCR0 with the event overflow 1171 * interrupt enable bits turned off. 1172 */ 1173 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1174 : "=&r" (pmc5), "=&r" (pmc6) 1175 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1176 "i" (SPRN_MMCR0), 1177 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1178 1179 if (mmcr0 & MMCR0_FC) 1180 freeze_limited_counters(cpuhw, pmc5, pmc6); 1181 else 1182 thaw_limited_counters(cpuhw, pmc5, pmc6); 1183 1184 /* 1185 * Write the full MMCR0 including the event overflow interrupt 1186 * enable bits, if necessary. 1187 */ 1188 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1189 mtspr(SPRN_MMCR0, mmcr0); 1190 } 1191 1192 /* 1193 * Disable all events to prevent PMU interrupts and to allow 1194 * events to be added or removed. 1195 */ 1196 static void power_pmu_disable(struct pmu *pmu) 1197 { 1198 struct cpu_hw_events *cpuhw; 1199 unsigned long flags, mmcr0, val; 1200 1201 if (!ppmu) 1202 return; 1203 local_irq_save(flags); 1204 cpuhw = this_cpu_ptr(&cpu_hw_events); 1205 1206 if (!cpuhw->disabled) { 1207 /* 1208 * Check if we ever enabled the PMU on this cpu. 1209 */ 1210 if (!cpuhw->pmcs_enabled) { 1211 ppc_enable_pmcs(); 1212 cpuhw->pmcs_enabled = 1; 1213 } 1214 1215 /* 1216 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1217 */ 1218 val = mmcr0 = mfspr(SPRN_MMCR0); 1219 val |= MMCR0_FC; 1220 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1221 MMCR0_FC56); 1222 1223 /* 1224 * The barrier is to make sure the mtspr has been 1225 * executed and the PMU has frozen the events etc. 1226 * before we return. 1227 */ 1228 write_mmcr0(cpuhw, val); 1229 mb(); 1230 isync(); 1231 1232 /* 1233 * Disable instruction sampling if it was enabled 1234 */ 1235 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1236 mtspr(SPRN_MMCRA, 1237 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1238 mb(); 1239 isync(); 1240 } 1241 1242 cpuhw->disabled = 1; 1243 cpuhw->n_added = 0; 1244 1245 ebb_switch_out(mmcr0); 1246 1247 #ifdef CONFIG_PPC64 1248 /* 1249 * These are readable by userspace, may contain kernel 1250 * addresses and are not switched by context switch, so clear 1251 * them now to avoid leaking anything to userspace in general 1252 * including to another process. 1253 */ 1254 if (ppmu->flags & PPMU_ARCH_207S) { 1255 mtspr(SPRN_SDAR, 0); 1256 mtspr(SPRN_SIAR, 0); 1257 } 1258 #endif 1259 } 1260 1261 local_irq_restore(flags); 1262 } 1263 1264 /* 1265 * Re-enable all events if disable == 0. 1266 * If we were previously disabled and events were added, then 1267 * put the new config on the PMU. 1268 */ 1269 static void power_pmu_enable(struct pmu *pmu) 1270 { 1271 struct perf_event *event; 1272 struct cpu_hw_events *cpuhw; 1273 unsigned long flags; 1274 long i; 1275 unsigned long val, mmcr0; 1276 s64 left; 1277 unsigned int hwc_index[MAX_HWEVENTS]; 1278 int n_lim; 1279 int idx; 1280 bool ebb; 1281 1282 if (!ppmu) 1283 return; 1284 local_irq_save(flags); 1285 1286 cpuhw = this_cpu_ptr(&cpu_hw_events); 1287 if (!cpuhw->disabled) 1288 goto out; 1289 1290 if (cpuhw->n_events == 0) { 1291 ppc_set_pmu_inuse(0); 1292 goto out; 1293 } 1294 1295 cpuhw->disabled = 0; 1296 1297 /* 1298 * EBB requires an exclusive group and all events must have the EBB 1299 * flag set, or not set, so we can just check a single event. Also we 1300 * know we have at least one event. 1301 */ 1302 ebb = is_ebb_event(cpuhw->event[0]); 1303 1304 /* 1305 * If we didn't change anything, or only removed events, 1306 * no need to recalculate MMCR* settings and reset the PMCs. 1307 * Just reenable the PMU with the current MMCR* settings 1308 * (possibly updated for removal of events). 1309 */ 1310 if (!cpuhw->n_added) { 1311 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1312 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1313 goto out_enable; 1314 } 1315 1316 /* 1317 * Clear all MMCR settings and recompute them for the new set of events. 