xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision cd6d421e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	struct mmcr_regs mmcr;
41 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
42 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
43 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 
47 	unsigned int txn_flags;
48 	int n_txn_start;
49 
50 	/* BHRB bits */
51 	u64				bhrb_filter;	/* BHRB HW branch filter */
52 	unsigned int			bhrb_users;
53 	void				*bhrb_context;
54 	struct	perf_branch_stack	bhrb_stack;
55 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
56 	u64				ic_init;
57 
58 	/* Store the PMC values */
59 	unsigned long pmcs[MAX_HWEVENTS];
60 };
61 
62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63 
64 static struct power_pmu *ppmu;
65 
66 /*
67  * Normally, to ignore kernel events we set the FCS (freeze counters
68  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69  * hypervisor bit set in the MSR, or if we are running on a processor
70  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71  * then we need to use the FCHV bit to ignore kernel events.
72  */
73 static unsigned int freeze_events_kernel = MMCR0_FCS;
74 
75 /*
76  * 32-bit doesn't have MMCRA but does have an MMCR2,
77  * and a few other names are different.
78  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
79  * Define them as zero knowing that any code path accessing
80  * these registers (via mtspr/mfspr) are done under ppmu flag
81  * check for PPMU_ARCH_31 and we will not enter that code path
82  * for 32-bit.
83  */
84 #ifdef CONFIG_PPC32
85 
86 #define MMCR0_FCHV		0
87 #define MMCR0_PMCjCE		MMCR0_PMCnCE
88 #define MMCR0_FC56		0
89 #define MMCR0_PMAO		0
90 #define MMCR0_EBE		0
91 #define MMCR0_BHRBA		0
92 #define MMCR0_PMCC		0
93 #define MMCR0_PMCC_U6		0
94 
95 #define SPRN_MMCRA		SPRN_MMCR2
96 #define SPRN_MMCR3		0
97 #define SPRN_SIER2		0
98 #define SPRN_SIER3		0
99 #define MMCRA_SAMPLE_ENABLE	0
100 #define MMCRA_BHRB_DISABLE     0
101 #define MMCR0_PMCCEXT		0
102 
103 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
104 {
105 	return 0;
106 }
107 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
108 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
109 {
110 	return 0;
111 }
112 static inline void perf_read_regs(struct pt_regs *regs)
113 {
114 	regs->result = 0;
115 }
116 
117 static inline int siar_valid(struct pt_regs *regs)
118 {
119 	return 1;
120 }
121 
122 static bool is_ebb_event(struct perf_event *event) { return false; }
123 static int ebb_event_check(struct perf_event *event) { return 0; }
124 static void ebb_event_add(struct perf_event *event) { }
125 static void ebb_switch_out(unsigned long mmcr0) { }
126 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
127 {
128 	return cpuhw->mmcr.mmcr0;
129 }
130 
131 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
132 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
133 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
134 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
135 static void pmao_restore_workaround(bool ebb) { }
136 #endif /* CONFIG_PPC32 */
137 
138 bool is_sier_available(void)
139 {
140 	if (!ppmu)
141 		return false;
142 
143 	if (ppmu->flags & PPMU_HAS_SIER)
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  * Return PMC value corresponding to the
151  * index passed.
152  */
153 unsigned long get_pmcs_ext_regs(int idx)
154 {
155 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
156 
157 	return cpuhw->pmcs[idx];
158 }
159 
160 static bool regs_use_siar(struct pt_regs *regs)
161 {
162 	/*
163 	 * When we take a performance monitor exception the regs are setup
164 	 * using perf_read_regs() which overloads some fields, in particular
165 	 * regs->result to tell us whether to use SIAR.
166 	 *
167 	 * However if the regs are from another exception, eg. a syscall, then
168 	 * they have not been setup using perf_read_regs() and so regs->result
169 	 * is something random.
170 	 */
171 	return ((TRAP(regs) == 0xf00) && regs->result);
172 }
173 
174 /*
175  * Things that are specific to 64-bit implementations.
176  */
177 #ifdef CONFIG_PPC64
178 
179 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
180 {
181 	unsigned long mmcra = regs->dsisr;
182 
183 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
184 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
185 		if (slot > 1)
186 			return 4 * (slot - 1);
187 	}
188 
189 	return 0;
190 }
191 
192 /*
193  * The user wants a data address recorded.
194  * If we're not doing instruction sampling, give them the SDAR
195  * (sampled data address).  If we are doing instruction sampling, then
196  * only give them the SDAR if it corresponds to the instruction
197  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
198  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
199  */
200 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
201 {
202 	unsigned long mmcra = regs->dsisr;
203 	bool sdar_valid;
204 
205 	if (ppmu->flags & PPMU_HAS_SIER)
206 		sdar_valid = regs->dar & SIER_SDAR_VALID;
207 	else {
208 		unsigned long sdsync;
209 
210 		if (ppmu->flags & PPMU_SIAR_VALID)
211 			sdsync = POWER7P_MMCRA_SDAR_VALID;
212 		else if (ppmu->flags & PPMU_ALT_SIPR)
213 			sdsync = POWER6_MMCRA_SDSYNC;
214 		else if (ppmu->flags & PPMU_NO_SIAR)
215 			sdsync = MMCRA_SAMPLE_ENABLE;
216 		else
217 			sdsync = MMCRA_SDSYNC;
218 
219 		sdar_valid = mmcra & sdsync;
220 	}
221 
222 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
223 		*addrp = mfspr(SPRN_SDAR);
224 
225 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
226 		*addrp = 0;
227 }
228 
229 static bool regs_sihv(struct pt_regs *regs)
230 {
231 	unsigned long sihv = MMCRA_SIHV;
232 
233 	if (ppmu->flags & PPMU_HAS_SIER)
234 		return !!(regs->dar & SIER_SIHV);
235 
236 	if (ppmu->flags & PPMU_ALT_SIPR)
237 		sihv = POWER6_MMCRA_SIHV;
238 
239 	return !!(regs->dsisr & sihv);
240 }
241 
242 static bool regs_sipr(struct pt_regs *regs)
243 {
244 	unsigned long sipr = MMCRA_SIPR;
245 
246 	if (ppmu->flags & PPMU_HAS_SIER)
247 		return !!(regs->dar & SIER_SIPR);
248 
249 	if (ppmu->flags & PPMU_ALT_SIPR)
250 		sipr = POWER6_MMCRA_SIPR;
251 
252 	return !!(regs->dsisr & sipr);
253 }
254 
255 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
256 {
257 	if (regs->msr & MSR_PR)
258 		return PERF_RECORD_MISC_USER;
259 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
260 		return PERF_RECORD_MISC_HYPERVISOR;
261 	return PERF_RECORD_MISC_KERNEL;
262 }
263 
264 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
265 {
266 	bool use_siar = regs_use_siar(regs);
267 	unsigned long mmcra = regs->dsisr;
268 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
269 
270 	if (!use_siar)
271 		return perf_flags_from_msr(regs);
272 
273 	/*
274 	 * Check the address in SIAR to identify the
275 	 * privilege levels since the SIER[MSR_HV, MSR_PR]
276 	 * bits are not set for marked events in power10
277 	 * DD1.
278 	 */
279 	if (marked && (ppmu->flags & PPMU_P10_DD1)) {
280 		unsigned long siar = mfspr(SPRN_SIAR);
281 		if (siar) {
282 			if (is_kernel_addr(siar))
283 				return PERF_RECORD_MISC_KERNEL;
284 			return PERF_RECORD_MISC_USER;
285 		} else {
286 			if (is_kernel_addr(regs->nip))
287 				return PERF_RECORD_MISC_KERNEL;
288 			return PERF_RECORD_MISC_USER;
289 		}
290 	}
291 
292 	/*
293 	 * If we don't have flags in MMCRA, rather than using
294 	 * the MSR, we intuit the flags from the address in
295 	 * SIAR which should give slightly more reliable
296 	 * results
297 	 */
298 	if (ppmu->flags & PPMU_NO_SIPR) {
299 		unsigned long siar = mfspr(SPRN_SIAR);
300 		if (is_kernel_addr(siar))
301 			return PERF_RECORD_MISC_KERNEL;
302 		return PERF_RECORD_MISC_USER;
303 	}
304 
305 	/* PR has priority over HV, so order below is important */
306 	if (regs_sipr(regs))
307 		return PERF_RECORD_MISC_USER;
308 
309 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
310 		return PERF_RECORD_MISC_HYPERVISOR;
311 
312 	return PERF_RECORD_MISC_KERNEL;
313 }
314 
315 /*
316  * Overload regs->dsisr to store MMCRA so we only need to read it once
317  * on each interrupt.
318  * Overload regs->dar to store SIER if we have it.
319  * Overload regs->result to specify whether we should use the MSR (result
320  * is zero) or the SIAR (result is non zero).
321  */
322 static inline void perf_read_regs(struct pt_regs *regs)
323 {
324 	unsigned long mmcra = mfspr(SPRN_MMCRA);
325 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
326 	int use_siar;
327 
328 	regs->dsisr = mmcra;
329 
330 	if (ppmu->flags & PPMU_HAS_SIER)
331 		regs->dar = mfspr(SPRN_SIER);
332 
333 	/*
334 	 * If this isn't a PMU exception (eg a software event) the SIAR is
335 	 * not valid. Use pt_regs.
336 	 *
337 	 * If it is a marked event use the SIAR.
338 	 *
339 	 * If the PMU doesn't update the SIAR for non marked events use
340 	 * pt_regs.
