1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 #include <asm/interrupt.h> 21 22 #ifdef CONFIG_PPC64 23 #include "internal.h" 24 #endif 25 26 #define BHRB_MAX_ENTRIES 32 27 #define BHRB_TARGET 0x0000000000000002 28 #define BHRB_PREDICTION 0x0000000000000001 29 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 30 31 struct cpu_hw_events { 32 int n_events; 33 int n_percpu; 34 int disabled; 35 int n_added; 36 int n_limited; 37 u8 pmcs_enabled; 38 struct perf_event *event[MAX_HWEVENTS]; 39 u64 events[MAX_HWEVENTS]; 40 unsigned int flags[MAX_HWEVENTS]; 41 struct mmcr_regs mmcr; 42 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 43 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 44 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 46 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 47 48 unsigned int txn_flags; 49 int n_txn_start; 50 51 /* BHRB bits */ 52 u64 bhrb_filter; /* BHRB HW branch filter */ 53 unsigned int bhrb_users; 54 void *bhrb_context; 55 struct perf_branch_stack bhrb_stack; 56 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 57 u64 ic_init; 58 59 /* Store the PMC values */ 60 unsigned long pmcs[MAX_HWEVENTS]; 61 }; 62 63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 64 65 static struct power_pmu *ppmu; 66 67 /* 68 * Normally, to ignore kernel events we set the FCS (freeze counters 69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 70 * hypervisor bit set in the MSR, or if we are running on a processor 71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 72 * then we need to use the FCHV bit to ignore kernel events. 73 */ 74 static unsigned int freeze_events_kernel = MMCR0_FCS; 75 76 /* 77 * 32-bit doesn't have MMCRA but does have an MMCR2, 78 * and a few other names are different. 79 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. 80 * Define them as zero knowing that any code path accessing 81 * these registers (via mtspr/mfspr) are done under ppmu flag 82 * check for PPMU_ARCH_31 and we will not enter that code path 83 * for 32-bit. 84 */ 85 #ifdef CONFIG_PPC32 86 87 #define MMCR0_FCHV 0 88 #define MMCR0_PMCjCE MMCR0_PMCnCE 89 #define MMCR0_FC56 0 90 #define MMCR0_PMAO 0 91 #define MMCR0_EBE 0 92 #define MMCR0_BHRBA 0 93 #define MMCR0_PMCC 0 94 #define MMCR0_PMCC_U6 0 95 96 #define SPRN_MMCRA SPRN_MMCR2 97 #define SPRN_MMCR3 0 98 #define SPRN_SIER2 0 99 #define SPRN_SIER3 0 100 #define MMCRA_SAMPLE_ENABLE 0 101 #define MMCRA_BHRB_DISABLE 0 102 #define MMCR0_PMCCEXT 0 103 104 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 105 { 106 return 0; 107 } 108 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 109 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 110 { 111 return 0; 112 } 113 static inline void perf_read_regs(struct pt_regs *regs) 114 { 115 regs->result = 0; 116 } 117 118 static inline int siar_valid(struct pt_regs *regs) 119 { 120 return 1; 121 } 122 123 static bool is_ebb_event(struct perf_event *event) { return false; } 124 static int ebb_event_check(struct perf_event *event) { return 0; } 125 static void ebb_event_add(struct perf_event *event) { } 126 static void ebb_switch_out(unsigned long mmcr0) { } 127 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 128 { 129 return cpuhw->mmcr.mmcr0; 130 } 131 132 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 133 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 134 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 135 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 136 static void pmao_restore_workaround(bool ebb) { } 137 #endif /* CONFIG_PPC32 */ 138 139 bool is_sier_available(void) 140 { 141 if (!ppmu) 142 return false; 143 144 if (ppmu->flags & PPMU_HAS_SIER) 145 return true; 146 147 return false; 148 } 149 150 /* 151 * Return PMC value corresponding to the 152 * index passed. 153 */ 154 unsigned long get_pmcs_ext_regs(int idx) 155 { 156 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 157 158 return cpuhw->pmcs[idx]; 159 } 160 161 static bool regs_use_siar(struct pt_regs *regs) 162 { 163 /* 164 * When we take a performance monitor exception the regs are setup 165 * using perf_read_regs() which overloads some fields, in particular 166 * regs->result to tell us whether to use SIAR. 167 * 168 * However if the regs are from another exception, eg. a syscall, then 169 * they have not been setup using perf_read_regs() and so regs->result 170 * is something random. 171 */ 172 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result); 173 } 174 175 /* 176 * Things that are specific to 64-bit implementations. 177 */ 178 #ifdef CONFIG_PPC64 179 180 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 181 { 182 unsigned long mmcra = regs->dsisr; 183 184 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 185 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 186 if (slot > 1) 187 return 4 * (slot - 1); 188 } 189 190 return 0; 191 } 192 193 /* 194 * The user wants a data address recorded. 195 * If we're not doing instruction sampling, give them the SDAR 196 * (sampled data address). If we are doing instruction sampling, then 197 * only give them the SDAR if it corresponds to the instruction 198 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 199 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 200 */ 201 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 202 { 203 unsigned long mmcra = regs->dsisr; 204 bool sdar_valid; 205 206 if (ppmu->flags & PPMU_HAS_SIER) 207 sdar_valid = regs->dar & SIER_SDAR_VALID; 208 else { 209 unsigned long sdsync; 210 211 if (ppmu->flags & PPMU_SIAR_VALID) 212 sdsync = POWER7P_MMCRA_SDAR_VALID; 213 else if (ppmu->flags & PPMU_ALT_SIPR) 214 sdsync = POWER6_MMCRA_SDSYNC; 215 else if (ppmu->flags & PPMU_NO_SIAR) 216 sdsync = MMCRA_SAMPLE_ENABLE; 217 else 218 sdsync = MMCRA_SDSYNC; 219 220 sdar_valid = mmcra & sdsync; 221 } 222 223 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 224 *addrp = mfspr(SPRN_SDAR); 225 226 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel) 227 *addrp = 0; 228 } 229 230 static bool regs_sihv(struct pt_regs *regs) 231 { 232 unsigned long sihv = MMCRA_SIHV; 233 234 if (ppmu->flags & PPMU_HAS_SIER) 235 return !!(regs->dar & SIER_SIHV); 236 237 if (ppmu->flags & PPMU_ALT_SIPR) 238 sihv = POWER6_MMCRA_SIHV; 239 240 return !!(regs->dsisr & sihv); 241 } 242 243 static bool regs_sipr(struct pt_regs *regs) 244 { 245 unsigned long sipr = MMCRA_SIPR; 246 247 if (ppmu->flags & PPMU_HAS_SIER) 248 return !!(regs->dar & SIER_SIPR); 249 250 if (ppmu->flags & PPMU_ALT_SIPR) 251 sipr = POWER6_MMCRA_SIPR; 252 253 return !!(regs->dsisr & sipr); 254 } 255 256 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 257 { 258 if (regs->msr & MSR_PR) 259 return PERF_RECORD_MISC_USER; 260 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 261 return PERF_RECORD_MISC_HYPERVISOR; 262 return PERF_RECORD_MISC_KERNEL; 263 } 264 265 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 266 { 267 bool use_siar = regs_use_siar(regs); 268 unsigned long mmcra = regs->dsisr; 269 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 270 271 if (!use_siar) 272 return perf_flags_from_msr(regs); 273 274 /* 275 * Check the address in SIAR to identify the 276 * privilege levels since the SIER[MSR_HV, MSR_PR] 277 * bits are not set for marked events in power10 278 * DD1. 279 */ 280 if (marked && (ppmu->flags & PPMU_P10_DD1)) { 281 unsigned long siar = mfspr(SPRN_SIAR); 282 if (siar) { 283 if (is_kernel_addr(siar)) 284 return PERF_RECORD_MISC_KERNEL; 285 return PERF_RECORD_MISC_USER; 286 } else { 287 if (is_kernel_addr(regs->nip)) 288 return PERF_RECORD_MISC_KERNEL; 289 return PERF_RECORD_MISC_USER; 290 } 291 } 292 293 /* 294 * If we don't have flags in MMCRA, rather than using 295 * the MSR, we intuit the flags from the address in 296 * SIAR which should give slightly more reliable 297 * results 298 */ 299 if (ppmu->flags & PPMU_NO_SIPR) { 300 unsigned long siar = mfspr(SPRN_SIAR); 301 if (is_kernel_addr(siar)) 302 return PERF_RECORD_MISC_KERNEL; 303 return PERF_RECORD_MISC_USER; 304 } 305 306 /* PR has priority over HV, so order below is important */ 307 if (regs_sipr(regs)) 308 return PERF_RECORD_MISC_USER; 309 310 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 311 return PERF_RECORD_MISC_HYPERVISOR; 312 313 return PERF_RECORD_MISC_KERNEL; 314 } 315 316 /* 317 * Overload regs->dsisr to store MMCRA so we only need to read it once 318 * on each interrupt. 