1318 */ 1319 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1320 1321 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1322 cpuhw->mmcr, cpuhw->event)) { 1323 /* shouldn't ever get here */ 1324 printk(KERN_ERR "oops compute_mmcr failed\n"); 1325 goto out; 1326 } 1327 1328 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1329 /* 1330 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1331 * bits for the first event. We have already checked that all 1332 * events have the same value for these bits as the first event. 1333 */ 1334 event = cpuhw->event[0]; 1335 if (event->attr.exclude_user) 1336 cpuhw->mmcr[0] |= MMCR0_FCP; 1337 if (event->attr.exclude_kernel) 1338 cpuhw->mmcr[0] |= freeze_events_kernel; 1339 if (event->attr.exclude_hv) 1340 cpuhw->mmcr[0] |= MMCR0_FCHV; 1341 } 1342 1343 /* 1344 * Write the new configuration to MMCR* with the freeze 1345 * bit set and set the hardware events to their initial values. 1346 * Then unfreeze the events. 1347 */ 1348 ppc_set_pmu_inuse(1); 1349 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1350 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1351 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1352 | MMCR0_FC); 1353 if (ppmu->flags & PPMU_ARCH_207S) 1354 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1355 1356 /* 1357 * Read off any pre-existing events that need to move 1358 * to another PMC. 1359 */ 1360 for (i = 0; i < cpuhw->n_events; ++i) { 1361 event = cpuhw->event[i]; 1362 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1363 power_pmu_read(event); 1364 write_pmc(event->hw.idx, 0); 1365 event->hw.idx = 0; 1366 } 1367 } 1368 1369 /* 1370 * Initialize the PMCs for all the new and moved events. 1371 */ 1372 cpuhw->n_limited = n_lim = 0; 1373 for (i = 0; i < cpuhw->n_events; ++i) { 1374 event = cpuhw->event[i]; 1375 if (event->hw.idx) 1376 continue; 1377 idx = hwc_index[i] + 1; 1378 if (is_limited_pmc(idx)) { 1379 cpuhw->limited_counter[n_lim] = event; 1380 cpuhw->limited_hwidx[n_lim] = idx; 1381 ++n_lim; 1382 continue; 1383 } 1384 1385 if (ebb) 1386 val = local64_read(&event->hw.prev_count); 1387 else { 1388 val = 0; 1389 if (event->hw.sample_period) { 1390 left = local64_read(&event->hw.period_left); 1391 if (left < 0x80000000L) 1392 val = 0x80000000L - left; 1393 } 1394 local64_set(&event->hw.prev_count, val); 1395 } 1396 1397 event->hw.idx = idx; 1398 if (event->hw.state & PERF_HES_STOPPED) 1399 val = 0; 1400 write_pmc(idx, val); 1401 1402 perf_event_update_userpage(event); 1403 } 1404 cpuhw->n_limited = n_lim; 1405 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1406 1407 out_enable: 1408 pmao_restore_workaround(ebb); 1409 1410 mmcr0 = ebb_switch_in(ebb, cpuhw); 1411 1412 mb(); 1413 if (cpuhw->bhrb_users) 1414 ppmu->config_bhrb(cpuhw->bhrb_filter); 1415 1416 write_mmcr0(cpuhw, mmcr0); 1417 1418 /* 1419 * Enable instruction sampling if necessary 1420 */ 1421 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1422 mb(); 1423 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1424 } 1425 1426 out: 1427 1428 local_irq_restore(flags); 1429 } 1430 1431 static int collect_events(struct perf_event *group, int max_count, 1432 struct perf_event *ctrs[], u64 *events, 1433 unsigned int *flags) 1434 { 1435 int n = 0; 1436 struct perf_event *event; 1437 1438 if (group->pmu->task_ctx_nr == perf_hw_context) { 1439 if (n >= max_count) 1440 return -1; 1441 ctrs[n] = group; 1442 flags[n] = group->hw.event_base; 1443 events[n++] = group->hw.config; 1444 } 1445 for_each_sibling_event(event, group) { 1446 if (event->pmu->task_ctx_nr == perf_hw_context && 1447 event->state != PERF_EVENT_STATE_OFF) { 1448 if (n >= max_count) 1449 return -1; 1450 ctrs[n] = event; 1451 flags[n] = event->hw.event_base; 1452 events[n++] = event->hw.config; 1453 } 1454 } 1455 return n; 1456 } 1457 1458 /* 1459 * Add an event to the PMU. 1460 * If all events are not already frozen, then we disable and 1461 * re-enable the PMU in order to get hw_perf_enable to do the 1462 * actual work of reconfiguring the PMU. 1463 */ 1464 static int power_pmu_add(struct perf_event *event, int ef_flags) 1465 { 1466 struct cpu_hw_events *cpuhw; 1467 unsigned long flags; 1468 int n0; 1469 int ret = -EAGAIN; 1470 1471 local_irq_save(flags); 1472 perf_pmu_disable(event->pmu); 1473 1474 /* 1475 * Add the event to the list (if there is room) 1476 * and check whether the total set is still feasible. 