341 	 *
342 	 * If the PMU has HV/PR flags then check to see if they
343 	 * place the exception in userspace. If so, use pt_regs. In
344 	 * continuous sampling mode the SIAR and the PMU exception are
345 	 * not synchronised, so they may be many instructions apart.
346 	 * This can result in confusing backtraces. We still want
347 	 * hypervisor samples as well as samples in the kernel with
348 	 * interrupts off hence the userspace check.
349 	 */
350 	if (TRAP(regs) != 0xf00)
351 		use_siar = 0;
352 	else if ((ppmu->flags & PPMU_NO_SIAR))
353 		use_siar = 0;
354 	else if (marked)
355 		use_siar = 1;
356 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
357 		use_siar = 0;
358 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
359 		use_siar = 0;
360 	else
361 		use_siar = 1;
362 
363 	regs->result = use_siar;
364 }
365 
366 /*
367  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
368  * must be sampled only if the SIAR-valid bit is set.
369  *
370  * For unmarked instructions and for processors that don't have the SIAR-Valid
371  * bit, assume that SIAR is valid.
372  */
373 static inline int siar_valid(struct pt_regs *regs)
374 {
375 	unsigned long mmcra = regs->dsisr;
376 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
377 
378 	if (marked) {
379 		/*
380 		 * SIER[SIAR_VALID] is not set for some
381 		 * marked events on power10 DD1, so drop
382 		 * the check for SIER[SIAR_VALID] and return true.
383 		 */
384 		if (ppmu->flags & PPMU_P10_DD1)
385 			return 0x1;
386 		else if (ppmu->flags & PPMU_HAS_SIER)
387 			return regs->dar & SIER_SIAR_VALID;
388 
389 		if (ppmu->flags & PPMU_SIAR_VALID)
390 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
391 	}
392 
393 	return 1;
394 }
395 
396 
397 /* Reset all possible BHRB entries */
398 static void power_pmu_bhrb_reset(void)
399 {
400 	asm volatile(PPC_CLRBHRB);
401 }
402 
403 static void power_pmu_bhrb_enable(struct perf_event *event)
404 {
405 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
406 
407 	if (!ppmu->bhrb_nr)
408 		return;
409 
410 	/* Clear BHRB if we changed task context to avoid data leaks */
411 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
412 		power_pmu_bhrb_reset();
413 		cpuhw->bhrb_context = event->ctx;
414 	}
415 	cpuhw->bhrb_users++;
416 	perf_sched_cb_inc(event->ctx->pmu);
417 }
418 
419 static void power_pmu_bhrb_disable(struct perf_event *event)
420 {
421 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
422 
423 	if (!ppmu->bhrb_nr)
424 		return;
425 
426 	WARN_ON_ONCE(!cpuhw->bhrb_users);
427 	cpuhw->bhrb_users--;
428 	perf_sched_cb_dec(event->ctx->pmu);
429 
430 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
431 		/* BHRB cannot be turned off when other
432 		 * events are active on the PMU.
433 		 */
434 
435 		/* avoid stale pointer */
436 		cpuhw->bhrb_context = NULL;
437 	}
438 }
439 
440 /* Called from ctxsw to prevent one process's branch entries to
441  * mingle with the other process's entries during context switch.
442  */
443 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
444 {
445 	if (!ppmu->bhrb_nr)
446 		return;
447 
448 	if (sched_in)
449 		power_pmu_bhrb_reset();
450 }
451 /* Calculate the to address for a branch */
452 static __u64 power_pmu_bhrb_to(u64 addr)
453 {
454 	unsigned int instr;
455 	__u64 target;
456 
457 	if (is_kernel_addr(addr)) {
458 		if (copy_from_kernel_nofault(&instr, (void *)addr,
459 				sizeof(instr)))
460 			return 0;
461 
462 		return branch_target((struct ppc_inst *)&instr);
463 	}
464 
465 	/* Userspace: need copy instruction here then translate it */
466 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
467 			sizeof(instr)))
468 		return 0;
469 
470 	target = branch_target((struct ppc_inst *)&instr);
471 	if ((!target) || (instr & BRANCH_ABSOLUTE))
472 		return target;
473 
474 	/* Translate relative branch target from kernel to user address */
475 	return target - (unsigned long)&instr + addr;
476 }
477 
478 /* Processing BHRB entries */
479 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
480 {
481 	u64 val;
482 	u64 addr;
483 	int r_index, u_index, pred;
484 
485 	r_index = 0;
486 	u_index = 0;
487 	while (r_index < ppmu->bhrb_nr) {
488 		/* Assembly read function */
489 		val = read_bhrb(r_index++);
490 		if (!val)
491 			/* Terminal marker: End of valid BHRB entries */
492 			break;
493 		else {
494 			addr = val & BHRB_EA;
495 			pred = val & BHRB_PREDICTION;
496 
497 			if (!addr)
498 				/* invalid entry */
499 				continue;
500 
501 			/*
502 			 * BHRB rolling buffer could very much contain the kernel
503 			 * addresses at this point. Check the privileges before
504 			 * exporting it to userspace (avoid exposure of regions
505 			 * where we could have speculative execution)
506 			 * Incase of ISA v3.1, BHRB will capture only user-space
507 			 * addresses, hence include a check before filtering code
508 			 */
509 			if (!(ppmu->flags & PPMU_ARCH_31) &&
510 			    is_kernel_addr(addr) && event->attr.exclude_kernel)
511 				continue;
512 
513 			/* Branches are read most recent first (ie. mfbhrb 0 is
514 			 * the most recent branch).
515 			 * There are two types of valid entries:
516 			 * 1) a target entry which is the to address of a
517 			 *    computed goto like a blr,bctr,btar.  The next
518 			 *    entry read from the bhrb will be branch
519 			 *    corresponding to this target (ie. the actual
520 			 *    blr/bctr/btar instruction).
521 			 * 2) a from address which is an actual branch.  If a
522 			 *    target entry proceeds this, then this is the
523 			 *    matching branch for that target.  If this is not
524 			 *    following a target entry, then this is a branch
525 			 *    where the target is given as an immediate field
526 			 *    in the instruction (ie. an i or b form branch).
527 			 *    In this case we need to read the instruction from
528 			 *    memory to determine the target/to address.
529 			 */
530 
531 			if (val & BHRB_TARGET) {
532 				/* Target branches use two entries
533 				 * (ie. computed gotos/XL form)
534 				 */
535 				cpuhw->bhrb_entries[u_index].to = addr;
536 				cpuhw->bhrb_entries[u_index].mispred = pred;
537 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
538 
539 				/* Get from address in next entry */
540 				val = read_bhrb(r_index++);
541 				addr = val & BHRB_EA;
542 				if (val & BHRB_TARGET) {
543 					/* Shouldn't have two targets in a
544 					   row.. Reset index and try again */
545 					r_index--;
546 					addr = 0;
547 				}
548 				cpuhw->bhrb_entries[u_index].from = addr;
549 			} else {
550 				/* Branches to immediate field
551 				   (ie I or B form) */
552 				cpuhw->bhrb_entries[u_index].from = addr;
553 				cpuhw->bhrb_entries[u_index].to =
554 					power_pmu_bhrb_to(addr);
555 				cpuhw->bhrb_entries[u_index].mispred = pred;
556 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
557 			}
558 			u_index++;
559 
560 		}
561 	}
562 	cpuhw->bhrb_stack.nr = u_index;
563 	cpuhw->bhrb_stack.hw_idx = -1ULL;
564 	return;
565 }
566 
567 static bool is_ebb_event(struct perf_event *event)
568 {
569 	/*
570 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
571 	 * check that the PMU supports EBB, meaning those that don't can still
572 	 * use bit 63 of the event code for something else if they wish.
573 	 */
574 	return (ppmu->flags & PPMU_ARCH_207S) &&
575 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
576 }
577 
578 static int ebb_event_check(struct perf_event *event)
579 {
580 	struct perf_event *leader = event->group_leader;
581 
582 	/* Event and group leader must agree on EBB */
583 	if (is_ebb_event(leader) != is_ebb_event(event))
584 		return -EINVAL;
585 
586 	if (is_ebb_event(event)) {
587 		if (!(event->attach_state & PERF_ATTACH_TASK))
588 			return -EINVAL;
589 
590 		if (!leader->attr.pinned || !leader->attr.exclusive)
591 			return -EINVAL;
592 
593 		if (event->attr.freq ||
594 		    event->attr.inherit ||
595 		    event->attr.sample_type ||
596 		    event->attr.sample_period ||
597 		    event->attr.enable_on_exec)
598 			return -EINVAL;
599 	}
600 
601 	return 0;
602 }
603 
604 static void ebb_event_add(struct perf_event *event)
605 {
606 	if (!is_ebb_event(event) || current->thread.used_ebb)
607 		return;
608 
609 	/*
610 	 * IFF this is the first time we've added an EBB event, set
611 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
612 	 * userspace. We need this so that we can context switch while
613 	 * userspace is in the EBB handler (where PMXE is 0).
614 	 */
615 	current->thread.used_ebb = 1;
616 	current->thread.mmcr0 |= MMCR0_PMXE;
617 }
618 
619 static void ebb_switch_out(unsigned long mmcr0)
620 {
621 	if (!(mmcr0 & MMCR0_EBE))
622 		return;
623 
624 	current->thread.siar  = mfspr(SPRN_SIAR);
625 	current->thread.sier  = mfspr(SPRN_SIER);
626 	current->thread.sdar  = mfspr(SPRN_SDAR);
627 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
628 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
629 	if (ppmu->flags & PPMU_ARCH_31) {
630 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
631 		current->thread.sier2 = mfspr(SPRN_SIER2);
632 		current->thread.sier3 = mfspr(SPRN_SIER3);
633 	}
634 }
635 
636 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
637 {
638 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
639 
640 	if (!ebb)
641 		goto out;
642 
643 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
644 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
645 
646 	/*
647 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
648 	 * with pmao_restore_workaround() because we may add PMAO but we never
649 	 * clear it here.