319 * Overload regs->dar to store SIER if we have it. 320 * Overload regs->result to specify whether we should use the MSR (result 321 * is zero) or the SIAR (result is non zero). 322 */ 323 static inline void perf_read_regs(struct pt_regs *regs) 324 { 325 unsigned long mmcra = mfspr(SPRN_MMCRA); 326 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 327 int use_siar; 328 329 regs->dsisr = mmcra; 330 331 if (ppmu->flags & PPMU_HAS_SIER) 332 regs->dar = mfspr(SPRN_SIER); 333 334 /* 335 * If this isn't a PMU exception (eg a software event) the SIAR is 336 * not valid. Use pt_regs. 337 * 338 * If it is a marked event use the SIAR. 339 * 340 * If the PMU doesn't update the SIAR for non marked events use 341 * pt_regs. 342 * 343 * If the PMU has HV/PR flags then check to see if they 344 * place the exception in userspace. If so, use pt_regs. In 345 * continuous sampling mode the SIAR and the PMU exception are 346 * not synchronised, so they may be many instructions apart. 347 * This can result in confusing backtraces. We still want 348 * hypervisor samples as well as samples in the kernel with 349 * interrupts off hence the userspace check. 350 */ 351 if (TRAP(regs) != INTERRUPT_PERFMON) 352 use_siar = 0; 353 else if ((ppmu->flags & PPMU_NO_SIAR)) 354 use_siar = 0; 355 else if (marked) 356 use_siar = 1; 357 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 358 use_siar = 0; 359 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 360 use_siar = 0; 361 else 362 use_siar = 1; 363 364 regs->result = use_siar; 365 } 366 367 /* 368 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 369 * must be sampled only if the SIAR-valid bit is set. 370 * 371 * For unmarked instructions and for processors that don't have the SIAR-Valid 372 * bit, assume that SIAR is valid. 373 */ 374 static inline int siar_valid(struct pt_regs *regs) 375 { 376 unsigned long mmcra = regs->dsisr; 377 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 378 379 if (marked) { 380 /* 381 * SIER[SIAR_VALID] is not set for some 382 * marked events on power10 DD1, so drop 383 * the check for SIER[SIAR_VALID] and return true. 384 */ 385 if (ppmu->flags & PPMU_P10_DD1) 386 return 0x1; 387 else if (ppmu->flags & PPMU_HAS_SIER) 388 return regs->dar & SIER_SIAR_VALID; 389 390 if (ppmu->flags & PPMU_SIAR_VALID) 391 return mmcra & POWER7P_MMCRA_SIAR_VALID; 392 } 393 394 return 1; 395 } 396 397 398 /* Reset all possible BHRB entries */ 399 static void power_pmu_bhrb_reset(void) 400 { 401 asm volatile(PPC_CLRBHRB); 402 } 403 404 static void power_pmu_bhrb_enable(struct perf_event *event) 405 { 406 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 407 408 if (!ppmu->bhrb_nr) 409 return; 410 411 /* Clear BHRB if we changed task context to avoid data leaks */ 412 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 413 power_pmu_bhrb_reset(); 414 cpuhw->bhrb_context = event->ctx; 415 } 416 cpuhw->bhrb_users++; 417 perf_sched_cb_inc(event->ctx->pmu); 418 } 419 420 static void power_pmu_bhrb_disable(struct perf_event *event) 421 { 422 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 423 424 if (!ppmu->bhrb_nr) 425 return; 426 427 WARN_ON_ONCE(!cpuhw->bhrb_users); 428 cpuhw->bhrb_users--; 429 perf_sched_cb_dec(event->ctx->pmu); 430 431 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 432 /* BHRB cannot be turned off when other 433 * events are active on the PMU. 434 */ 435 436 /* avoid stale pointer */ 437 cpuhw->bhrb_context = NULL; 438 } 439 } 440 441 /* Called from ctxsw to prevent one process's branch entries to 442 * mingle with the other process's entries during context switch. 443 */ 444 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 445 { 446 if (!ppmu->bhrb_nr) 447 return; 448 449 if (sched_in) 450 power_pmu_bhrb_reset(); 451 } 452 /* Calculate the to address for a branch */ 453 static __u64 power_pmu_bhrb_to(u64 addr) 454 { 455 unsigned int instr; 456 __u64 target; 457 458 if (is_kernel_addr(addr)) { 459 if (copy_from_kernel_nofault(&instr, (void *)addr, 460 sizeof(instr))) 461 return 0; 462 463 return branch_target((struct ppc_inst *)&instr); 464 } 465 466 /* Userspace: need copy instruction here then translate it */ 467 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 468 sizeof(instr))) 469 return 0; 470 471 target = branch_target((struct ppc_inst *)&instr); 472 if ((!target) || (instr & BRANCH_ABSOLUTE)) 473 return target; 474 475 /* Translate relative branch target from kernel to user address */ 476 return target - (unsigned long)&instr + addr; 477 } 478 479 /* Processing BHRB entries */ 480 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 481 { 482 u64 val; 483 u64 addr; 484 int r_index, u_index, pred; 485 486 r_index = 0; 487 u_index = 0; 488 while (r_index < ppmu->bhrb_nr) { 489 /* Assembly read function */ 490 val = read_bhrb(r_index++); 491 if (!val) 492 /* Terminal marker: End of valid BHRB entries */ 493 break; 494 else { 495 addr = val & BHRB_EA; 496 pred = val & BHRB_PREDICTION; 497 498 if (!addr) 499 /* invalid entry */ 500 continue; 501 502 /* 503 * BHRB rolling buffer could very much contain the kernel 504 * addresses at this point. Check the privileges before 505 * exporting it to userspace (avoid exposure of regions 506 * where we could have speculative execution) 507 * Incase of ISA v3.1, BHRB will capture only user-space 508 * addresses, hence include a check before filtering code 509 */ 510 if (!(ppmu->flags & PPMU_ARCH_31) && 511 is_kernel_addr(addr) && event->attr.exclude_kernel) 512 continue; 513 514 /* Branches are read most recent first (ie. mfbhrb 0 is 515 * the most recent branch). 516 * There are two types of valid entries: 517 * 1) a target entry which is the to address of a 518 * computed goto like a blr,bctr,btar. The next 519 * entry read from the bhrb will be branch 520 * corresponding to this target (ie. the actual 521 * blr/bctr/btar instruction). 522 * 2) a from address which is an actual branch. If a 523 * target entry proceeds this, then this is the 524 * matching branch for that target. If this is not 525 * following a target entry, then this is a branch 526 * where the target is given as an immediate field 527 * in the instruction (ie. an i or b form branch). 528 * In this case we need to read the instruction from 529 * memory to determine the target/to address. 530 */ 531 532 if (val & BHRB_TARGET) { 533 /* Target branches use two entries 534 * (ie. computed gotos/XL form) 535 */ 536 cpuhw->bhrb_entries[u_index].to = addr; 537 cpuhw->bhrb_entries[u_index].mispred = pred; 538 cpuhw->bhrb_entries[u_index].predicted = ~pred; 539 540 /* Get from address in next entry */ 541 val = read_bhrb(r_index++); 542 addr = val & BHRB_EA; 543 if (val & BHRB_TARGET) { 544 /* Shouldn't have two targets in a 545 row.. Reset index and try again */ 546 r_index--; 547 addr = 0; 548 } 549 cpuhw->bhrb_entries[u_index].from = addr; 550 } else { 551 /* Branches to immediate field 552 (ie I or B form) */ 553 cpuhw->bhrb_entries[u_index].from = addr; 554 cpuhw->bhrb_entries[u_index].to = 555 power_pmu_bhrb_to(addr); 556 cpuhw->bhrb_entries[u_index].mispred = pred; 557 cpuhw->bhrb_entries[u_index].predicted = ~pred; 558 } 559 u_index++; 560 561 } 562 } 563 cpuhw->bhrb_stack.nr = u_index; 564 cpuhw->bhrb_stack.hw_idx = -1ULL; 565 return; 566 } 567 568 static bool is_ebb_event(struct perf_event *event) 569 { 570 /* 571 * This could be a per-PMU callback, but we'd rather avoid the cost. We 572 * check that the PMU supports EBB, meaning those that don't can still 573 * use bit 63 of the event code for something else if they wish. 574 */ 575 return (ppmu->flags & PPMU_ARCH_207S) && 576 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 577 } 578 579 static int ebb_event_check(struct perf_event *event) 580 { 581 struct perf_event *leader = event->group_leader; 582 583 /* Event and group leader must agree on EBB */ 584 if (is_ebb_event(leader) != is_ebb_event(event)) 585 return -EINVAL; 586 587 if (is_ebb_event(event)) { 588 if (!