1477 */ 1478 cpuhw = this_cpu_ptr(&cpu_hw_events); 1479 n0 = cpuhw->n_events; 1480 if (n0 >= ppmu->n_counter) 1481 goto out; 1482 cpuhw->event[n0] = event; 1483 cpuhw->events[n0] = event->hw.config; 1484 cpuhw->flags[n0] = event->hw.event_base; 1485 1486 /* 1487 * This event may have been disabled/stopped in record_and_restart() 1488 * because we exceeded the ->event_limit. If re-starting the event, 1489 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1490 * notification is re-enabled. 1491 */ 1492 if (!(ef_flags & PERF_EF_START)) 1493 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1494 else 1495 event->hw.state = 0; 1496 1497 /* 1498 * If group events scheduling transaction was started, 1499 * skip the schedulability test here, it will be performed 1500 * at commit time(->commit_txn) as a whole 1501 */ 1502 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1503 goto nocheck; 1504 1505 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1506 goto out; 1507 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1508 goto out; 1509 event->hw.config = cpuhw->events[n0]; 1510 1511 nocheck: 1512 ebb_event_add(event); 1513 1514 ++cpuhw->n_events; 1515 ++cpuhw->n_added; 1516 1517 ret = 0; 1518 out: 1519 if (has_branch_stack(event)) { 1520 power_pmu_bhrb_enable(event); 1521 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1522 event->attr.branch_sample_type); 1523 } 1524 1525 perf_pmu_enable(event->pmu); 1526 local_irq_restore(flags); 1527 return ret; 1528 } 1529 1530 /* 1531 * Remove an event from the PMU. 1532 */ 1533 static void power_pmu_del(struct perf_event *event, int ef_flags) 1534 { 1535 struct cpu_hw_events *cpuhw; 1536 long i; 1537 unsigned long flags; 1538 1539 local_irq_save(flags); 1540 perf_pmu_disable(event->pmu); 1541 1542 power_pmu_read(event); 1543 1544 cpuhw = this_cpu_ptr(&cpu_hw_events); 1545 for (i = 0; i < cpuhw->n_events; ++i) { 1546 if (event == cpuhw->event[i]) { 1547 while (++i < cpuhw->n_events) { 1548 cpuhw->event[i-1] = cpuhw->event[i]; 1549 cpuhw->events[i-1] = cpuhw->events[i]; 1550 cpuhw->flags[i-1] = cpuhw->flags[i]; 1551 } 1552 --cpuhw->n_events; 1553 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1554 if (event->hw.idx) { 1555 write_pmc(event->hw.idx, 0); 1556 event->hw.idx = 0; 1557 } 1558 perf_event_update_userpage(event); 1559 break; 1560 } 1561 } 1562 for (i = 0; i < cpuhw->n_limited; ++i) 1563 if (event == cpuhw->limited_counter[i]) 1564 break; 1565 if (i < cpuhw->n_limited) { 1566 while (++i < cpuhw->n_limited) { 1567 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1568 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1569 } 1570 --cpuhw->n_limited; 1571 } 1572 if (cpuhw->n_events == 0) { 1573 /* disable exceptions if no events are running */ 1574 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1575 } 1576 1577 if (has_branch_stack(event)) 1578 power_pmu_bhrb_disable(event); 1579 1580 perf_pmu_enable(event->pmu); 1581 local_irq_restore(flags); 1582 } 1583 1584 /* 1585 * POWER-PMU does not support disabling individual counters, hence 1586 * program their cycle counter to their max value and ignore the interrupts. 1587 */ 1588 1589 static void power_pmu_start(struct perf_event *event, int ef_flags) 1590 { 1591 unsigned long flags; 1592 s64 left; 1593 unsigned long val; 1594 1595 if (!event->hw.idx || !event->hw.sample_period) 1596 return; 1597 1598 if (!