650 	 */
651 	mmcr0 |= current->thread.mmcr0;
652 
653 	/*
654 	 * Be careful not to set PMXE if userspace had it cleared. This is also
655 	 * compatible with pmao_restore_workaround() because it has already
656 	 * cleared PMXE and we leave PMAO alone.
657 	 */
658 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
659 		mmcr0 &= ~MMCR0_PMXE;
660 
661 	mtspr(SPRN_SIAR, current->thread.siar);
662 	mtspr(SPRN_SIER, current->thread.sier);
663 	mtspr(SPRN_SDAR, current->thread.sdar);
664 
665 	/*
666 	 * Merge the kernel & user values of MMCR2. The semantics we implement
667 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
668 	 * but not clear bits. If a task wants to be able to clear bits, ie.
669 	 * unfreeze counters, it should not set exclude_xxx in its events and
670 	 * instead manage the MMCR2 entirely by itself.
671 	 */
672 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
673 
674 	if (ppmu->flags & PPMU_ARCH_31) {
675 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
676 		mtspr(SPRN_SIER2, current->thread.sier2);
677 		mtspr(SPRN_SIER3, current->thread.sier3);
678 	}
679 out:
680 	return mmcr0;
681 }
682 
683 static void pmao_restore_workaround(bool ebb)
684 {
685 	unsigned pmcs[6];
686 
687 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
688 		return;
689 
690 	/*
691 	 * On POWER8E there is a hardware defect which affects the PMU context
692 	 * switch logic, ie. power_pmu_disable/enable().
693 	 *
694 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
695 	 * by the hardware. Sometime later the actual PMU exception is
696 	 * delivered.
697 	 *
698 	 * If we context switch, or simply disable/enable, the PMU prior to the
699 	 * exception arriving, the exception will be lost when we clear PMAO.
700 	 *
701 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
702 	 * set, and this _should_ generate an exception. However because of the
703 	 * defect no exception is generated when we write PMAO, and we get
704 	 * stuck with no counters counting but no exception delivered.
705 	 *
706 	 * The workaround is to detect this case and tweak the hardware to
707 	 * create another pending PMU exception.
708 	 *
709 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
710 	 * enabling the PMU. That causes a new exception to be generated in the
711 	 * chip, but we don't take it yet because we have interrupts hard
712 	 * disabled. We then write back the PMU state as we want it to be seen
713 	 * by the exception handler. When we reenable interrupts the exception
714 	 * handler will be called and see the correct state.
715 	 *
716 	 * The logic is the same for EBB, except that the exception is gated by
717 	 * us having interrupts hard disabled as well as the fact that we are
718 	 * not in userspace. The exception is finally delivered when we return
719 	 * to userspace.
720 	 */
721 
722 	/* Only if PMAO is set and PMAO_SYNC is clear */
723 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
724 		return;
725 
726 	/* If we're doing EBB, only if BESCR[GE] is set */
727 	if (ebb && !(current->thread.bescr & BESCR_GE))
728 		return;
729 
730 	/*
731 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
732 	 * disable to actually prevent the PMU exception from firing.
733 	 */
734 	hard_irq_disable();
735 
736 	/*
737 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
738 	 * Using read/write_pmc() in a for loop adds 12 function calls and
739 	 * almost doubles our code size.
740 	 */
741 	pmcs[0] = mfspr(SPRN_PMC1);
742 	pmcs[1] = mfspr(SPRN_PMC2);
743 	pmcs[2] = mfspr(SPRN_PMC3);
744 	pmcs[3] = mfspr(SPRN_PMC4);
745 	pmcs[4] = mfspr(SPRN_PMC5);
746 	pmcs[5] = mfspr(SPRN_PMC6);
747 
748 	/* Ensure all freeze bits are unset */
749 	mtspr(SPRN_MMCR2, 0);
750 
751 	/* Set up PMC6 to overflow in one cycle */
752 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
753 
754 	/* Enable exceptions and unfreeze PMC6 */
755 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
756 
757 	/* Now we need to refreeze and restore the PMCs */
758 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
759 
760 	mtspr(SPRN_PMC1, pmcs[0]);
761 	mtspr(SPRN_PMC2, pmcs[1]);
762 	mtspr(SPRN_PMC3, pmcs[2]);
763 	mtspr(SPRN_PMC4, pmcs[3]);
764 	mtspr(SPRN_PMC5, pmcs[4]);
765 	mtspr(SPRN_PMC6, pmcs[5]);
766 }
767 
768 #endif /* CONFIG_PPC64 */
769 
770 static void perf_event_interrupt(struct pt_regs *regs);
771 
772 /*
773  * Read one performance monitor counter (PMC).
774  */
775 static unsigned long read_pmc(int idx)
776 {
777 	unsigned long val;
778 
779 	switch (idx) {
780 	case 1:
781 		val = mfspr(SPRN_PMC1);
782 		break;
783 	case 2:
784 		val = mfspr(SPRN_PMC2);
785 		break;
786 	case 3:
787 		val = mfspr(SPRN_PMC3);
788 		break;
789 	case 4:
790 		val = mfspr(SPRN_PMC4);
791 		break;
792 	case 5:
793 		val = mfspr(SPRN_PMC5);
794 		break;
795 	case 6:
796 		val = mfspr(SPRN_PMC6);
797 		break;
798 #ifdef CONFIG_PPC64
799 	case 7:
800 		val = mfspr(SPRN_PMC7);
801 		break;
802 	case 8:
803 		val = mfspr(SPRN_PMC8);
804 		break;
805 #endif /* CONFIG_PPC64 */
806 	default:
807 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
808 		val = 0;
809 	}
810 	return val;
811 }
812 
813 /*
814  * Write one PMC.
815  */
816 static void write_pmc(int idx, unsigned long val)
817 {
818 	switch (idx) {
819 	case 1:
820 		mtspr(SPRN_PMC1, val);
821 		break;
822 	case 2:
823 		mtspr(SPRN_PMC2, val);
824 		break;
825 	case 3:
826 		mtspr(SPRN_PMC3, val);
827 		break;
828 	case 4:
829 		mtspr(SPRN_PMC4, val);
830 		break;
831 	case 5:
832 		mtspr(SPRN_PMC5, val);
833 		break;
834 	case 6:
835 		mtspr(SPRN_PMC6, val);
836 		break;
837 #ifdef CONFIG_PPC64
838 	case 7:
839 		mtspr(SPRN_PMC7, val);
840 		break;
841 	case 8:
842 		mtspr(SPRN_PMC8, val);
843 		break;
844 #endif /* CONFIG_PPC64 */
845 	default:
846 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
847 	}
848 }
849 
850 /* Called from sysrq_handle_showregs() */
851 void perf_event_print_debug(void)
852 {
853 	unsigned long sdar, sier, flags;
854 	u32 pmcs[MAX_HWEVENTS];
855 	int i;
856 
857 	if (!ppmu) {
858 		pr_info("Performance monitor hardware not registered.\n");
859 		return;
860 	}
861 
862 	if (!ppmu->n_counter)
863 		return;
864 
865 	local_irq_save(flags);
866 
867 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
868 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
869 
870 	for (i = 0; i < ppmu->n_counter; i++)
871 		pmcs[i] = read_pmc(i + 1);
872 
873 	for (; i < MAX_HWEVENTS; i++)
874 		pmcs[i] = 0xdeadbeef;
875 
876 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
877 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
878 
879 	if (ppmu->n_counter > 4)
880 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
881 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
882 
883 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
884 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
885 
886 	sdar = sier = 0;
887 #ifdef CONFIG_PPC64
888 	sdar = mfspr(SPRN_SDAR);
889 
890 	if (ppmu->flags & PPMU_HAS_SIER)
891 		sier = mfspr(SPRN_SIER);
892 
893 	if (ppmu->flags & PPMU_ARCH_207S) {
894 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
895 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
896 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
897 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
898 	}
899 
900 	if (ppmu->flags & PPMU_ARCH_31) {
901 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
902 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
903 	}
904 #endif
905 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
906 		mfspr(SPRN_SIAR), sdar, sier);
907 
908 	local_irq_restore(flags);
909 }
910 
911 /*
912  * Check if a set of events can all go on the PMU at once.
913  * If they can't, this will look at alternative codes for the events
914  * and see if any combination of alternative codes is feasible.
915  * The feasible set is returned in event_id[].