(event->attach_state & PERF_ATTACH_TASK)) 589 return -EINVAL; 590 591 if (!leader->attr.pinned || !leader->attr.exclusive) 592 return -EINVAL; 593 594 if (event->attr.freq || 595 event->attr.inherit || 596 event->attr.sample_type || 597 event->attr.sample_period || 598 event->attr.enable_on_exec) 599 return -EINVAL; 600 } 601 602 return 0; 603 } 604 605 static void ebb_event_add(struct perf_event *event) 606 { 607 if (!is_ebb_event(event) || current->thread.used_ebb) 608 return; 609 610 /* 611 * IFF this is the first time we've added an EBB event, set 612 * PMXE in the user MMCR0 so we can detect when it's cleared by 613 * userspace. We need this so that we can context switch while 614 * userspace is in the EBB handler (where PMXE is 0). 615 */ 616 current->thread.used_ebb = 1; 617 current->thread.mmcr0 |= MMCR0_PMXE; 618 } 619 620 static void ebb_switch_out(unsigned long mmcr0) 621 { 622 if (!(mmcr0 & MMCR0_EBE)) 623 return; 624 625 current->thread.siar = mfspr(SPRN_SIAR); 626 current->thread.sier = mfspr(SPRN_SIER); 627 current->thread.sdar = mfspr(SPRN_SDAR); 628 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 629 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 630 if (ppmu->flags & PPMU_ARCH_31) { 631 current->thread.mmcr3 = mfspr(SPRN_MMCR3); 632 current->thread.sier2 = mfspr(SPRN_SIER2); 633 current->thread.sier3 = mfspr(SPRN_SIER3); 634 } 635 } 636 637 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 638 { 639 unsigned long mmcr0 = cpuhw->mmcr.mmcr0; 640 641 if (!ebb) 642 goto out; 643 644 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 645 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 646 647 /* 648 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 649 * with pmao_restore_workaround() because we may add PMAO but we never 650 * clear it here. 651 */ 652 mmcr0 |= current->thread.mmcr0; 653 654 /* 655 * Be careful not to set PMXE if userspace had it cleared. This is also 656 * compatible with pmao_restore_workaround() because it has already 657 * cleared PMXE and we leave PMAO alone. 658 */ 659 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 660 mmcr0 &= ~MMCR0_PMXE; 661 662 mtspr(SPRN_SIAR, current->thread.siar); 663 mtspr(SPRN_SIER, current->thread.sier); 664 mtspr(SPRN_SDAR, current->thread.sdar); 665 666 /* 667 * Merge the kernel & user values of MMCR2. The semantics we implement 668 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 669 * but not clear bits. If a task wants to be able to clear bits, ie. 670 * unfreeze counters, it should not set exclude_xxx in its events and 671 * instead manage the MMCR2 entirely by itself. 672 */ 673 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); 674 675 if (ppmu->flags & PPMU_ARCH_31) { 676 mtspr(SPRN_MMCR3, current->thread.mmcr3); 677 mtspr(SPRN_SIER2, current->thread.sier2); 678 mtspr(SPRN_SIER3, current->thread.sier3); 679 } 680 out: 681 return mmcr0; 682 } 683 684 static void pmao_restore_workaround(bool ebb) 685 { 686 unsigned pmcs[6]; 687 688 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 689 return; 690 691 /* 692 * On POWER8E there is a hardware defect which affects the PMU context 693 * switch logic, ie. power_pmu_disable/enable(). 694 * 695 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 696 * by the hardware. Sometime later the actual PMU exception is 697 * delivered. 698 * 699 * If we context switch, or simply disable/enable, the PMU prior to the 700 * exception arriving, the exception will be lost when we clear PMAO. 701 * 702 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 703 * set, and this _should_ generate an exception. However because of the 704 * defect no exception is generated when we write PMAO, and we get 705 * stuck with no counters counting but no exception delivered. 706 * 707 * The workaround is to detect this case and tweak the hardware to 708 * create another pending PMU exception. 709 * 710 * We do that by setting up PMC6 (cycles) for an imminent overflow and 711 * enabling the PMU. That causes a new exception to be generated in the 712 * chip, but we don't take it yet because we have interrupts hard 713 * disabled. We then write back the PMU state as we want it to be seen 714 * by the exception handler. When we reenable interrupts the exception 715 * handler will be called and see the correct state. 716 * 717 * The logic is the same for EBB, except that the exception is gated by 718 * us having interrupts hard disabled as well as the fact that we are 719 * not in userspace. The exception is finally delivered when we return 720 * to userspace. 721 */ 722 723 /* Only if PMAO is set and PMAO_SYNC is clear */ 724 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 725 return; 726 727 /* If we're doing EBB, only if BESCR[GE] is set */ 728 if (ebb && !(current->thread.bescr & BESCR_GE)) 729 return; 730 731 /* 732 * We are already soft-disabled in power_pmu_enable(). We need to hard 733 * disable to actually prevent the PMU exception from firing. 734 */ 735 hard_irq_disable(); 736 737 /* 738 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 739 * Using read/write_pmc() in a for loop adds 12 function calls and 740 * almost doubles our code size. 741 */ 742 pmcs[0] = mfspr(SPRN_PMC1); 743 pmcs[1] = mfspr(SPRN_PMC2); 744 pmcs[2] = mfspr(SPRN_PMC3); 745 pmcs[3] = mfspr(SPRN_PMC4); 746 pmcs[4] = mfspr(SPRN_PMC5); 747 pmcs[5] = mfspr(SPRN_PMC6); 748 749 /* Ensure all freeze bits are unset */ 750 mtspr(SPRN_MMCR2, 0); 751 752 /* Set up PMC6 to overflow in one cycle */ 753 mtspr(SPRN_PMC6, 0x7FFFFFFE); 754 755 /* Enable exceptions and unfreeze PMC6 */ 756 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 757 758 /* Now we need to refreeze and restore the PMCs */ 759 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 760 761 mtspr(SPRN_PMC1, pmcs[0]); 762 mtspr(SPRN_PMC2, pmcs[1]); 763 mtspr(SPRN_PMC3, pmcs[2]); 764 mtspr(SPRN_PMC4, pmcs[3]); 765 mtspr(SPRN_PMC5, pmcs[4]); 766 mtspr(SPRN_PMC6, pmcs[5]); 767 } 768 769 #endif /* CONFIG_PPC64 */ 770 771 static void perf_event_interrupt(struct pt_regs *regs); 772 773 /* 774 * Read one performance monitor counter (PMC). 775 */ 776 static unsigned long read_pmc(int idx) 777 { 778 unsigned long val; 779 780 switch (idx) { 781 case 1: 782 val = mfspr(SPRN_PMC1); 783 break; 784 case 2: 785 val = mfspr(SPRN_PMC2); 786 break; 787 case 3: 788 val = mfspr(SPRN_PMC3); 789 break; 790 case 4: 791 val = mfspr(SPRN_PMC4); 792 break; 793 case 5: 794 val = mfspr(SPRN_PMC5); 795 break; 796 case 6: 797 val = mfspr(SPRN_PMC6); 798 break; 799 #ifdef CONFIG_PPC64 800 case 7: 801 val = mfspr(SPRN_PMC7); 802 break; 803 case 8: 804 val = mfspr(SPRN_PMC8); 805 break; 806 #endif /* CONFIG_PPC64 */ 807 default: 808 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 809 val = 0; 810 } 811 return val; 812 } 813 814 /* 815 * Write one PMC. 816 */ 817 static void write_pmc(int idx, unsigned long val) 818 { 819 switch (idx) { 820 case 1: 821 mtspr(SPRN_PMC1, val); 822 break; 823 case 2: 824 mtspr(SPRN_PMC2, val); 825 break; 826 case 3: 827 mtspr(SPRN_PMC3, val); 828 break; 829 case 4: 830 mtspr(SPRN_PMC4, val); 831 break; 832 case 5: 833 mtspr(SPRN_PMC5, val); 834 break; 835 case 6: 836 mtspr(SPRN_PMC6, val); 837 break; 838 #ifdef CONFIG_PPC64 839 case 7: 840 mtspr(SPRN_PMC7, val); 841 break; 842 case 8: 843 mtspr(SPRN_PMC8, val); 844 break; 845 #endif /* CONFIG_PPC64 */ 846 default: 847 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 848 } 849 } 850 851 /* Called from sysrq_handle_showregs() */ 852 void perf_event_print_debug(void) 853 { 854 unsigned long sdar, sier, flags; 855 u32 pmcs[MAX_HWEVENTS]; 856 int i; 857 858 if (!ppmu) { 859 pr_info("Performance monitor hardware not registered.