(event->hw.state & PERF_HES_STOPPED)) 1599 return; 1600 1601 if (ef_flags & PERF_EF_RELOAD) 1602 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1603 1604 local_irq_save(flags); 1605 perf_pmu_disable(event->pmu); 1606 1607 event->hw.state = 0; 1608 left = local64_read(&event->hw.period_left); 1609 1610 val = 0; 1611 if (left < 0x80000000L) 1612 val = 0x80000000L - left; 1613 1614 write_pmc(event->hw.idx, val); 1615 1616 perf_event_update_userpage(event); 1617 perf_pmu_enable(event->pmu); 1618 local_irq_restore(flags); 1619 } 1620 1621 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1622 { 1623 unsigned long flags; 1624 1625 if (!event->hw.idx || !event->hw.sample_period) 1626 return; 1627 1628 if (event->hw.state & PERF_HES_STOPPED) 1629 return; 1630 1631 local_irq_save(flags); 1632 perf_pmu_disable(event->pmu); 1633 1634 power_pmu_read(event); 1635 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1636 write_pmc(event->hw.idx, 0); 1637 1638 perf_event_update_userpage(event); 1639 perf_pmu_enable(event->pmu); 1640 local_irq_restore(flags); 1641 } 1642 1643 /* 1644 * Start group events scheduling transaction 1645 * Set the flag to make pmu::enable() not perform the 1646 * schedulability test, it will be performed at commit time 1647 * 1648 * We only support PERF_PMU_TXN_ADD transactions. Save the 1649 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1650 * transactions. 1651 */ 1652 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1653 { 1654 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1655 1656 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1657 1658 cpuhw->txn_flags = txn_flags; 1659 if (txn_flags & ~PERF_PMU_TXN_ADD) 1660 return; 1661 1662 perf_pmu_disable(pmu); 1663 cpuhw->n_txn_start = cpuhw->n_events; 1664 } 1665 1666 /* 1667 * Stop group events scheduling transaction 1668 * Clear the flag and pmu::enable() will perform the 1669 * schedulability test. 1670 */ 1671 static void power_pmu_cancel_txn(struct pmu *pmu) 1672 { 1673 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1674 unsigned int txn_flags; 1675 1676 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1677 1678 txn_flags = cpuhw->txn_flags; 1679 cpuhw->txn_flags = 0; 1680 if (txn_flags & ~PERF_PMU_TXN_ADD) 1681 return; 1682 1683 perf_pmu_enable(pmu); 1684 } 1685 1686 /* 1687 * Commit group events scheduling transaction 1688 * Perform the group schedulability test as a whole 1689 * Return 0 if success 1690 */ 1691 static int power_pmu_commit_txn(struct pmu *pmu) 1692 { 1693 struct cpu_hw_events *cpuhw; 1694 long i, n; 1695 1696 if (!ppmu) 1697 return -EAGAIN; 1698 1699 cpuhw = this_cpu_ptr(&cpu_hw_events); 1700 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1701 1702 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1703 cpuhw->txn_flags = 0; 1704 return 0; 1705 } 1706 1707 n = cpuhw->n_events; 1708 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1709 return -EAGAIN; 1710 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1711 if (i < 0) 1712 return -EAGAIN; 1713 1714 for (i = cpuhw->n_txn_start; i < n; ++i) 1715 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1716 1717 cpuhw->txn_flags = 0; 1718 perf_pmu_enable(pmu); 1719 return 0; 1720 } 1721 1722 /* 1723 * Return 1 if we might be able to put event on a limited PMC, 1724 * or 0 if not. 1725 * An event can only go on a limited PMC if it counts something 1726 * that a limited PMC can count, doesn't require interrupts, and 1727 * doesn't exclude any processor mode. 1728 */ 1729 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1730 unsigned int flags) 1731 { 1732 int n; 1733 u64 alt[MAX_EVENT_ALTERNATIVES]; 1734 1735 if (event->attr.exclude_user 1736 || event->attr.exclude_kernel 1737 || event->attr.exclude_hv 1738 || event->attr.sample_period) 1739 return 0; 1740 1741 if (ppmu->limited_pmc_event(ev)) 1742 return 1; 1743 1744 /* 1745 * The requested event_id isn't on a limited PMC already; 1746 * see if any alternative code goes on a limited PMC. 1747 */ 1748 if (!ppmu->get_alternatives) 1749 return 0; 1750 1751 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1752 n = ppmu->get_alternatives(ev, flags, alt); 1753 1754 return n > 0; 1755 } 1756 1757 /* 1758 * Find an alternative event_id that goes on a normal PMC, if possible, 1759 * and return the event_id code, or 0 if there is no such alternative. 