916  */
917 static int power_check_constraints(struct cpu_hw_events *cpuhw,
918 				   u64 event_id[], unsigned int cflags[],
919 				   int n_ev, struct perf_event **event)
920 {
921 	unsigned long mask, value, nv;
922 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
923 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
924 	int i, j;
925 	unsigned long addf = ppmu->add_fields;
926 	unsigned long tadd = ppmu->test_adder;
927 	unsigned long grp_mask = ppmu->group_constraint_mask;
928 	unsigned long grp_val = ppmu->group_constraint_val;
929 
930 	if (n_ev > ppmu->n_counter)
931 		return -1;
932 
933 	/* First see if the events will go on as-is */
934 	for (i = 0; i < n_ev; ++i) {
935 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
936 		    && !ppmu->limited_pmc_event(event_id[i])) {
937 			ppmu->get_alternatives(event_id[i], cflags[i],
938 					       cpuhw->alternatives[i]);
939 			event_id[i] = cpuhw->alternatives[i][0];
940 		}
941 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
942 					 &cpuhw->avalues[i][0], event[i]->attr.config1))
943 			return -1;
944 	}
945 	value = mask = 0;
946 	for (i = 0; i < n_ev; ++i) {
947 		nv = (value | cpuhw->avalues[i][0]) +
948 			(value & cpuhw->avalues[i][0] & addf);
949 
950 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
951 			break;
952 
953 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
954 			& (~grp_mask)) != 0)
955 			break;
956 
957 		value = nv;
958 		mask |= cpuhw->amasks[i][0];
959 	}
960 	if (i == n_ev) {
961 		if ((value & mask & grp_mask) != (mask & grp_val))
962 			return -1;
963 		else
964 			return 0;	/* all OK */
965 	}
966 
967 	/* doesn't work, gather alternatives... */
968 	if (!ppmu->get_alternatives)
969 		return -1;
970 	for (i = 0; i < n_ev; ++i) {
971 		choice[i] = 0;
972 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
973 						  cpuhw->alternatives[i]);
974 		for (j = 1; j < n_alt[i]; ++j)
975 			ppmu->get_constraint(cpuhw->alternatives[i][j],
976 					     &cpuhw->amasks[i][j],
977 					     &cpuhw->avalues[i][j],
978 					     event[i]->attr.config1);
979 	}
980 
981 	/* enumerate all possibilities and see if any will work */
982 	i = 0;
983 	j = -1;
984 	value = mask = nv = 0;
985 	while (i < n_ev) {
986 		if (j >= 0) {
987 			/* we're backtracking, restore context */
988 			value = svalues[i];
989 			mask = smasks[i];
990 			j = choice[i];
991 		}
992 		/*
993 		 * See if any alternative k for event_id i,
994 		 * where k > j, will satisfy the constraints.
995 		 */
996 		while (++j < n_alt[i]) {
997 			nv = (value | cpuhw->avalues[i][j]) +
998 				(value & cpuhw->avalues[i][j] & addf);
999 			if ((((nv + tadd) ^ value) & mask) == 0 &&
1000 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
1001 			     & cpuhw->amasks[i][j]) == 0)
1002 				break;
1003 		}
1004 		if (j >= n_alt[i]) {
1005 			/*
1006 			 * No feasible alternative, backtrack
1007 			 * to event_id i-1 and continue enumerating its
1008 			 * alternatives from where we got up to.
1009 			 */
1010 			if (--i < 0)
1011 				return -1;
1012 		} else {
1013 			/*
1014 			 * Found a feasible alternative for event_id i,
1015 			 * remember where we got up to with this event_id,
1016 			 * go on to the next event_id, and start with
1017 			 * the first alternative for it.
1018 			 */
1019 			choice[i] = j;
1020 			svalues[i] = value;
1021 			smasks[i] = mask;
1022 			value = nv;
1023 			mask |= cpuhw->amasks[i][j];
1024 			++i;
1025 			j = -1;
1026 		}
1027 	}
1028 
1029 	/* OK, we have a feasible combination, tell the caller the solution */
1030 	for (i = 0; i < n_ev; ++i)
1031 		event_id[i] = cpuhw->alternatives[i][choice[i]];
1032 	return 0;
1033 }
1034 
1035 /*
1036  * Check if newly-added events have consistent settings for
1037  * exclude_{user,kernel,hv} with each other and any previously
1038  * added events.
1039  */
1040 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1041 			  int n_prev, int n_new)
1042 {
1043 	int eu = 0, ek = 0, eh = 0;
1044 	int i, n, first;
1045 	struct perf_event *event;
1046 
1047 	/*
1048 	 * If the PMU we're on supports per event exclude settings then we
1049 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1050 	 * per event exclude and limited PMCs.
1051 	 */
1052 	if (ppmu->flags & PPMU_ARCH_207S)
1053 		return 0;
1054 
1055 	n = n_prev + n_new;
1056 	if (n <= 1)
1057 		return 0;
1058 
1059 	first = 1;
1060 	for (i = 0; i < n; ++i) {
1061 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1062 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1063 			continue;
1064 		}
1065 		event = ctrs[i];
1066 		if (first) {
1067 			eu = event->attr.exclude_user;
1068 			ek = event->attr.exclude_kernel;
1069 			eh = event->attr.exclude_hv;
1070 			first = 0;
1071 		} else if (event->attr.exclude_user != eu ||
1072 			   event->attr.exclude_kernel != ek ||
1073 			   event->attr.exclude_hv != eh) {
1074 			return -EAGAIN;
1075 		}
1076 	}
1077 
1078 	if (eu || ek || eh)
1079 		for (i = 0; i < n; ++i)
1080 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1081 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1082 
1083 	return 0;
1084 }
1085 
1086 static u64 check_and_compute_delta(u64 prev, u64 val)
1087 {
1088 	u64 delta = (val - prev) & 0xfffffffful;
1089 
1090 	/*
1091 	 * POWER7 can roll back counter values, if the new value is smaller
1092 	 * than the previous value it will cause the delta and the counter to
1093 	 * have bogus values unless we rolled a counter over.  If a coutner is
1094 	 * rolled back, it will be smaller, but within 256, which is the maximum
1095 	 * number of events to rollback at once.  If we detect a rollback
1096 	 * return 0.  This can lead to a small lack of precision in the
1097 	 * counters.
1098 	 */
1099 	if (prev > val && (prev - val) < 256)
1100 		delta = 0;
1101 
1102 	return delta;
1103 }
1104 
1105 static void power_pmu_read(struct perf_event *event)
1106 {
1107 	s64 val, delta, prev;
1108 
1109 	if (event->hw.state & PERF_HES_STOPPED)
1110 		return;
1111 
1112 	if (!event->hw.idx)
1113 		return;
1114 
1115 	if (is_ebb_event(event)) {
1116 		val = read_pmc(event->hw.idx);
1117 		local64_set(&event->hw.prev_count, val);
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * Performance monitor interrupts come even when interrupts
1123 	 * are soft-disabled, as long as interrupts are hard-enabled.
1124 	 * Therefore we treat them like NMIs.
1125 	 */
1126 	do {
1127 		prev = local64_read(&event->hw.prev_count);
1128 		barrier();
1129 		val = read_pmc(event->hw.idx);
1130 		delta = check_and_compute_delta(prev, val);
1131 		if (!delta)
1132 			return;
1133 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1134 
1135 	local64_add(delta, &event->count);
1136 
1137 	/*
1138 	 * A number of places program the PMC with (0x80000000 - period_left).
1139 	 * We never want period_left to be less than 1 because we will program
1140 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1141 	 * roll around to 0 before taking an exception. We have seen this
1142 	 * on POWER8.
1143 	 *
1144 	 * To fix this, clamp the minimum value of period_left to 1.
1145 	 */
1146 	do {
1147 		prev = local64_read(&event->hw.period_left);
1148 		val = prev - delta;
1149 		if (val < 1)
1150 			val = 1;
1151 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1152 }
1153 
1154 /*
1155  * On some machines, PMC5 and PMC6 can't be written, don't respect
1156  * the freeze conditions, and don't generate interrupts.  This tells
1157  * us if `event' is using such a PMC.
1158  */
1159 static int is_limited_pmc(int pmcnum)
1160 {
1161 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1162 		&& (pmcnum == 5 || pmcnum == 6);
1163 }
1164 
1165 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1166 				    unsigned long pmc5, unsigned long pmc6)
1167 {
1168 	struct perf_event *event;
1169 	u64 val, prev, delta;
1170 	int i;
1171 
1172 	for (i = 0; i < cpuhw->n_limited; ++i) {
1173 		event = cpuhw->limited_counter[i];
1174 		if (!event->hw.idx)
1175 			continue;
1176 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1177 		prev = local64_read(&event->hw.prev_count);
1178 		event->hw.idx = 0;
1179 		delta = check_and_compute_delta(prev, val);
1180 		if (delta)
1181 			local64_add(delta, &event->count);
1182 	}
1183 }
1184 
1185 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1186 				  unsigned long pmc5, unsigned long pmc6)
1187 {
1188 	struct perf_event *event;
1189 	u64 val, prev;
1190 	int i;
1191 
1192 	for (i = 0; i < cpuhw->n_limited; ++i) {
1193 		event = cpuhw->limited_counter[i];
1194 		event->hw.idx = cpuhw->limited_hwidx[i];
1195 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1196 		prev = local64_read(&event->hw.prev_count);
1197 		if (check_and_compute_delta(prev, val))
1198 			local64_set(&event->hw.prev_count, val);
1199 		perf_event_update_userpage(event);
1200 	}
1201 }
1202 
1203 /*
1204  * Since limited events don't respect the freeze conditions, we
1205  * have to read them immediately after freezing or unfreezing the
1206  * other events.  We try to keep the values from the limited
1207  * events as consistent as possible by keeping the delay (in
1208  * cycles and instructions) between freezing/unfreezing and reading
1209  * the limited events as small and consistent as possible.
1210  * Therefore, if any limited events are in use, we read them
1211  * both, and always in the same order, to minimize variability,
1212  * and do it inside the same asm that writes MMCR0.
1213  */
1214 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1215 {
1216 	unsigned long pmc5, pmc6;
1217 
1218 	if (!cpuhw->n_limited) {
1219 		mtspr(SPRN_MMCR0, mmcr0);
1220 		return;
1221 	}
1222 
1223 	/*
1224 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1225 	 * To ensure we don't get a performance monitor interrupt
1226 	 * between writing MMCR0 and freezing/thawing the limited
1227 	 * events, we first write MMCR0 with the event overflow
1228 	 * interrupt enable bits turned off.