\n"); 860 return; 861 } 862 863 if (!ppmu->n_counter) 864 return; 865 866 local_irq_save(flags); 867 868 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 869 smp_processor_id(), ppmu->name, ppmu->n_counter); 870 871 for (i = 0; i < ppmu->n_counter; i++) 872 pmcs[i] = read_pmc(i + 1); 873 874 for (; i < MAX_HWEVENTS; i++) 875 pmcs[i] = 0xdeadbeef; 876 877 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 878 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 879 880 if (ppmu->n_counter > 4) 881 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 882 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 883 884 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 885 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 886 887 sdar = sier = 0; 888 #ifdef CONFIG_PPC64 889 sdar = mfspr(SPRN_SDAR); 890 891 if (ppmu->flags & PPMU_HAS_SIER) 892 sier = mfspr(SPRN_SIER); 893 894 if (ppmu->flags & PPMU_ARCH_207S) { 895 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 896 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 897 pr_info("EBBRR: %016lx BESCR: %016lx\n", 898 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 899 } 900 901 if (ppmu->flags & PPMU_ARCH_31) { 902 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", 903 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); 904 } 905 #endif 906 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 907 mfspr(SPRN_SIAR), sdar, sier); 908 909 local_irq_restore(flags); 910 } 911 912 /* 913 * Check if a set of events can all go on the PMU at once. 914 * If they can't, this will look at alternative codes for the events 915 * and see if any combination of alternative codes is feasible. 916 * The feasible set is returned in event_id[]. 917 */ 918 static int power_check_constraints(struct cpu_hw_events *cpuhw, 919 u64 event_id[], unsigned int cflags[], 920 int n_ev, struct perf_event **event) 921 { 922 unsigned long mask, value, nv; 923 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 924 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 925 int i, j; 926 unsigned long addf = ppmu->add_fields; 927 unsigned long tadd = ppmu->test_adder; 928 unsigned long grp_mask = ppmu->group_constraint_mask; 929 unsigned long grp_val = ppmu->group_constraint_val; 930 931 if (n_ev > ppmu->n_counter) 932 return -1; 933 934 /* First see if the events will go on as-is */ 935 for (i = 0; i < n_ev; ++i) { 936 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 937 && !ppmu->limited_pmc_event(event_id[i])) { 938 ppmu->get_alternatives(event_id[i], cflags[i], 939 cpuhw->alternatives[i]); 940 event_id[i] = cpuhw->alternatives[i][0]; 941 } 942 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 943 &cpuhw->avalues[i][0], event[i]->attr.config1)) 944 return -1; 945 } 946 value = mask = 0; 947 for (i = 0; i < n_ev; ++i) { 948 nv = (value | cpuhw->avalues[i][0]) + 949 (value & cpuhw->avalues[i][0] & addf); 950 951 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 952 break; 953 954 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 955 & (~grp_mask)) != 0) 956 break; 957 958 value = nv; 959 mask |= cpuhw->amasks[i][0]; 960 } 961 if (i == n_ev) { 962 if ((value & mask & grp_mask) != (mask & grp_val)) 963 return -1; 964 else 965 return 0; /* all OK */ 966 } 967 968 /* doesn't work, gather alternatives... */ 969 if (!ppmu->get_alternatives) 970 return -1; 971 for (i = 0; i < n_ev; ++i) { 972 choice[i] = 0; 973 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 974 cpuhw->alternatives[i]); 975 for (j = 1; j < n_alt[i]; ++j) 976 ppmu->get_constraint(cpuhw->alternatives[i][j], 977 &cpuhw->amasks[i][j], 978 &cpuhw->avalues[i][j], 979 event[i]->attr.config1); 980 } 981 982 /* enumerate all possibilities and see if any will work */ 983 i = 0; 984 j = -1; 985 value = mask = nv = 0; 986 while (i < n_ev) { 987 if (j >= 0) { 988 /* we're backtracking, restore context */ 989 value = svalues[i]; 990 mask = smasks[i]; 991 j = choice[i]; 992 } 993 /* 994 * See if any alternative k for event_id i, 995 * where k > j, will satisfy the constraints. 996 */ 997 while (++j < n_alt[i]) { 998 nv = (value | cpuhw->avalues[i][j]) + 999 (value & cpuhw->avalues[i][j] & addf); 1000 if ((((nv + tadd) ^ value) & mask) == 0 && 1001 (((nv + tadd) ^ cpuhw->avalues[i][j]) 1002 & cpuhw->amasks[i][j]) == 0) 1003 break; 1004 } 1005 if (j >= n_alt[i]) { 1006 /* 1007 * No feasible alternative, backtrack 1008 * to event_id i-1 and continue enumerating its 1009 * alternatives from where we got up to. 1010 */ 1011 if (--i < 0) 1012 return -1; 1013 } else { 1014 /* 1015 * Found a feasible alternative for event_id i, 1016 * remember where we got up to with this event_id, 1017 * go on to the next event_id, and start with 1018 * the first alternative for it. 1019 */ 1020 choice[i] = j; 1021 svalues[i] = value; 1022 smasks[i] = mask; 1023 value = nv; 1024 mask |= cpuhw->amasks[i][j]; 1025 ++i; 1026 j = -1; 1027 } 1028 } 1029 1030 /* OK, we have a feasible combination, tell the caller the solution */ 1031 for (i = 0; i < n_ev; ++i) 1032 event_id[i] = cpuhw->alternatives[i][choice[i]]; 1033 return 0; 1034 } 1035 1036 /* 1037 * Check if newly-added events have consistent settings for 1038 * exclude_{user,kernel,hv} with each other and any previously 1039 * added events. 1040 */ 1041 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 1042 int n_prev, int n_new) 1043 { 1044 int eu = 0, ek = 0, eh = 0; 1045 int i, n, first; 1046 struct perf_event *event; 1047 1048 /* 1049 * If the PMU we're on supports per event exclude settings then we 1050 * don't need to do any of this logic. NB. This assumes no PMU has both 1051 * per event exclude and limited PMCs. 1052 */ 1053 if (ppmu->flags & PPMU_ARCH_207S) 1054 return 0; 1055 1056 n = n_prev + n_new; 1057 if (n <= 1) 1058 return 0; 1059 1060 first = 1; 1061 for (i = 0; i < n; ++i) { 1062 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1063 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1064 continue; 1065 } 1066 event = ctrs[i]; 1067 if (first) { 1068 eu = event->attr.exclude_user; 1069 ek = event->attr.exclude_kernel; 1070 eh = event->attr.exclude_hv; 1071 first = 0; 1072 } else if (event->attr.exclude_user != eu || 1073 event->attr.exclude_kernel != ek || 1074 event->attr.exclude_hv != eh) { 1075 return -EAGAIN; 1076 } 1077 } 1078 1079 if (eu || ek || eh) 1080 for (i = 0; i < n; ++i) 1081 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1082 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1083 1084 return 0; 1085 } 1086 1087 static u64 check_and_compute_delta(u64 prev, u64 val) 1088 { 1089 u64 delta = (val - prev) & 0xfffffffful; 1090 1091 /* 1092 * POWER7 can roll back counter values, if the new value is smaller 1093 * than the previous value it will cause the delta and the counter to 1094 * have bogus values unless we rolled a counter over. If a coutner is 1095 * rolled back, it will be smaller, but within 256, which is the maximum 1096 * number of events to rollback at once. If we detect a rollback 1097 * return 0. This can lead to a small lack of precision in the 1098 * counters. 1099 */ 1100 if (prev > val && (prev - val) < 256) 1101 delta = 0; 1102 1103 return delta; 1104 } 1105 1106 static void power_pmu_read(struct perf_event *event) 1107 { 1108 s64 val, delta, prev; 1109 1110 if (event->hw.state & PERF_HES_STOPPED) 1111 return; 1112 1113 if (!event->hw.idx) 1114 return; 1115 1116 if (is_ebb_event(event)) { 1117 val = read_pmc(event->hw.idx); 1118 local64_set(&event->hw.prev_count, val); 1119 return; 1120 } 1121 1122 /* 1123 * Performance monitor interrupts come even when interrupts 1124 * are soft-disabled, as long as interrupts are hard-enabled. 1125 * Therefore we treat them like NMIs. 1126 */ 1127 do { 1128 prev = local64_read(&event->hw.prev_count); 1129 barrier(); 1130 val = read_pmc(event->hw.idx); 1131 delta = check_and_compute_delta(prev, val); 1132 if (!delta) 1133 return; 1134 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1135 1136 local64_add(delta, &event->count); 1137 1138 /* 1139 * A number of places program the PMC with (0x80000000 - period_left). 1140 * We never want period_left to be less than 1 because we will program 1141 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1142 * roll around to 0 before taking an exception. We have seen this 1143 * on POWER8. 