1760 * (Note: event_id code 0 is "don't count" on all machines.) 1761 */ 1762 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1763 { 1764 u64 alt[MAX_EVENT_ALTERNATIVES]; 1765 int n; 1766 1767 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1768 n = ppmu->get_alternatives(ev, flags, alt); 1769 if (!n) 1770 return 0; 1771 return alt[0]; 1772 } 1773 1774 /* Number of perf_events counting hardware events */ 1775 static atomic_t num_events; 1776 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1777 static DEFINE_MUTEX(pmc_reserve_mutex); 1778 1779 /* 1780 * Release the PMU if this is the last perf_event. 1781 */ 1782 static void hw_perf_event_destroy(struct perf_event *event) 1783 { 1784 if (!atomic_add_unless(&num_events, -1, 1)) { 1785 mutex_lock(&pmc_reserve_mutex); 1786 if (atomic_dec_return(&num_events) == 0) 1787 release_pmc_hardware(); 1788 mutex_unlock(&pmc_reserve_mutex); 1789 } 1790 } 1791 1792 /* 1793 * Translate a generic cache event_id config to a raw event_id code. 1794 */ 1795 static int hw_perf_cache_event(u64 config, u64 *eventp) 1796 { 1797 unsigned long type, op, result; 1798 int ev; 1799 1800 if (!ppmu->cache_events) 1801 return -EINVAL; 1802 1803 /* unpack config */ 1804 type = config & 0xff; 1805 op = (config >> 8) & 0xff; 1806 result = (config >> 16) & 0xff; 1807 1808 if (type >= PERF_COUNT_HW_CACHE_MAX || 1809 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1810 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1811 return -EINVAL; 1812 1813 ev = (*ppmu->cache_events)[type][op][result]; 1814 if (ev == 0) 1815 return -EOPNOTSUPP; 1816 if (ev == -1) 1817 return -EINVAL; 1818 *eventp = ev; 1819 return 0; 1820 } 1821 1822 static bool is_event_blacklisted(u64 ev) 1823 { 1824 int i; 1825 1826 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1827 if (ppmu->blacklist_ev[i] == ev) 1828 return true; 1829 } 1830 1831 return false; 1832 } 1833 1834 static int power_pmu_event_init(struct perf_event *event) 1835 { 1836 u64 ev; 1837 unsigned long flags; 1838 struct perf_event *ctrs[MAX_HWEVENTS]; 1839 u64 events[MAX_HWEVENTS]; 1840 unsigned int cflags[MAX_HWEVENTS]; 1841 int n; 1842 int err; 1843 struct cpu_hw_events *cpuhw; 1844 u64 bhrb_filter; 1845 1846 if (!ppmu) 1847 return -ENOENT; 1848 1849 if (has_branch_stack(event)) { 1850 /* PMU has BHRB enabled */ 1851 if (!(ppmu->flags & PPMU_ARCH_207S)) 1852 return -EOPNOTSUPP; 1853 } 1854 1855 switch (event->attr.type) { 1856 case PERF_TYPE_HARDWARE: 1857 ev = event->attr.config; 1858 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1859 return -EOPNOTSUPP; 1860 1861 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1862 return -EINVAL; 1863 ev = ppmu->generic_events[ev]; 1864 break; 1865 case PERF_TYPE_HW_CACHE: 1866 err = hw_perf_cache_event(event->attr.config, &ev); 1867 if (err) 1868 return err; 1869 1870 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1871 return -EINVAL; 1872 break; 1873 case PERF_TYPE_RAW: 1874 ev = event->attr.config; 1875 1876 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1877 return -EINVAL; 1878 break; 1879 default: 1880 return -ENOENT; 1881 } 1882 1883 event->hw.config_base = ev; 1884 event->hw.idx = 0; 1885 1886 /* 1887 * If we are not running on a hypervisor, force the 1888 * exclude_hv bit to 0 so that we don't care what 1889 * the user set it to. 1890 */ 1891 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1892 event->attr.exclude_hv = 0; 1893 1894 /* 1895 * If this is a per-task event, then we can use 1896 * PM_RUN_* events interchangeably with their non RUN_* 1897 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1898 * XXX we should check if the task is an idle task. 1899 */ 1900 flags = 0; 1901 if (event->attach_state & PERF_ATTACH_TASK) 1902 flags |= PPMU_ONLY_COUNT_RUN; 1903 1904 /* 1905 * If this machine has limited events, check whether this 1906 * event_id could go on a limited event. 