1229 	 */
1230 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1231 		     : "=&r" (pmc5), "=&r" (pmc6)
1232 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1233 		       "i" (SPRN_MMCR0),
1234 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1235 
1236 	if (mmcr0 & MMCR0_FC)
1237 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1238 	else
1239 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1240 
1241 	/*
1242 	 * Write the full MMCR0 including the event overflow interrupt
1243 	 * enable bits, if necessary.
1244 	 */
1245 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1246 		mtspr(SPRN_MMCR0, mmcr0);
1247 }
1248 
1249 /*
1250  * Disable all events to prevent PMU interrupts and to allow
1251  * events to be added or removed.
1252  */
1253 static void power_pmu_disable(struct pmu *pmu)
1254 {
1255 	struct cpu_hw_events *cpuhw;
1256 	unsigned long flags, mmcr0, val, mmcra;
1257 
1258 	if (!ppmu)
1259 		return;
1260 	local_irq_save(flags);
1261 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1262 
1263 	if (!cpuhw->disabled) {
1264 		/*
1265 		 * Check if we ever enabled the PMU on this cpu.
1266 		 */
1267 		if (!cpuhw->pmcs_enabled) {
1268 			ppc_enable_pmcs();
1269 			cpuhw->pmcs_enabled = 1;
1270 		}
1271 
1272 		/*
1273 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1274 		 */
1275 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1276 		val |= MMCR0_FC;
1277 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1278 			 MMCR0_FC56);
1279 		/* Set mmcr0 PMCCEXT for p10 */
1280 		if (ppmu->flags & PPMU_ARCH_31)
1281 			val |= MMCR0_PMCCEXT;
1282 
1283 		/*
1284 		 * The barrier is to make sure the mtspr has been
1285 		 * executed and the PMU has frozen the events etc.
1286 		 * before we return.
1287 		 */
1288 		write_mmcr0(cpuhw, val);
1289 		mb();
1290 		isync();
1291 
1292 		val = mmcra = cpuhw->mmcr.mmcra;
1293 
1294 		/*
1295 		 * Disable instruction sampling if it was enabled
1296 		 */
1297 		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1298 			val &= ~MMCRA_SAMPLE_ENABLE;
1299 
1300 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1301 		if (ppmu->flags & PPMU_ARCH_31)
1302 			val |= MMCRA_BHRB_DISABLE;
1303 
1304 		/*
1305 		 * Write SPRN_MMCRA if mmcra has either disabled
1306 		 * instruction sampling or BHRB.
1307 		 */
1308 		if (val != mmcra) {
1309 			mtspr(SPRN_MMCRA, mmcra);
1310 			mb();
1311 			isync();
1312 		}
1313 
1314 		cpuhw->disabled = 1;
1315 		cpuhw->n_added = 0;
1316 
1317 		ebb_switch_out(mmcr0);
1318 
1319 #ifdef CONFIG_PPC64
1320 		/*
1321 		 * These are readable by userspace, may contain kernel
1322 		 * addresses and are not switched by context switch, so clear
1323 		 * them now to avoid leaking anything to userspace in general
1324 		 * including to another process.
1325 		 */
1326 		if (ppmu->flags & PPMU_ARCH_207S) {
1327 			mtspr(SPRN_SDAR, 0);
1328 			mtspr(SPRN_SIAR, 0);
1329 		}
1330 #endif
1331 	}
1332 
1333 	local_irq_restore(flags);
1334 }
1335 
1336 /*
1337  * Re-enable all events if disable == 0.
1338  * If we were previously disabled and events were added, then
1339  * put the new config on the PMU.
1340  */
1341 static void power_pmu_enable(struct pmu *pmu)
1342 {
1343 	struct perf_event *event;
1344 	struct cpu_hw_events *cpuhw;
1345 	unsigned long flags;
1346 	long i;
1347 	unsigned long val, mmcr0;
1348 	s64 left;
1349 	unsigned int hwc_index[MAX_HWEVENTS];
1350 	int n_lim;
1351 	int idx;
1352 	bool ebb;
1353 
1354 	if (!ppmu)
1355 		return;
1356 	local_irq_save(flags);
1357 
1358 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1359 	if (!cpuhw->disabled)
1360 		goto out;
1361 
1362 	if (cpuhw->n_events == 0) {
1363 		ppc_set_pmu_inuse(0);
1364 		goto out;
1365 	}
1366 
1367 	cpuhw->disabled = 0;
1368 
1369 	/*
1370 	 * EBB requires an exclusive group and all events must have the EBB
1371 	 * flag set, or not set, so we can just check a single event. Also we
1372 	 * know we have at least one event.
1373 	 */
1374 	ebb = is_ebb_event(cpuhw->event[0]);
1375 
1376 	/*
1377 	 * If we didn't change anything, or only removed events,
1378 	 * no need to recalculate MMCR* settings and reset the PMCs.
1379 	 * Just reenable the PMU with the current MMCR* settings
1380 	 * (possibly updated for removal of events).
1381 	 */
1382 	if (!cpuhw->n_added) {
1383 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1384 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1385 		if (ppmu->flags & PPMU_ARCH_31)
1386 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1387 		goto out_enable;
1388 	}
1389 
1390 	/*
1391 	 * Clear all MMCR settings and recompute them for the new set of events.
1392 	 */
1393 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1394 
1395 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1396 			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1397 		/* shouldn't ever get here */
1398 		printk(KERN_ERR "oops compute_mmcr failed\n");
1399 		goto out;
1400 	}
1401 
1402 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1403 		/*
1404 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1405 		 * bits for the first event. We have already checked that all
1406 		 * events have the same value for these bits as the first event.
1407 		 */
1408 		event = cpuhw->event[0];
1409 		if (event->attr.exclude_user)
1410 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1411 		if (event->attr.exclude_kernel)
1412 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1413 		if (event->attr.exclude_hv)
1414 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1415 	}
1416 
1417 	/*
1418 	 * Write the new configuration to MMCR* with the freeze
1419 	 * bit set and set the hardware events to their initial values.
1420 	 * Then unfreeze the events.
1421 	 */
1422 	ppc_set_pmu_inuse(1);
1423 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1424 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1425 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1426 				| MMCR0_FC);
1427 	if (ppmu->flags & PPMU_ARCH_207S)
1428 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1429 
1430 	if (ppmu->flags & PPMU_ARCH_31)
1431 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1432 
1433 	/*
1434 	 * Read off any pre-existing events that need to move
1435 	 * to another PMC.
1436 	 */
1437 	for (i = 0; i < cpuhw->n_events; ++i) {
1438 		event = cpuhw->event[i];
1439 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1440 			power_pmu_read(event);
1441 			write_pmc(event->hw.idx, 0);
1442 			event->hw.idx = 0;
1443 		}
1444 	}
1445 
1446 	/*
1447 	 * Initialize the PMCs for all the new and moved events.
1448 	 */
1449 	cpuhw->n_limited = n_lim = 0;
1450 	for (i = 0; i < cpuhw->n_events; ++i) {
1451 		event = cpuhw->event[i];
1452 		if (event->hw.idx)
1453 			continue;
1454 		idx = hwc_index[i] + 1;
1455 		if (is_limited_pmc(idx)) {
1456 			cpuhw->limited_counter[n_lim] = event;
1457 			cpuhw->limited_hwidx[n_lim] = idx;
1458 			++n_lim;
1459 			continue;
1460 		}
1461 
1462 		if (ebb)
1463 			val = local64_read(&event->hw.prev_count);
1464 		else {
1465 			val = 0;
1466 			if (event->hw.sample_period) {
1467 				left = local64_read(&event->hw.period_left);
1468 				if (left < 0x80000000L)
1469 					val = 0x80000000L - left;
1470 			}
1471 			local64_set(&event->hw.prev_count, val);
1472 		}
1473 
1474 		event->hw.idx = idx;
1475 		if (event->hw.state & PERF_HES_STOPPED)
1476 			val = 0;
1477 		write_pmc(idx, val);
1478 
1479 		perf_event_update_userpage(event);
1480 	}
1481 	cpuhw->n_limited = n_lim;
1482 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1483 
1484  out_enable:
1485 	pmao_restore_workaround(ebb);
1486 
1487 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1488 
1489 	mb();
1490 	if (cpuhw->bhrb_users)
1491 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1492 
1493 	write_mmcr0(cpuhw, mmcr0);
1494 
1495 	/*
1496 	 * Enable instruction sampling if necessary
1497 	 */
1498 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1499 		mb();
1500 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1501 	}
1502 
1503  out:
1504 
1505 	local_irq_restore(flags);
1506 }
1507 
1508 static int collect_events(struct perf_event *group, int max_count,
1509 			  struct perf_event *ctrs[], u64 *events,
1510 			  unsigned int *flags)
1511 {
1512 	int n = 0;
1513 	struct perf_event *event;
1514 
1515 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1516 		if (n >= max_count)
1517 			return -1;
1518 		ctrs[n] = group;
1519 		flags[n] = group->hw.event_base;
1520 		events[n++] = group->hw.config;
1521 	}
1522 	for_each_sibling_event(event, group) {
1523 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1524 		    event->state != PERF_EVENT_STATE_OFF) {
1525 			if (n >= max_count)
1526 				return -1;
1527 			ctrs[n] = event;
1528 			flags[n] = event->hw.event_base;
1529 			events[n++] = event->hw.config;
1530 		}
1531 	}
1532 	return n;
1533 }
1534 
1535 /*
1536  * Add an event to the PMU.