1144 * 1145 * To fix this, clamp the minimum value of period_left to 1. 1146 */ 1147 do { 1148 prev = local64_read(&event->hw.period_left); 1149 val = prev - delta; 1150 if (val < 1) 1151 val = 1; 1152 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1153 } 1154 1155 /* 1156 * On some machines, PMC5 and PMC6 can't be written, don't respect 1157 * the freeze conditions, and don't generate interrupts. This tells 1158 * us if `event' is using such a PMC. 1159 */ 1160 static int is_limited_pmc(int pmcnum) 1161 { 1162 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1163 && (pmcnum == 5 || pmcnum == 6); 1164 } 1165 1166 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1167 unsigned long pmc5, unsigned long pmc6) 1168 { 1169 struct perf_event *event; 1170 u64 val, prev, delta; 1171 int i; 1172 1173 for (i = 0; i < cpuhw->n_limited; ++i) { 1174 event = cpuhw->limited_counter[i]; 1175 if (!event->hw.idx) 1176 continue; 1177 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1178 prev = local64_read(&event->hw.prev_count); 1179 event->hw.idx = 0; 1180 delta = check_and_compute_delta(prev, val); 1181 if (delta) 1182 local64_add(delta, &event->count); 1183 } 1184 } 1185 1186 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1187 unsigned long pmc5, unsigned long pmc6) 1188 { 1189 struct perf_event *event; 1190 u64 val, prev; 1191 int i; 1192 1193 for (i = 0; i < cpuhw->n_limited; ++i) { 1194 event = cpuhw->limited_counter[i]; 1195 event->hw.idx = cpuhw->limited_hwidx[i]; 1196 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1197 prev = local64_read(&event->hw.prev_count); 1198 if (check_and_compute_delta(prev, val)) 1199 local64_set(&event->hw.prev_count, val); 1200 perf_event_update_userpage(event); 1201 } 1202 } 1203 1204 /* 1205 * Since limited events don't respect the freeze conditions, we 1206 * have to read them immediately after freezing or unfreezing the 1207 * other events. We try to keep the values from the limited 1208 * events as consistent as possible by keeping the delay (in 1209 * cycles and instructions) between freezing/unfreezing and reading 1210 * the limited events as small and consistent as possible. 1211 * Therefore, if any limited events are in use, we read them 1212 * both, and always in the same order, to minimize variability, 1213 * and do it inside the same asm that writes MMCR0. 1214 */ 1215 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1216 { 1217 unsigned long pmc5, pmc6; 1218 1219 if (!cpuhw->n_limited) { 1220 mtspr(SPRN_MMCR0, mmcr0); 1221 return; 1222 } 1223 1224 /* 1225 * Write MMCR0, then read PMC5 and PMC6 immediately. 1226 * To ensure we don't get a performance monitor interrupt 1227 * between writing MMCR0 and freezing/thawing the limited 1228 * events, we first write MMCR0 with the event overflow 1229 * interrupt enable bits turned off. 1230 */ 1231 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1232 : "=&r" (pmc5), "=&r" (pmc6) 1233 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1234 "i" (SPRN_MMCR0), 1235 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1236 1237 if (mmcr0 & MMCR0_FC) 1238 freeze_limited_counters(cpuhw, pmc5, pmc6); 1239 else 1240 thaw_limited_counters(cpuhw, pmc5, pmc6); 1241 1242 /* 1243 * Write the full MMCR0 including the event overflow interrupt 1244 * enable bits, if necessary. 1245 */ 1246 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1247 mtspr(SPRN_MMCR0, mmcr0); 1248 } 1249 1250 /* 1251 * Disable all events to prevent PMU interrupts and to allow 1252 * events to be added or removed. 1253 */ 1254 static void power_pmu_disable(struct pmu *pmu) 1255 { 1256 struct cpu_hw_events *cpuhw; 1257 unsigned long flags, mmcr0, val, mmcra; 1258 1259 if (!ppmu) 1260 return; 1261 local_irq_save(flags); 1262 cpuhw = this_cpu_ptr(&cpu_hw_events); 1263 1264 if (!cpuhw->disabled) { 1265 /* 1266 * Check if we ever enabled the PMU on this cpu. 1267 */ 1268 if (!cpuhw->pmcs_enabled) { 1269 ppc_enable_pmcs(); 1270 cpuhw->pmcs_enabled = 1; 1271 } 1272 1273 /* 1274 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1275 */ 1276 val = mmcr0 = mfspr(SPRN_MMCR0); 1277 val |= MMCR0_FC; 1278 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1279 MMCR0_FC56); 1280 /* Set mmcr0 PMCCEXT for p10 */ 1281 if (ppmu->flags & PPMU_ARCH_31) 1282 val |= MMCR0_PMCCEXT; 1283 1284 /* 1285 * The barrier is to make sure the mtspr has been 1286 * executed and the PMU has frozen the events etc. 1287 * before we return. 1288 */ 1289 write_mmcr0(cpuhw, val); 1290 mb(); 1291 isync(); 1292 1293 val = mmcra = cpuhw->mmcr.mmcra; 1294 1295 /* 1296 * Disable instruction sampling if it was enabled 1297 */ 1298 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) 1299 val &= ~MMCRA_SAMPLE_ENABLE; 1300 1301 /* Disable BHRB via mmcra (BHRBRD) for p10 */ 1302 if (ppmu->flags & PPMU_ARCH_31) 1303 val |= MMCRA_BHRB_DISABLE; 1304 1305 /* 1306 * Write SPRN_MMCRA if mmcra has either disabled 1307 * instruction sampling or BHRB. 1308 */ 1309 if (val != mmcra) { 1310 mtspr(SPRN_MMCRA, mmcra); 1311 mb(); 1312 isync(); 1313 } 1314 1315 cpuhw->disabled = 1; 1316 cpuhw->n_added = 0; 1317 1318 ebb_switch_out(mmcr0); 1319 1320 #ifdef CONFIG_PPC64 1321 /* 1322 * These are readable by userspace, may contain kernel 1323 * addresses and are not switched by context switch, so clear 1324 * them now to avoid leaking anything to userspace in general 1325 * including to another process. 1326 */ 1327 if (ppmu->flags & PPMU_ARCH_207S) { 1328 mtspr(SPRN_SDAR, 0); 1329 mtspr(SPRN_SIAR, 0); 1330 } 1331 #endif 1332 } 1333 1334 local_irq_restore(flags); 1335 } 1336 1337 /* 1338 * Re-enable all events if disable == 0. 1339 * If we were previously disabled and events were added, then 1340 * put the new config on the PMU. 1341 */ 1342 static void power_pmu_enable(struct pmu *pmu) 1343 { 1344 struct perf_event *event; 1345 struct cpu_hw_events *cpuhw; 1346 unsigned long flags; 1347 long i; 1348 unsigned long val, mmcr0; 1349 s64 left; 1350 unsigned int hwc_index[MAX_HWEVENTS]; 1351 int n_lim; 1352 int idx; 1353 bool ebb; 1354 1355 if (!ppmu) 1356 return; 1357 local_irq_save(flags); 1358 1359 cpuhw = this_cpu_ptr(&cpu_hw_events); 1360 if (!cpuhw->disabled) 1361 goto out; 1362 1363 if (cpuhw->n_events == 0) { 1364 ppc_set_pmu_inuse(0); 1365 goto out; 1366 } 1367 1368 cpuhw->disabled = 0; 1369 1370 /* 1371 * EBB requires an exclusive group and all events must have the EBB 1372 * flag set, or not set, so we can just check a single event. Also we 1373 * know we have at least one event. 1374 */ 1375 ebb = is_ebb_event(cpuhw->event[0]); 1376 1377 /* 1378 * If we didn't change anything, or only removed events, 1379 * no need to recalculate MMCR* settings and reset the PMCs. 1380 * Just reenable the PMU with the current MMCR* settings 1381 * (possibly updated for removal of events). 1382 */ 1383 if (!cpuhw->n_added) { 1384 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1385 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1386 if (ppmu->flags & PPMU_ARCH_31) 1387 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1388 goto out_enable; 1389 } 1390 1391 /* 1392 * Clear all MMCR settings and recompute them for the new set of events. 1393 */ 1394 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1395 1396 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1397 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) { 1398 /* shouldn't ever get here */ 1399 printk(KERN_ERR "oops compute_mmcr failed\n"); 1400 goto out; 1401 } 1402 1403 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1404 /* 1405 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1406 * bits for the first event. We have already checked that all 1407 * events have the same value for these bits as the first event. 1408 */ 1409 event = cpuhw->event[0]; 1410 if (event->attr.exclude_user) 1411 cpuhw->mmcr.mmcr0 |= MMCR0_FCP; 1412 if (event->attr.exclude_kernel) 1413 cpuhw->mmcr.mmcr0 |= freeze_events_kernel; 1414 if (event->attr.exclude_hv) 1415 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; 1416 } 1417 1418 /* 1419 * Write the new configuration to MMCR* with the freeze 1420 * bit set and set the hardware events to their initial values. 