1907 */ 1908 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1909 if (can_go_on_limited_pmc(event, ev, flags)) { 1910 flags |= PPMU_LIMITED_PMC_OK; 1911 } else if (ppmu->limited_pmc_event(ev)) { 1912 /* 1913 * The requested event_id is on a limited PMC, 1914 * but we can't use a limited PMC; see if any 1915 * alternative goes on a normal PMC. 1916 */ 1917 ev = normal_pmc_alternative(ev, flags); 1918 if (!ev) 1919 return -EINVAL; 1920 } 1921 } 1922 1923 /* Extra checks for EBB */ 1924 err = ebb_event_check(event); 1925 if (err) 1926 return err; 1927 1928 /* 1929 * If this is in a group, check if it can go on with all the 1930 * other hardware events in the group. We assume the event 1931 * hasn't been linked into its leader's sibling list at this point. 1932 */ 1933 n = 0; 1934 if (event->group_leader != event) { 1935 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1936 ctrs, events, cflags); 1937 if (n < 0) 1938 return -EINVAL; 1939 } 1940 events[n] = ev; 1941 ctrs[n] = event; 1942 cflags[n] = flags; 1943 if (check_excludes(ctrs, cflags, n, 1)) 1944 return -EINVAL; 1945 1946 cpuhw = &get_cpu_var(cpu_hw_events); 1947 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1948 1949 if (has_branch_stack(event)) { 1950 bhrb_filter = ppmu->bhrb_filter_map( 1951 event->attr.branch_sample_type); 1952 1953 if (bhrb_filter == -1) { 1954 put_cpu_var(cpu_hw_events); 1955 return -EOPNOTSUPP; 1956 } 1957 cpuhw->bhrb_filter = bhrb_filter; 1958 } 1959 1960 put_cpu_var(cpu_hw_events); 1961 if (err) 1962 return -EINVAL; 1963 1964 event->hw.config = events[n]; 1965 event->hw.event_base = cflags[n]; 1966 event->hw.last_period = event->hw.sample_period; 1967 local64_set(&event->hw.period_left, event->hw.last_period); 1968 1969 /* 1970 * For EBB events we just context switch the PMC value, we don't do any 1971 * of the sample_period logic. We use hw.prev_count for this. 1972 */ 1973 if (is_ebb_event(event)) 1974 local64_set(&event->hw.prev_count, 0); 1975 1976 /* 1977 * See if we need to reserve the PMU. 1978 * If no events are currently in use, then we have to take a 1979 * mutex to ensure that we don't race with another task doing 1980 * reserve_pmc_hardware or release_pmc_hardware. 1981 */ 1982 err = 0; 1983 if (!atomic_inc_not_zero(&num_events)) { 1984 mutex_lock(&pmc_reserve_mutex); 1985 if (atomic_read(&num_events) == 0 && 1986 reserve_pmc_hardware(perf_event_interrupt)) 1987 err = -EBUSY; 1988 else 1989 atomic_inc(&num_events); 1990 mutex_unlock(&pmc_reserve_mutex); 1991 } 1992 event->destroy = hw_perf_event_destroy; 1993 1994 return err; 1995 } 1996 1997 static int power_pmu_event_idx(struct perf_event *event) 1998 { 1999 return event->hw.idx; 2000 } 2001 2002 ssize_t power_events_sysfs_show(struct device *dev, 2003 struct device_attribute *attr, char *page) 2004 { 2005 struct perf_pmu_events_attr *pmu_attr; 2006 2007 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2008 2009 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2010 } 2011 2012 static struct pmu power_pmu = { 2013 .pmu_enable = power_pmu_enable, 2014 .pmu_disable = power_pmu_disable, 2015 .event_init = power_pmu_event_init, 2016 .add = power_pmu_add, 2017 .del = power_pmu_del, 2018 .start = power_pmu_start, 2019 .stop = power_pmu_stop, 2020 .read = power_pmu_read, 2021 .start_txn = power_pmu_start_txn, 2022 .cancel_txn = power_pmu_cancel_txn, 2023 .commit_txn = power_pmu_commit_txn, 2024 .event_idx = power_pmu_event_idx, 2025 .sched_task = power_pmu_sched_task, 2026 }; 2027 2028 /* 2029 * A counter has overflowed; update its count and record 2030 * things if requested. Note that interrupts are hard-disabled 2031 * here so there is no possibility of being interrupted. 