1537  * If all events are not already frozen, then we disable and
1538  * re-enable the PMU in order to get hw_perf_enable to do the
1539  * actual work of reconfiguring the PMU.
1540  */
1541 static int power_pmu_add(struct perf_event *event, int ef_flags)
1542 {
1543 	struct cpu_hw_events *cpuhw;
1544 	unsigned long flags;
1545 	int n0;
1546 	int ret = -EAGAIN;
1547 
1548 	local_irq_save(flags);
1549 	perf_pmu_disable(event->pmu);
1550 
1551 	/*
1552 	 * Add the event to the list (if there is room)
1553 	 * and check whether the total set is still feasible.
1554 	 */
1555 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1556 	n0 = cpuhw->n_events;
1557 	if (n0 >= ppmu->n_counter)
1558 		goto out;
1559 	cpuhw->event[n0] = event;
1560 	cpuhw->events[n0] = event->hw.config;
1561 	cpuhw->flags[n0] = event->hw.event_base;
1562 
1563 	/*
1564 	 * This event may have been disabled/stopped in record_and_restart()
1565 	 * because we exceeded the ->event_limit. If re-starting the event,
1566 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1567 	 * notification is re-enabled.
1568 	 */
1569 	if (!(ef_flags & PERF_EF_START))
1570 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1571 	else
1572 		event->hw.state = 0;
1573 
1574 	/*
1575 	 * If group events scheduling transaction was started,
1576 	 * skip the schedulability test here, it will be performed
1577 	 * at commit time(->commit_txn) as a whole
1578 	 */
1579 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1580 		goto nocheck;
1581 
1582 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1583 		goto out;
1584 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1585 		goto out;
1586 	event->hw.config = cpuhw->events[n0];
1587 
1588 nocheck:
1589 	ebb_event_add(event);
1590 
1591 	++cpuhw->n_events;
1592 	++cpuhw->n_added;
1593 
1594 	ret = 0;
1595  out:
1596 	if (has_branch_stack(event)) {
1597 		u64 bhrb_filter = -1;
1598 
1599 		if (ppmu->bhrb_filter_map)
1600 			bhrb_filter = ppmu->bhrb_filter_map(
1601 				event->attr.branch_sample_type);
1602 
1603 		if (bhrb_filter != -1) {
1604 			cpuhw->bhrb_filter = bhrb_filter;
1605 			power_pmu_bhrb_enable(event);
1606 		}
1607 	}
1608 
1609 	perf_pmu_enable(event->pmu);
1610 	local_irq_restore(flags);
1611 	return ret;
1612 }
1613 
1614 /*
1615  * Remove an event from the PMU.
1616  */
1617 static void power_pmu_del(struct perf_event *event, int ef_flags)
1618 {
1619 	struct cpu_hw_events *cpuhw;
1620 	long i;
1621 	unsigned long flags;
1622 
1623 	local_irq_save(flags);
1624 	perf_pmu_disable(event->pmu);
1625 
1626 	power_pmu_read(event);
1627 
1628 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1629 	for (i = 0; i < cpuhw->n_events; ++i) {
1630 		if (event == cpuhw->event[i]) {
1631 			while (++i < cpuhw->n_events) {
1632 				cpuhw->event[i-1] = cpuhw->event[i];
1633 				cpuhw->events[i-1] = cpuhw->events[i];
1634 				cpuhw->flags[i-1] = cpuhw->flags[i];
1635 			}
1636 			--cpuhw->n_events;
1637 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1638 			if (event->hw.idx) {
1639 				write_pmc(event->hw.idx, 0);
1640 				event->hw.idx = 0;
1641 			}
1642 			perf_event_update_userpage(event);
1643 			break;
1644 		}
1645 	}
1646 	for (i = 0; i < cpuhw->n_limited; ++i)
1647 		if (event == cpuhw->limited_counter[i])
1648 			break;
1649 	if (i < cpuhw->n_limited) {
1650 		while (++i < cpuhw->n_limited) {
1651 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1652 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1653 		}
1654 		--cpuhw->n_limited;
1655 	}
1656 	if (cpuhw->n_events == 0) {
1657 		/* disable exceptions if no events are running */
1658 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1659 	}
1660 
1661 	if (has_branch_stack(event))
1662 		power_pmu_bhrb_disable(event);
1663 
1664 	perf_pmu_enable(event->pmu);
1665 	local_irq_restore(flags);
1666 }
1667 
1668 /*
1669  * POWER-PMU does not support disabling individual counters, hence
1670  * program their cycle counter to their max value and ignore the interrupts.
1671  */
1672 
1673 static void power_pmu_start(struct perf_event *event, int ef_flags)
1674 {
1675 	unsigned long flags;
1676 	s64 left;
1677 	unsigned long val;
1678 
1679 	if (!event->hw.idx || !event->hw.sample_period)
1680 		return;
1681 
1682 	if (!(event->hw.state & PERF_HES_STOPPED))
1683 		return;
1684 
1685 	if (ef_flags & PERF_EF_RELOAD)
1686 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1687 
1688 	local_irq_save(flags);
1689 	perf_pmu_disable(event->pmu);
1690 
1691 	event->hw.state = 0;
1692 	left = local64_read(&event->hw.period_left);
1693 
1694 	val = 0;
1695 	if (left < 0x80000000L)
1696 		val = 0x80000000L - left;
1697 
1698 	write_pmc(event->hw.idx, val);
1699 
1700 	perf_event_update_userpage(event);
1701 	perf_pmu_enable(event->pmu);
1702 	local_irq_restore(flags);
1703 }
1704 
1705 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1706 {
1707 	unsigned long flags;
1708 
1709 	if (!event->hw.idx || !event->hw.sample_period)
1710 		return;
1711 
1712 	if (event->hw.state & PERF_HES_STOPPED)
1713 		return;
1714 
1715 	local_irq_save(flags);
1716 	perf_pmu_disable(event->pmu);
1717 
1718 	power_pmu_read(event);
1719 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1720 	write_pmc(event->hw.idx, 0);
1721 
1722 	perf_event_update_userpage(event);
1723 	perf_pmu_enable(event->pmu);
1724 	local_irq_restore(flags);
1725 }
1726 
1727 /*
1728  * Start group events scheduling transaction
1729  * Set the flag to make pmu::enable() not perform the
1730  * schedulability test, it will be performed at commit time
1731  *
1732  * We only support PERF_PMU_TXN_ADD transactions. Save the
1733  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1734  * transactions.
1735  */
1736 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1737 {
1738 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1739 
1740 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1741 
1742 	cpuhw->txn_flags = txn_flags;
1743 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1744 		return;
1745 
1746 	perf_pmu_disable(pmu);
1747 	cpuhw->n_txn_start = cpuhw->n_events;
1748 }
1749 
1750 /*
1751  * Stop group events scheduling transaction
1752  * Clear the flag and pmu::enable() will perform the
1753  * schedulability test.
1754  */
1755 static void power_pmu_cancel_txn(struct pmu *pmu)
1756 {
1757 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1758 	unsigned int txn_flags;
1759 
1760 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1761 
1762 	txn_flags = cpuhw->txn_flags;
1763 	cpuhw->txn_flags = 0;
1764 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1765 		return;
1766 
1767 	perf_pmu_enable(pmu);
1768 }
1769 
1770 /*
1771  * Commit group events scheduling transaction
1772  * Perform the group schedulability test as a whole
1773  * Return 0 if success
1774  */
1775 static int power_pmu_commit_txn(struct pmu *pmu)
1776 {
1777 	struct cpu_hw_events *cpuhw;
1778 	long i, n;
1779 
1780 	if (!ppmu)
1781 		return -EAGAIN;
1782 
1783 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1784 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1785 
1786 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1787 		cpuhw->txn_flags = 0;
1788 		return 0;
1789 	}
1790 
1791 	n = cpuhw->n_events;
1792 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1793 		return -EAGAIN;
1794 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1795 	if (i < 0)
1796 		return -EAGAIN;
1797 
1798 	for (i = cpuhw->n_txn_start; i < n; ++i)
1799 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1800 
1801 	cpuhw->txn_flags = 0;
1802 	perf_pmu_enable(pmu);
1803 	return 0;
1804 }
1805 
1806 /*
1807  * Return 1 if we might be able to put event on a limited PMC,
1808  * or 0 if not.
1809  * An event can only go on a limited PMC if it counts something
1810  * that a limited PMC can count, doesn't require interrupts, and
1811  * doesn't exclude any processor mode.
1812  */
1813 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1814 				 unsigned int flags)
1815 {
1816 	int n;
1817 	u64 alt[MAX_EVENT_ALTERNATIVES];
1818 
1819 	if (event->attr.exclude_user
1820 	    || event->attr.exclude_kernel
1821 	    || event->attr.exclude_hv
1822 	    || event->attr.sample_period)
1823 		return 0;
1824 
1825 	if (ppmu->limited_pmc_event(ev))
1826 		return 1;
1827 
1828 	/*
1829 	 * The requested event_id isn't on a limited PMC already;
1830 	 * see if any alternative code goes on a limited PMC.
1831 	 */
1832 	if (!ppmu->get_alternatives)
1833 		return 0;
1834 
1835 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1836 	n = ppmu->get_alternatives(ev, flags, alt);
1837 
1838 	return n > 0;
1839 }
1840 
1841 /*
1842  * Find an alternative event_id that goes on a normal PMC, if possible,
1843  * and return the event_id code, or 0 if there is no such alternative.
1844  * (Note: event_id code 0 is "don't count" on all machines.)