1421 * Then unfreeze the events. 1422 */ 1423 ppc_set_pmu_inuse(1); 1424 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1425 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1426 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1427 | MMCR0_FC); 1428 if (ppmu->flags & PPMU_ARCH_207S) 1429 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); 1430 1431 if (ppmu->flags & PPMU_ARCH_31) 1432 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1433 1434 /* 1435 * Read off any pre-existing events that need to move 1436 * to another PMC. 1437 */ 1438 for (i = 0; i < cpuhw->n_events; ++i) { 1439 event = cpuhw->event[i]; 1440 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1441 power_pmu_read(event); 1442 write_pmc(event->hw.idx, 0); 1443 event->hw.idx = 0; 1444 } 1445 } 1446 1447 /* 1448 * Initialize the PMCs for all the new and moved events. 1449 */ 1450 cpuhw->n_limited = n_lim = 0; 1451 for (i = 0; i < cpuhw->n_events; ++i) { 1452 event = cpuhw->event[i]; 1453 if (event->hw.idx) 1454 continue; 1455 idx = hwc_index[i] + 1; 1456 if (is_limited_pmc(idx)) { 1457 cpuhw->limited_counter[n_lim] = event; 1458 cpuhw->limited_hwidx[n_lim] = idx; 1459 ++n_lim; 1460 continue; 1461 } 1462 1463 if (ebb) 1464 val = local64_read(&event->hw.prev_count); 1465 else { 1466 val = 0; 1467 if (event->hw.sample_period) { 1468 left = local64_read(&event->hw.period_left); 1469 if (left < 0x80000000L) 1470 val = 0x80000000L - left; 1471 } 1472 local64_set(&event->hw.prev_count, val); 1473 } 1474 1475 event->hw.idx = idx; 1476 if (event->hw.state & PERF_HES_STOPPED) 1477 val = 0; 1478 write_pmc(idx, val); 1479 1480 perf_event_update_userpage(event); 1481 } 1482 cpuhw->n_limited = n_lim; 1483 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; 1484 1485 out_enable: 1486 pmao_restore_workaround(ebb); 1487 1488 mmcr0 = ebb_switch_in(ebb, cpuhw); 1489 1490 mb(); 1491 if (cpuhw->bhrb_users) 1492 ppmu->config_bhrb(cpuhw->bhrb_filter); 1493 1494 write_mmcr0(cpuhw, mmcr0); 1495 1496 /* 1497 * Enable instruction sampling if necessary 1498 */ 1499 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { 1500 mb(); 1501 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); 1502 } 1503 1504 out: 1505 1506 local_irq_restore(flags); 1507 } 1508 1509 static int collect_events(struct perf_event *group, int max_count, 1510 struct perf_event *ctrs[], u64 *events, 1511 unsigned int *flags) 1512 { 1513 int n = 0; 1514 struct perf_event *event; 1515 1516 if (group->pmu->task_ctx_nr == perf_hw_context) { 1517 if (n >= max_count) 1518 return -1; 1519 ctrs[n] = group; 1520 flags[n] = group->hw.event_base; 1521 events[n++] = group->hw.config; 1522 } 1523 for_each_sibling_event(event, group) { 1524 if (event->pmu->task_ctx_nr == perf_hw_context && 1525 event->state != PERF_EVENT_STATE_OFF) { 1526 if (n >= max_count) 1527 return -1; 1528 ctrs[n] = event; 1529 flags[n] = event->hw.event_base; 1530 events[n++] = event->hw.config; 1531 } 1532 } 1533 return n; 1534 } 1535 1536 /* 1537 * Add an event to the PMU. 1538 * If all events are not already frozen, then we disable and 1539 * re-enable the PMU in order to get hw_perf_enable to do the 1540 * actual work of reconfiguring the PMU. 1541 */ 1542 static int power_pmu_add(struct perf_event *event, int ef_flags) 1543 { 1544 struct cpu_hw_events *cpuhw; 1545 unsigned long flags; 1546 int n0; 1547 int ret = -EAGAIN; 1548 1549 local_irq_save(flags); 1550 perf_pmu_disable(event->pmu); 1551 1552 /* 1553 * Add the event to the list (if there is room) 1554 * and check whether the total set is still feasible. 1555 */ 1556 cpuhw = this_cpu_ptr(&cpu_hw_events); 1557 n0 = cpuhw->n_events; 1558 if (n0 >= ppmu->n_counter) 1559 goto out; 1560 cpuhw->event[n0] = event; 1561 cpuhw->events[n0] = event->hw.config; 1562 cpuhw->flags[n0] = event->hw.event_base; 1563 1564 /* 1565 * This event may have been disabled/stopped in record_and_restart() 1566 * because we exceeded the ->event_limit. If re-starting the event, 1567 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1568 * notification is re-enabled. 1569 */ 1570 if (!(ef_flags & PERF_EF_START)) 1571 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1572 else 1573 event->hw.state = 0; 1574 1575 /* 1576 * If group events scheduling transaction was started, 1577 * skip the schedulability test here, it will be performed 1578 * at commit time(->commit_txn) as a whole 1579 */ 1580 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1581 goto nocheck; 1582 1583 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1584 goto out; 1585 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event)) 1586 goto out; 1587 event->hw.config = cpuhw->events[n0]; 1588 1589 nocheck: 1590 ebb_event_add(event); 1591 1592 ++cpuhw->n_events; 1593 ++cpuhw->n_added; 1594 1595 ret = 0; 1596 out: 1597 if (has_branch_stack(event)) { 1598 u64 bhrb_filter = -1; 1599 1600 if (ppmu->bhrb_filter_map) 1601 bhrb_filter = ppmu->bhrb_filter_map( 1602 event->attr.branch_sample_type); 1603 1604 if (bhrb_filter != -1) { 1605 cpuhw->bhrb_filter = bhrb_filter; 1606 power_pmu_bhrb_enable(event); 1607 } 1608 } 1609 1610 perf_pmu_enable(event->pmu); 1611 local_irq_restore(flags); 1612 return ret; 1613 } 1614 1615 /* 1616 * Remove an event from the PMU. 1617 */ 1618 static void power_pmu_del(struct perf_event *event, int ef_flags) 1619 { 1620 struct cpu_hw_events *cpuhw; 1621 long i; 1622 unsigned long flags; 1623 1624 local_irq_save(flags); 1625 perf_pmu_disable(event->pmu); 1626 1627 power_pmu_read(event); 1628 1629 cpuhw = this_cpu_ptr(&cpu_hw_events); 1630 for (i = 0; i < cpuhw->n_events; ++i) { 1631 if (event == cpuhw->event[i]) { 1632 while (++i < cpuhw->n_events) { 1633 cpuhw->event[i-1] = cpuhw->event[i]; 1634 cpuhw->events[i-1] = cpuhw->events[i]; 1635 cpuhw->flags[i-1] = cpuhw->flags[i]; 1636 } 1637 --cpuhw->n_events; 1638 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); 1639 if (event->hw.idx) { 1640 write_pmc(event->hw.idx, 0); 1641 event->hw.idx = 0; 1642 } 1643 perf_event_update_userpage(event); 1644 break; 1645 } 1646 } 1647 for (i = 0; i < cpuhw->n_limited; ++i) 1648 if (event == cpuhw->limited_counter[i]) 1649 break; 1650 if (i < cpuhw->n_limited) { 1651 while (++i < cpuhw->n_limited) { 1652 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1653 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1654 } 1655 --cpuhw->n_limited; 1656 } 1657 if (cpuhw->n_events == 0) { 1658 /* disable exceptions if no events are running */ 1659 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); 1660 } 1661 1662 if (has_branch_stack(event)) 1663 power_pmu_bhrb_disable(event); 1664 1665 perf_pmu_enable(event->pmu); 1666 local_irq_restore(flags); 1667 } 1668 1669 /* 1670 * POWER-PMU does not support disabling individual counters, hence 1671 * program their cycle counter to their max value and ignore the interrupts. 1672 */ 1673 1674 static void power_pmu_start(struct perf_event *event, int ef_flags) 1675 { 1676 unsigned long flags; 1677 s64 left; 1678 unsigned long val; 1679 1680 if (!event->hw.idx || !event->hw.sample_period) 1681 return; 1682 1683 if (!(event->hw.state & PERF_HES_STOPPED)) 1684 return; 1685 1686 if (ef_flags & PERF_EF_RELOAD) 1687 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1688 1689 local_irq_save(flags); 1690 perf_pmu_disable(event->pmu); 1691 1692 event->hw.state = 0; 1693 left = local64_read(&event->hw.period_left); 1694 1695 val = 0; 1696 if (left < 0x80000000L) 1697 val = 0x80000000L - left; 1698 1699 write_pmc(event->hw.idx, val); 1700 1701 perf_event_update_userpage(event); 1702 perf_pmu_enable(event->pmu); 1703 local_irq_restore(flags); 1704 } 1705 1706 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1707 { 1708 unsigned long flags; 1709 1710 if (!event->hw.idx || !event->hw.sample_period) 1711 return; 1712 1713 if (event->hw.state & PERF_HES_STOPPED) 1714 return; 1715 1716 local_irq_save(flags); 1717 perf_pmu_disable(event->pmu); 1718 1719 power_pmu_read(event); 1720 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1721 write_pmc(event->hw.idx, 0); 1722 1723 perf_event_update_userpage(event); 1724 perf_pmu_enable(event->pmu); 1725 local_irq_restore(flags); 1726 } 1727 1728 /* 1729 * Start group events scheduling transaction 1730 * Set the flag to make pmu::enable() not perform the 1731 * schedulability test, it will be performed at commit time 1732 * 1733 * We only support PERF_PMU_TXN_ADD transactions. Save the 1734 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1735 * transactions. 