2032 */ 2033 static void record_and_restart(struct perf_event *event, unsigned long val, 2034 struct pt_regs *regs) 2035 { 2036 u64 period = event->hw.sample_period; 2037 s64 prev, delta, left; 2038 int record = 0; 2039 2040 if (event->hw.state & PERF_HES_STOPPED) { 2041 write_pmc(event->hw.idx, 0); 2042 return; 2043 } 2044 2045 /* we don't have to worry about interrupts here */ 2046 prev = local64_read(&event->hw.prev_count); 2047 delta = check_and_compute_delta(prev, val); 2048 local64_add(delta, &event->count); 2049 2050 /* 2051 * See if the total period for this event has expired, 2052 * and update for the next period. 2053 */ 2054 val = 0; 2055 left = local64_read(&event->hw.period_left) - delta; 2056 if (delta == 0) 2057 left++; 2058 if (period) { 2059 if (left <= 0) { 2060 left += period; 2061 if (left <= 0) 2062 left = period; 2063 record = siar_valid(regs); 2064 event->hw.last_period = event->hw.sample_period; 2065 } 2066 if (left < 0x80000000LL) 2067 val = 0x80000000LL - left; 2068 } 2069 2070 write_pmc(event->hw.idx, val); 2071 local64_set(&event->hw.prev_count, val); 2072 local64_set(&event->hw.period_left, left); 2073 perf_event_update_userpage(event); 2074 2075 /* 2076 * Finally record data if requested. 2077 */ 2078 if (record) { 2079 struct perf_sample_data data; 2080 2081 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2082 2083 if (event->attr.sample_type & 2084 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2085 perf_get_data_addr(event, regs, &data.addr); 2086 2087 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2088 struct cpu_hw_events *cpuhw; 2089 cpuhw = this_cpu_ptr(&cpu_hw_events); 2090 power_pmu_bhrb_read(event, cpuhw); 2091 data.br_stack = &cpuhw->bhrb_stack; 2092 } 2093 2094 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2095 ppmu->get_mem_data_src) 2096 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2097 2098 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2099 ppmu->get_mem_weight) 2100 ppmu->get_mem_weight(&data.weight); 2101 2102 if (perf_event_overflow(event, &data, regs)) 2103 power_pmu_stop(event, 0); 2104 } 2105 } 2106 2107 /* 2108 * Called from generic code to get the misc flags (i.e. processor mode) 2109 * for an event_id. 2110 */ 2111 unsigned long perf_misc_flags(struct pt_regs *regs) 2112 { 2113 u32 flags = perf_get_misc_flags(regs); 2114 2115 if (flags) 2116 return flags; 2117 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2118 PERF_RECORD_MISC_KERNEL; 2119 } 2120 2121 /* 2122 * Called from generic code to get the instruction pointer 2123 * for an event_id. 2124 */ 2125 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2126 { 2127 bool use_siar = regs_use_siar(regs); 2128 2129 if (use_siar && siar_valid(regs)) 2130 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2131 else if (use_siar) 2132 return 0; // no valid instruction pointer 2133 else 2134 return regs->nip; 2135 } 2136 2137 static bool pmc_overflow_power7(unsigned long val) 2138 { 2139 /* 2140 * Events on POWER7 can roll back if a speculative event doesn't 2141 * eventually complete. Unfortunately in some rare cases they will 2142 * raise a performance monitor exception. We need to catch this to 2143 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2144 * cycles from overflow. 2145 * 2146 * We only do this if the first pass fails to find any overflowing 2147 * PMCs because a user might set a period of less than 256 and we 2148 * don't want to mistakenly reset them. 2149 */ 2150 if ((0x80000000 - val) <= 256) 2151 return true; 2152 2153 return false; 2154 } 2155 2156 static bool pmc_overflow(unsigned long val) 2157 { 2158 if ((int)val < 0) 2159 return true; 2160 2161 return false; 2162 } 2163 2164 /* 2165 * Performance monitor interrupt stuff 2166 */ 2167 static void __perf_event_interrupt(struct pt_regs *regs) 2168 { 2169 int i, j; 2170 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2171 struct