1845  */
1846 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1847 {
1848 	u64 alt[MAX_EVENT_ALTERNATIVES];
1849 	int n;
1850 
1851 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1852 	n = ppmu->get_alternatives(ev, flags, alt);
1853 	if (!n)
1854 		return 0;
1855 	return alt[0];
1856 }
1857 
1858 /* Number of perf_events counting hardware events */
1859 static atomic_t num_events;
1860 /* Used to avoid races in calling reserve/release_pmc_hardware */
1861 static DEFINE_MUTEX(pmc_reserve_mutex);
1862 
1863 /*
1864  * Release the PMU if this is the last perf_event.
1865  */
1866 static void hw_perf_event_destroy(struct perf_event *event)
1867 {
1868 	if (!atomic_add_unless(&num_events, -1, 1)) {
1869 		mutex_lock(&pmc_reserve_mutex);
1870 		if (atomic_dec_return(&num_events) == 0)
1871 			release_pmc_hardware();
1872 		mutex_unlock(&pmc_reserve_mutex);
1873 	}
1874 }
1875 
1876 /*
1877  * Translate a generic cache event_id config to a raw event_id code.
1878  */
1879 static int hw_perf_cache_event(u64 config, u64 *eventp)
1880 {
1881 	unsigned long type, op, result;
1882 	u64 ev;
1883 
1884 	if (!ppmu->cache_events)
1885 		return -EINVAL;
1886 
1887 	/* unpack config */
1888 	type = config & 0xff;
1889 	op = (config >> 8) & 0xff;
1890 	result = (config >> 16) & 0xff;
1891 
1892 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1893 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1894 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1895 		return -EINVAL;
1896 
1897 	ev = (*ppmu->cache_events)[type][op][result];
1898 	if (ev == 0)
1899 		return -EOPNOTSUPP;
1900 	if (ev == -1)
1901 		return -EINVAL;
1902 	*eventp = ev;
1903 	return 0;
1904 }
1905 
1906 static bool is_event_blacklisted(u64 ev)
1907 {
1908 	int i;
1909 
1910 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1911 		if (ppmu->blacklist_ev[i] == ev)
1912 			return true;
1913 	}
1914 
1915 	return false;
1916 }
1917 
1918 static int power_pmu_event_init(struct perf_event *event)
1919 {
1920 	u64 ev;
1921 	unsigned long flags, irq_flags;
1922 	struct perf_event *ctrs[MAX_HWEVENTS];
1923 	u64 events[MAX_HWEVENTS];
1924 	unsigned int cflags[MAX_HWEVENTS];
1925 	int n;
1926 	int err;
1927 	struct cpu_hw_events *cpuhw;
1928 
1929 	if (!ppmu)
1930 		return -ENOENT;
1931 
1932 	if (has_branch_stack(event)) {
1933 	        /* PMU has BHRB enabled */
1934 		if (!(ppmu->flags & PPMU_ARCH_207S))
1935 			return -EOPNOTSUPP;
1936 	}
1937 
1938 	switch (event->attr.type) {
1939 	case PERF_TYPE_HARDWARE:
1940 		ev = event->attr.config;
1941 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1942 			return -EOPNOTSUPP;
1943 
1944 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1945 			return -EINVAL;
1946 		ev = ppmu->generic_events[ev];
1947 		break;
1948 	case PERF_TYPE_HW_CACHE:
1949 		err = hw_perf_cache_event(event->attr.config, &ev);
1950 		if (err)
1951 			return err;
1952 
1953 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1954 			return -EINVAL;
1955 		break;
1956 	case PERF_TYPE_RAW:
1957 		ev = event->attr.config;
1958 
1959 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1960 			return -EINVAL;
1961 		break;
1962 	default:
1963 		return -ENOENT;
1964 	}
1965 
1966 	event->hw.config_base = ev;
1967 	event->hw.idx = 0;
1968 
1969 	/*
1970 	 * If we are not running on a hypervisor, force the
1971 	 * exclude_hv bit to 0 so that we don't care what
1972 	 * the user set it to.
1973 	 */
1974 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1975 		event->attr.exclude_hv = 0;
1976 
1977 	/*
1978 	 * If this is a per-task event, then we can use
1979 	 * PM_RUN_* events interchangeably with their non RUN_*
1980 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1981 	 * XXX we should check if the task is an idle task.
1982 	 */
1983 	flags = 0;
1984 	if (event->attach_state & PERF_ATTACH_TASK)
1985 		flags |= PPMU_ONLY_COUNT_RUN;
1986 
1987 	/*
1988 	 * If this machine has limited events, check whether this
1989 	 * event_id could go on a limited event.
1990 	 */
1991 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1992 		if (can_go_on_limited_pmc(event, ev, flags)) {
1993 			flags |= PPMU_LIMITED_PMC_OK;
1994 		} else if (ppmu->limited_pmc_event(ev)) {
1995 			/*
1996 			 * The requested event_id is on a limited PMC,
1997 			 * but we can't use a limited PMC; see if any
1998 			 * alternative goes on a normal PMC.
1999 			 */
2000 			ev = normal_pmc_alternative(ev, flags);
2001 			if (!ev)
2002 				return -EINVAL;
2003 		}
2004 	}
2005 
2006 	/* Extra checks for EBB */
2007 	err = ebb_event_check(event);
2008 	if (err)
2009 		return err;
2010 
2011 	/*
2012 	 * If this is in a group, check if it can go on with all the
2013 	 * other hardware events in the group.  We assume the event
2014 	 * hasn't been linked into its leader's sibling list at this point.
2015 	 */
2016 	n = 0;
2017 	if (event->group_leader != event) {
2018 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
2019 				   ctrs, events, cflags);
2020 		if (n < 0)
2021 			return -EINVAL;
2022 	}
2023 	events[n] = ev;
2024 	ctrs[n] = event;
2025 	cflags[n] = flags;
2026 	if (check_excludes(ctrs, cflags, n, 1))
2027 		return -EINVAL;
2028 
2029 	local_irq_save(irq_flags);
2030 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2031 
2032 	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2033 
2034 	if (has_branch_stack(event)) {
2035 		u64 bhrb_filter = -1;
2036 
2037 		if (ppmu->bhrb_filter_map)
2038 			bhrb_filter = ppmu->bhrb_filter_map(
2039 					event->attr.branch_sample_type);
2040 
2041 		if (bhrb_filter == -1) {
2042 			local_irq_restore(irq_flags);
2043 			return -EOPNOTSUPP;
2044 		}
2045 		cpuhw->bhrb_filter = bhrb_filter;
2046 	}
2047 
2048 	local_irq_restore(irq_flags);
2049 	if (err)
2050 		return -EINVAL;
2051 
2052 	event->hw.config = events[n];
2053 	event->hw.event_base = cflags[n];
2054 	event->hw.last_period = event->hw.sample_period;
2055 	local64_set(&event->hw.period_left, event->hw.last_period);
2056 
2057 	/*
2058 	 * For EBB events we just context switch the PMC value, we don't do any
2059 	 * of the sample_period logic. We use hw.prev_count for this.
2060 	 */
2061 	if (is_ebb_event(event))
2062 		local64_set(&event->hw.prev_count, 0);
2063 
2064 	/*
2065 	 * See if we need to reserve the PMU.
2066 	 * If no events are currently in use, then we have to take a
2067 	 * mutex to ensure that we don't race with another task doing
2068 	 * reserve_pmc_hardware or release_pmc_hardware.
2069 	 */
2070 	err = 0;
2071 	if (!atomic_inc_not_zero(&num_events)) {
2072 		mutex_lock(&pmc_reserve_mutex);
2073 		if (atomic_read(&num_events) == 0 &&
2074 		    reserve_pmc_hardware(perf_event_interrupt))
2075 			err = -EBUSY;
2076 		else
2077 			atomic_inc(&num_events);
2078 		mutex_unlock(&pmc_reserve_mutex);
2079 	}
2080 	event->destroy = hw_perf_event_destroy;
2081 
2082 	return err;
2083 }
2084 
2085 static int power_pmu_event_idx(struct perf_event *event)
2086 {
2087 	return event->hw.idx;
2088 }
2089 
2090 ssize_t power_events_sysfs_show(struct device *dev,
2091 				struct device_attribute *attr, char *page)
2092 {
2093 	struct perf_pmu_events_attr *pmu_attr;
2094 
2095 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2096 
2097 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2098 }
2099 
2100 static struct pmu power_pmu = {
2101 	.pmu_enable	= power_pmu_enable,
2102 	.pmu_disable	= power_pmu_disable,
2103 	.event_init	= power_pmu_event_init,
2104 	.add		= power_pmu_add,
2105 	.del		= power_pmu_del,
2106 	.start		= power_pmu_start,
2107 	.stop		= power_pmu_stop,
2108 	.read		= power_pmu_read,
2109 	.start_txn	= power_pmu_start_txn,
2110 	.cancel_txn	= power_pmu_cancel_txn,
2111 	.commit_txn	= power_pmu_commit_txn,
2112 	.event_idx	= power_pmu_event_idx,
2113 	.sched_task	= power_pmu_sched_task,
2114 };
2115 
2116 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
2117 				PERF_SAMPLE_PHYS_ADDR |		\
2118 				PERF_SAMPLE_DATA_PAGE_SIZE)
2119 /*
2120  * A counter has overflowed; update its count and record
2121  * things if requested.  Note that interrupts are hard-disabled
2122  * here so there is no possibility of being interrupted.