1736 */ 1737 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1738 { 1739 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1740 1741 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1742 1743 cpuhw->txn_flags = txn_flags; 1744 if (txn_flags & ~PERF_PMU_TXN_ADD) 1745 return; 1746 1747 perf_pmu_disable(pmu); 1748 cpuhw->n_txn_start = cpuhw->n_events; 1749 } 1750 1751 /* 1752 * Stop group events scheduling transaction 1753 * Clear the flag and pmu::enable() will perform the 1754 * schedulability test. 1755 */ 1756 static void power_pmu_cancel_txn(struct pmu *pmu) 1757 { 1758 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1759 unsigned int txn_flags; 1760 1761 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1762 1763 txn_flags = cpuhw->txn_flags; 1764 cpuhw->txn_flags = 0; 1765 if (txn_flags & ~PERF_PMU_TXN_ADD) 1766 return; 1767 1768 perf_pmu_enable(pmu); 1769 } 1770 1771 /* 1772 * Commit group events scheduling transaction 1773 * Perform the group schedulability test as a whole 1774 * Return 0 if success 1775 */ 1776 static int power_pmu_commit_txn(struct pmu *pmu) 1777 { 1778 struct cpu_hw_events *cpuhw; 1779 long i, n; 1780 1781 if (!ppmu) 1782 return -EAGAIN; 1783 1784 cpuhw = this_cpu_ptr(&cpu_hw_events); 1785 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1786 1787 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1788 cpuhw->txn_flags = 0; 1789 return 0; 1790 } 1791 1792 n = cpuhw->n_events; 1793 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1794 return -EAGAIN; 1795 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event); 1796 if (i < 0) 1797 return -EAGAIN; 1798 1799 for (i = cpuhw->n_txn_start; i < n; ++i) 1800 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1801 1802 cpuhw->txn_flags = 0; 1803 perf_pmu_enable(pmu); 1804 return 0; 1805 } 1806 1807 /* 1808 * Return 1 if we might be able to put event on a limited PMC, 1809 * or 0 if not. 1810 * An event can only go on a limited PMC if it counts something 1811 * that a limited PMC can count, doesn't require interrupts, and 1812 * doesn't exclude any processor mode. 1813 */ 1814 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1815 unsigned int flags) 1816 { 1817 int n; 1818 u64 alt[MAX_EVENT_ALTERNATIVES]; 1819 1820 if (event->attr.exclude_user 1821 || event->attr.exclude_kernel 1822 || event->attr.exclude_hv 1823 || event->attr.sample_period) 1824 return 0; 1825 1826 if (ppmu->limited_pmc_event(ev)) 1827 return 1; 1828 1829 /* 1830 * The requested event_id isn't on a limited PMC already; 1831 * see if any alternative code goes on a limited PMC. 1832 */ 1833 if (!ppmu->get_alternatives) 1834 return 0; 1835 1836 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1837 n = ppmu->get_alternatives(ev, flags, alt); 1838 1839 return n > 0; 1840 } 1841 1842 /* 1843 * Find an alternative event_id that goes on a normal PMC, if possible, 1844 * and return the event_id code, or 0 if there is no such alternative. 1845 * (Note: event_id code 0 is "don't count" on all machines.) 1846 */ 1847 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1848 { 1849 u64 alt[MAX_EVENT_ALTERNATIVES]; 1850 int n; 1851 1852 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1853 n = ppmu->get_alternatives(ev, flags, alt); 1854 if (!n) 1855 return 0; 1856 return alt[0]; 1857 } 1858 1859 /* Number of perf_events counting hardware events */ 1860 static atomic_t num_events; 1861 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1862 static DEFINE_MUTEX(pmc_reserve_mutex); 1863 1864 /* 1865 * Release the PMU if this is the last perf_event. 1866 */ 1867 static void hw_perf_event_destroy(struct perf_event *event) 1868 { 1869 if (!atomic_add_unless(&num_events, -1, 1)) { 1870 mutex_lock(&pmc_reserve_mutex); 1871 if (atomic_dec_return(&num_events) == 0) 1872 release_pmc_hardware(); 1873 mutex_unlock(&pmc_reserve_mutex); 1874 } 1875 } 1876 1877 /* 1878 * Translate a generic cache event_id config to a raw event_id code. 1879 */ 1880 static int hw_perf_cache_event(u64 config, u64 *eventp) 1881 { 1882 unsigned long type, op, result; 1883 u64 ev; 1884 1885 if (!ppmu->cache_events) 1886 return -EINVAL; 1887 1888 /* unpack config */ 1889 type = config & 0xff; 1890 op = (config >> 8) & 0xff; 1891 result = (config >> 16) & 0xff; 1892 1893 if (type >= PERF_COUNT_HW_CACHE_MAX || 1894 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1895 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1896 return -EINVAL; 1897 1898 ev = (*ppmu->cache_events)[type][op][result]; 1899 if (ev == 0) 1900 return -EOPNOTSUPP; 1901 if (ev == -1) 1902 return -EINVAL; 1903 *eventp = ev; 1904 return 0; 1905 } 1906 1907 static bool is_event_blacklisted(u64 ev) 1908 { 1909 int i; 1910 1911 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1912 if (ppmu->blacklist_ev[i] == ev) 1913 return true; 1914 } 1915 1916 return false; 1917 } 1918 1919 static int power_pmu_event_init(struct perf_event *event) 1920 { 1921 u64 ev; 1922 unsigned long flags, irq_flags; 1923 struct perf_event *ctrs[MAX_HWEVENTS]; 1924 u64 events[MAX_HWEVENTS]; 1925 unsigned int cflags[MAX_HWEVENTS]; 1926 int n; 1927 int err; 1928 struct cpu_hw_events *cpuhw; 1929 1930 if (!ppmu) 1931 return -ENOENT; 1932 1933 if (has_branch_stack(event)) { 1934 /* PMU has BHRB enabled */ 1935 if (!(ppmu->flags & PPMU_ARCH_207S)) 1936 return -EOPNOTSUPP; 1937 } 1938 1939 switch (event->attr.type) { 1940 case PERF_TYPE_HARDWARE: 1941 ev = event->attr.config; 1942 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1943 return -EOPNOTSUPP; 1944 1945 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1946 return -EINVAL; 1947 ev = ppmu->generic_events[ev]; 1948 break; 1949 case PERF_TYPE_HW_CACHE: 1950 err = hw_perf_cache_event(event->attr.config, &ev); 1951 if (err) 1952 return err; 1953 1954 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1955 return -EINVAL; 1956 break; 1957 case PERF_TYPE_RAW: 1958 ev = event->attr.config; 1959 1960 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1961 return -EINVAL; 1962 break; 1963 default: 1964 return -ENOENT; 1965 } 1966 1967 /* 1968 * PMU config registers have fields that are 1969 * reserved and some specific values for bit fields are reserved. 1970 * For ex., MMCRA[61:62] is Randome Sampling Mode (SM) 1971 * and value of 0b11 to this field is reserved. 1972 * Check for invalid values in attr.config. 1973 */ 1974 if (ppmu->check_attr_config && 1975 ppmu->check_attr_config(event)) 1976 return -EINVAL; 1977 1978 event->hw.config_base = ev; 1979 event->hw.idx = 0; 1980 1981 /* 1982 * If we are not running on a hypervisor, force the 1983 * exclude_hv bit to 0 so that we don't care what 1984 * the user set it to. 1985 */ 1986 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1987 event->attr.exclude_hv = 0; 1988 1989 /* 1990 * If this is a per-task event, then we can use 1991 * PM_RUN_* events interchangeably with their non RUN_* 1992 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1993 * XXX we should check if the task is an idle task. 1994 */ 1995 flags = 0; 1996 if (event->attach_state & PERF_ATTACH_TASK) 1997 flags |= PPMU_ONLY_COUNT_RUN; 1998 1999 /* 2000 * If this machine has limited events, check whether this 2001 * event_id could go on a limited event. 