perf_event *event; 2172 unsigned long val[8]; 2173 int found, active; 2174 int nmi; 2175 2176 if (cpuhw->n_limited) 2177 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2178 mfspr(SPRN_PMC6)); 2179 2180 perf_read_regs(regs); 2181 2182 nmi = perf_intr_is_nmi(regs); 2183 if (nmi) 2184 nmi_enter(); 2185 else 2186 irq_enter(); 2187 2188 /* Read all the PMCs since we'll need them a bunch of times */ 2189 for (i = 0; i < ppmu->n_counter; ++i) 2190 val[i] = read_pmc(i + 1); 2191 2192 /* Try to find what caused the IRQ */ 2193 found = 0; 2194 for (i = 0; i < ppmu->n_counter; ++i) { 2195 if (!pmc_overflow(val[i])) 2196 continue; 2197 if (is_limited_pmc(i + 1)) 2198 continue; /* these won't generate IRQs */ 2199 /* 2200 * We've found one that's overflowed. For active 2201 * counters we need to log this. For inactive 2202 * counters, we need to reset it anyway 2203 */ 2204 found = 1; 2205 active = 0; 2206 for (j = 0; j < cpuhw->n_events; ++j) { 2207 event = cpuhw->event[j]; 2208 if (event->hw.idx == (i + 1)) { 2209 active = 1; 2210 record_and_restart(event, val[i], regs); 2211 break; 2212 } 2213 } 2214 if (!active) 2215 /* reset non active counters that have overflowed */ 2216 write_pmc(i + 1, 0); 2217 } 2218 if (!found && pvr_version_is(PVR_POWER7)) { 2219 /* check active counters for special buggy p7 overflow */ 2220 for (i = 0; i < cpuhw->n_events; ++i) { 2221 event = cpuhw->event[i]; 2222 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2223 continue; 2224 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2225 /* event has overflowed in a buggy way*/ 2226 found = 1; 2227 record_and_restart(event, 2228 val[event->hw.idx - 1], 2229 regs); 2230 } 2231 } 2232 } 2233 if (!found && !nmi && printk_ratelimit()) 2234 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2235 2236 /* 2237 * Reset MMCR0 to its normal value. This will set PMXE and 2238 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2239 * and thus allow interrupts to occur again. 2240 * XXX might want to use MSR.PM to keep the events frozen until 2241 * we get back out of this interrupt. 2242 */ 2243 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2244 2245 if (nmi) 2246 nmi_exit(); 2247 else 2248 irq_exit(); 2249 } 2250 2251 static void perf_event_interrupt(struct pt_regs *regs) 2252 { 2253 u64 start_clock = sched_clock(); 2254 2255 __perf_event_interrupt(regs); 2256 perf_sample_event_took(sched_clock() - start_clock); 2257 } 2258 2259 static int power_pmu_prepare_cpu(unsigned int cpu) 2260 { 2261 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2262 2263 if (ppmu) { 2264 memset(cpuhw, 0, sizeof(*cpuhw)); 2265 cpuhw->mmcr[0] = MMCR0_FC; 2266 } 2267 return 0; 2268 } 2269 2270 int register_power_pmu(struct power_pmu *pmu) 2271 { 2272 if (ppmu) 2273 return -EBUSY; /* something's already registered */ 2274 2275 ppmu = pmu; 2276 pr_info("%s performance monitor hardware support registered\n", 2277 pmu->name); 2278 2279 power_pmu.attr_groups = ppmu->attr_groups; 2280 2281 #ifdef MSR_HV 2282 /* 2283 * Use FCHV to ignore kernel events if MSR.HV is set. 2284 */ 2285 if (mfmsr() & MSR_HV) 2286 freeze_events_kernel = MMCR0_FCHV; 2287 #endif /* CONFIG_PPC64 */ 2288 2289 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2290 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2291 power_pmu_prepare_cpu, NULL); 2292 return 0; 2293 } 2294 2295 #ifdef CONFIG_PPC64 2296 static int __init init_ppc64_pmu(void) 2297 { 2298 /* run through all the pmu drivers one at a time */ 2299 if (!init_power5_pmu()) 2300 return 0; 2301 else if (!init_power5p_pmu()) 2302 return 0; 2303 else if (!init_power6_pmu()) 2304 return 0; 2305 else if (!init_power7_pmu()) 2306 return 0; 2307 else if (!init_power8_pmu()) 2308 return 0; 2309 else if (!init_power9_pmu()) 2310 return 0; 2311 else if (!init_ppc970_pmu()) 2312 return 0; 2313 else 2314 return init_generic_compat_pmu(); 2315 } 2316 early_initcall(init_ppc64_pmu); 2317 #endif 2318