2123  */
2124 static void record_and_restart(struct perf_event *event, unsigned long val,
2125 			       struct pt_regs *regs)
2126 {
2127 	u64 period = event->hw.sample_period;
2128 	s64 prev, delta, left;
2129 	int record = 0;
2130 
2131 	if (event->hw.state & PERF_HES_STOPPED) {
2132 		write_pmc(event->hw.idx, 0);
2133 		return;
2134 	}
2135 
2136 	/* we don't have to worry about interrupts here */
2137 	prev = local64_read(&event->hw.prev_count);
2138 	delta = check_and_compute_delta(prev, val);
2139 	local64_add(delta, &event->count);
2140 
2141 	/*
2142 	 * See if the total period for this event has expired,
2143 	 * and update for the next period.
2144 	 */
2145 	val = 0;
2146 	left = local64_read(&event->hw.period_left) - delta;
2147 	if (delta == 0)
2148 		left++;
2149 	if (period) {
2150 		if (left <= 0) {
2151 			left += period;
2152 			if (left <= 0)
2153 				left = period;
2154 
2155 			/*
2156 			 * If address is not requested in the sample via
2157 			 * PERF_SAMPLE_IP, just record that sample irrespective
2158 			 * of SIAR valid check.
2159 			 */
2160 			if (event->attr.sample_type & PERF_SAMPLE_IP)
2161 				record = siar_valid(regs);
2162 			else
2163 				record = 1;
2164 
2165 			event->hw.last_period = event->hw.sample_period;
2166 		}
2167 		if (left < 0x80000000LL)
2168 			val = 0x80000000LL - left;
2169 	}
2170 
2171 	write_pmc(event->hw.idx, val);
2172 	local64_set(&event->hw.prev_count, val);
2173 	local64_set(&event->hw.period_left, left);
2174 	perf_event_update_userpage(event);
2175 
2176 	/*
2177 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2178 	 * address even when freeze on supervisor state (kernel) is set in
2179 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2180 	 * these cases.
2181 	 */
2182 	if (event->attr.exclude_kernel &&
2183 	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
2184 	    is_kernel_addr(mfspr(SPRN_SIAR)))
2185 		record = 0;
2186 
2187 	/*
2188 	 * Finally record data if requested.
2189 	 */
2190 	if (record) {
2191 		struct perf_sample_data data;
2192 
2193 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2194 
2195 		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2196 			perf_get_data_addr(event, regs, &data.addr);
2197 
2198 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2199 			struct cpu_hw_events *cpuhw;
2200 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2201 			power_pmu_bhrb_read(event, cpuhw);
2202 			data.br_stack = &cpuhw->bhrb_stack;
2203 		}
2204 
2205 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2206 						ppmu->get_mem_data_src)
2207 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2208 
2209 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2210 						ppmu->get_mem_weight)
2211 			ppmu->get_mem_weight(&data.weight.full);
2212 
2213 		if (perf_event_overflow(event, &data, regs))
2214 			power_pmu_stop(event, 0);
2215 	} else if (period) {
2216 		/* Account for interrupt in case of invalid SIAR */
2217 		if (perf_event_account_interrupt(event))
2218 			power_pmu_stop(event, 0);
2219 	}
2220 }
2221 
2222 /*
2223  * Called from generic code to get the misc flags (i.e. processor mode)
2224  * for an event_id.
2225  */
2226 unsigned long perf_misc_flags(struct pt_regs *regs)
2227 {
2228 	u32 flags = perf_get_misc_flags(regs);
2229 
2230 	if (flags)
2231 		return flags;
2232 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2233 		PERF_RECORD_MISC_KERNEL;
2234 }
2235 
2236 /*
2237  * Called from generic code to get the instruction pointer
2238  * for an event_id.
2239  */
2240 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2241 {
2242 	bool use_siar = regs_use_siar(regs);
2243 	unsigned long siar = mfspr(SPRN_SIAR);
2244 
2245 	if (ppmu->flags & PPMU_P10_DD1) {
2246 		if (siar)
2247 			return siar;
2248 		else
2249 			return regs->nip;
2250 	} else if (use_siar && siar_valid(regs))
2251 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2252 	else if (use_siar)
2253 		return 0;		// no valid instruction pointer
2254 	else
2255 		return regs->nip;
2256 }
2257 
2258 static bool pmc_overflow_power7(unsigned long val)
2259 {
2260 	/*
2261 	 * Events on POWER7 can roll back if a speculative event doesn't
2262 	 * eventually complete. Unfortunately in some rare cases they will
2263 	 * raise a performance monitor exception. We need to catch this to
2264 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2265 	 * cycles from overflow.
2266 	 *
2267 	 * We only do this if the first pass fails to find any overflowing
2268 	 * PMCs because a user might set a period of less than 256 and we
2269 	 * don't want to mistakenly reset them.
2270 	 */
2271 	if ((0x80000000 - val) <= 256)
2272 		return true;
2273 
2274 	return false;
2275 }
2276 
2277 static bool pmc_overflow(unsigned long val)
2278 {
2279 	if ((int)val < 0)
2280 		return true;
2281 
2282 	return false;
2283 }
2284 
2285 /*
2286  * Performance monitor interrupt stuff
2287  */
2288 static void __perf_event_interrupt(struct pt_regs *regs)
2289 {
2290 	int i, j;
2291 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2292 	struct perf_event *event;
2293 	int found, active;
2294 
2295 	if (cpuhw->n_limited)
2296 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2297 					mfspr(SPRN_PMC6));
2298 
2299 	perf_read_regs(regs);
2300 
2301 	/* Read all the PMCs since we'll need them a bunch of times */
2302 	for (i = 0; i < ppmu->n_counter; ++i)
2303 		cpuhw->pmcs[i] = read_pmc(i + 1);
2304 
2305 	/* Try to find what caused the IRQ */
2306 	found = 0;
2307 	for (i = 0; i < ppmu->n_counter; ++i) {
2308 		if (!pmc_overflow(cpuhw->pmcs[i]))
2309 			continue;
2310 		if (is_limited_pmc(i + 1))
2311 			continue; /* these won't generate IRQs */
2312 		/*
2313 		 * We've found one that's overflowed.  For active
2314 		 * counters we need to log this.  For inactive
2315 		 * counters, we need to reset it anyway
2316 		 */
2317 		found = 1;
2318 		active = 0;
2319 		for (j = 0; j < cpuhw->n_events; ++j) {
2320 			event = cpuhw->event[j];
2321 			if (event->hw.idx == (i + 1)) {
2322 				active = 1;
2323 				record_and_restart(event, cpuhw->pmcs[i], regs);
2324 				break;
2325 			}
2326 		}
2327 		if (!active)
2328 			/* reset non active counters that have overflowed */
2329 			write_pmc(i + 1, 0);
2330 	}
2331 	if (!found && pvr_version_is(PVR_POWER7)) {
2332 		/* check active counters for special buggy p7 overflow */
2333 		for (i = 0; i < cpuhw->n_events; ++i) {
2334 			event = cpuhw->event[i];
2335 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2336 				continue;
2337 			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2338 				/* event has overflowed in a buggy way*/
2339 				found = 1;
2340 				record_and_restart(event,
2341 						   cpuhw->pmcs[event->hw.idx - 1],
2342 						   regs);
2343 			}
2344 		}
2345 	}
2346 	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2347 		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2348 
2349 	/*
2350 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2351 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2352 	 * and thus allow interrupts to occur again.
2353 	 * XXX might want to use MSR.PM to keep the events frozen until
2354 	 * we get back out of this interrupt.
2355 	 */
2356 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2357 
2358 	/* Clear the cpuhw->pmcs */
2359 	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2360 
2361 }
2362 
2363 static void perf_event_interrupt(struct pt_regs *regs)
2364 {
2365 	u64 start_clock = sched_clock();
2366 
2367 	__perf_event_interrupt(regs);
2368 	perf_sample_event_took(sched_clock() - start_clock);
2369 }
2370 
2371 static int power_pmu_prepare_cpu(unsigned int cpu)
2372 {
2373 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2374 
2375 	if (ppmu) {
2376 		memset(cpuhw, 0, sizeof(*cpuhw));
2377 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2378 	}
2379 	return 0;
2380 }
2381 
2382 int register_power_pmu(struct power_pmu *pmu)
2383 {
2384 	if (ppmu)
2385 		return -EBUSY;		/* something's already registered */
2386 
2387 	ppmu = pmu;
2388 	pr_info("%s performance monitor hardware support registered\n",
2389 		pmu->name);
2390 
2391 	power_pmu.attr_groups = ppmu->attr_groups;
2392 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2393 
2394 #ifdef MSR_HV
2395 	/*
2396 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2397 	 */
2398 	if (mfmsr() & MSR_HV)
2399 		freeze_events_kernel = MMCR0_FCHV;
2400 #endif /* CONFIG_PPC64 */
2401 
2402 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2403 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2404 			  power_pmu_prepare_cpu, NULL);
2405 	return 0;
2406 }
2407 
2408 #ifdef CONFIG_PPC64
2409 static int __init init_ppc64_pmu(void)
2410 {
2411 	/* run through all the pmu drivers one at a time */
2412 	if (!init_power5_pmu())
2413 		return 0;
2414 	else if (!init_power5p_pmu())
2415 		return 0;
2416 	else if (!init_power6_pmu())
2417 		return 0;
2418 	else if (!init_power7_pmu())
2419 		return 0;
2420 	else if (!init_power8_pmu())
2421 		return 0;
2422 	else if (!init_power9_pmu())
2423 		return 0;
2424 	else if (!init_power10_pmu())
2425 		return 0;
2426 	else if (!init_ppc970_pmu())
2427 		return 0;
2428 	else
2429 		return init_generic_compat_pmu();
2430 }
2431 early_initcall(init_ppc64_pmu);
2432 #endif
2433