2002 */ 2003 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 2004 if (can_go_on_limited_pmc(event, ev, flags)) { 2005 flags |= PPMU_LIMITED_PMC_OK; 2006 } else if (ppmu->limited_pmc_event(ev)) { 2007 /* 2008 * The requested event_id is on a limited PMC, 2009 * but we can't use a limited PMC; see if any 2010 * alternative goes on a normal PMC. 2011 */ 2012 ev = normal_pmc_alternative(ev, flags); 2013 if (!ev) 2014 return -EINVAL; 2015 } 2016 } 2017 2018 /* Extra checks for EBB */ 2019 err = ebb_event_check(event); 2020 if (err) 2021 return err; 2022 2023 /* 2024 * If this is in a group, check if it can go on with all the 2025 * other hardware events in the group. We assume the event 2026 * hasn't been linked into its leader's sibling list at this point. 2027 */ 2028 n = 0; 2029 if (event->group_leader != event) { 2030 n = collect_events(event->group_leader, ppmu->n_counter - 1, 2031 ctrs, events, cflags); 2032 if (n < 0) 2033 return -EINVAL; 2034 } 2035 events[n] = ev; 2036 ctrs[n] = event; 2037 cflags[n] = flags; 2038 if (check_excludes(ctrs, cflags, n, 1)) 2039 return -EINVAL; 2040 2041 local_irq_save(irq_flags); 2042 cpuhw = this_cpu_ptr(&cpu_hw_events); 2043 2044 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs); 2045 2046 if (has_branch_stack(event)) { 2047 u64 bhrb_filter = -1; 2048 2049 if (ppmu->bhrb_filter_map) 2050 bhrb_filter = ppmu->bhrb_filter_map( 2051 event->attr.branch_sample_type); 2052 2053 if (bhrb_filter == -1) { 2054 local_irq_restore(irq_flags); 2055 return -EOPNOTSUPP; 2056 } 2057 cpuhw->bhrb_filter = bhrb_filter; 2058 } 2059 2060 local_irq_restore(irq_flags); 2061 if (err) 2062 return -EINVAL; 2063 2064 event->hw.config = events[n]; 2065 event->hw.event_base = cflags[n]; 2066 event->hw.last_period = event->hw.sample_period; 2067 local64_set(&event->hw.period_left, event->hw.last_period); 2068 2069 /* 2070 * For EBB events we just context switch the PMC value, we don't do any 2071 * of the sample_period logic. We use hw.prev_count for this. 2072 */ 2073 if (is_ebb_event(event)) 2074 local64_set(&event->hw.prev_count, 0); 2075 2076 /* 2077 * See if we need to reserve the PMU. 2078 * If no events are currently in use, then we have to take a 2079 * mutex to ensure that we don't race with another task doing 2080 * reserve_pmc_hardware or release_pmc_hardware. 2081 */ 2082 err = 0; 2083 if (!atomic_inc_not_zero(&num_events)) { 2084 mutex_lock(&pmc_reserve_mutex); 2085 if (atomic_read(&num_events) == 0 && 2086 reserve_pmc_hardware(perf_event_interrupt)) 2087 err = -EBUSY; 2088 else 2089 atomic_inc(&num_events); 2090 mutex_unlock(&pmc_reserve_mutex); 2091 } 2092 event->destroy = hw_perf_event_destroy; 2093 2094 return err; 2095 } 2096 2097 static int power_pmu_event_idx(struct perf_event *event) 2098 { 2099 return event->hw.idx; 2100 } 2101 2102 ssize_t power_events_sysfs_show(struct device *dev, 2103 struct device_attribute *attr, char *page) 2104 { 2105 struct perf_pmu_events_attr *pmu_attr; 2106 2107 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2108 2109 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2110 } 2111 2112 static struct pmu power_pmu = { 2113 .pmu_enable = power_pmu_enable, 2114 .pmu_disable = power_pmu_disable, 2115 .event_init = power_pmu_event_init, 2116 .add = power_pmu_add, 2117 .del = power_pmu_del, 2118 .start = power_pmu_start, 2119 .stop = power_pmu_stop, 2120 .read = power_pmu_read, 2121 .start_txn = power_pmu_start_txn, 2122 .cancel_txn = power_pmu_cancel_txn, 2123 .commit_txn = power_pmu_commit_txn, 2124 .event_idx = power_pmu_event_idx, 2125 .sched_task = power_pmu_sched_task, 2126 }; 2127 2128 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 2129 PERF_SAMPLE_PHYS_ADDR | \ 2130 PERF_SAMPLE_DATA_PAGE_SIZE) 2131 /* 2132 * A counter has overflowed; update its count and record 2133 * things if requested. Note that interrupts are hard-disabled 2134 * here so there is no possibility of being interrupted. 2135 */ 2136 static void record_and_restart(struct perf_event *event, unsigned long val, 2137 struct pt_regs *regs) 2138 { 2139 u64 period = event->hw.sample_period; 2140 s64 prev, delta, left; 2141 int record = 0; 2142 2143 if (event->hw.state & PERF_HES_STOPPED) { 2144 write_pmc(event->hw.idx, 0); 2145 return; 2146 } 2147 2148 /* we don't have to worry about interrupts here */ 2149 prev = local64_read(&event->hw.prev_count); 2150 delta = check_and_compute_delta(prev, val); 2151 local64_add(delta, &event->count); 2152 2153 /* 2154 * See if the total period for this event has expired, 2155 * and update for the next period. 2156 */ 2157 val = 0; 2158 left = local64_read(&event->hw.period_left) - delta; 2159 if (delta == 0) 2160 left++; 2161 if (period) { 2162 if (left <= 0) { 2163 left += period; 2164 if (left <= 0) 2165 left = period; 2166 2167 /* 2168 * If address is not requested in the sample via 2169 * PERF_SAMPLE_IP, just record that sample irrespective 2170 * of SIAR valid check. 2171 */ 2172 if (event->attr.sample_type & PERF_SAMPLE_IP) 2173 record = siar_valid(regs); 2174 else 2175 record = 1; 2176 2177 event->hw.last_period = event->hw.sample_period; 2178 } 2179 if (left < 0x80000000LL) 2180 val = 0x80000000LL - left; 2181 } 2182 2183 write_pmc(event->hw.idx, val); 2184 local64_set(&event->hw.prev_count, val); 2185 local64_set(&event->hw.period_left, left); 2186 perf_event_update_userpage(event); 2187 2188 /* 2189 * Due to hardware limitation, sometimes SIAR could sample a kernel 2190 * address even when freeze on supervisor state (kernel) is set in 2191 * MMCR2. Check attr.exclude_kernel and address to drop the sample in 2192 * these cases. 2193 */ 2194 if (event->attr.exclude_kernel && 2195 (event->attr.sample_type & PERF_SAMPLE_IP) && 2196 is_kernel_addr(mfspr(SPRN_SIAR))) 2197 record = 0; 2198 2199 /* 2200 * Finally record data if requested. 2201 */ 2202 if (record) { 2203 struct perf_sample_data data; 2204 2205 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2206 2207 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE) 2208 perf_get_data_addr(event, regs, &data.addr); 2209 2210 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2211 struct cpu_hw_events *cpuhw; 2212 cpuhw = this_cpu_ptr(&cpu_hw_events); 2213 power_pmu_bhrb_read(event, cpuhw); 2214 data.br_stack = &cpuhw->bhrb_stack; 2215 } 2216 2217 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2218 ppmu->get_mem_data_src) 2219 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2220 2221 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE && 2222 ppmu->get_mem_weight) 2223 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type); 2224 2225 if (perf_event_overflow(event, &data, regs)) 2226 power_pmu_stop(event, 0); 2227 } else if (period) { 2228 /* Account for interrupt in case of invalid SIAR */ 2229 if (perf_event_account_interrupt(event)) 2230 power_pmu_stop(event, 0); 2231 } 2232 } 2233 2234 /* 2235 * Called from generic code to get the misc flags (i.e. processor mode) 2236 * for an event_id. 2237 */ 2238 unsigned long perf_misc_flags(struct pt_regs *regs) 2239 { 2240 u32 flags = perf_get_misc_flags(regs); 2241 2242 if (flags) 2243 return flags; 2244 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2245 PERF_RECORD_MISC_KERNEL; 2246 } 2247 2248 /* 2249 * Called from generic code to get the instruction pointer 2250 * for an event_id. 2251 */ 2252 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2253 { 2254 bool use_siar = regs_use_siar(regs); 2255 unsigned long siar = mfspr(SPRN_SIAR); 2256 2257 if (ppmu->flags & PPMU_P10_DD1) { 2258 if (siar) 2259 return siar; 2260 else 2261 return regs->nip; 2262 } else if (use_siar && siar_valid(regs)) 2263 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2264 else if (use_siar) 2265 return 0; // no valid instruction pointer 2266 else 2267 return regs->nip; 2268 } 2269 2270 static bool pmc_overflow_power7(unsigned long val) 2271 { 2272 /* 2273 * Events on POWER7 can roll back if a speculative event doesn't 2274 * eventually complete. Unfortunately in some rare cases they will 2275 * raise a performance monitor exception. We need to catch this to 2276 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2277 * cycles from overflow. 2278 * 2279 * We only do this if the first pass fails to find any overflowing 2280 * PMCs because a user might set a period of less than 256 and we 2281 * don't want to mistakenly reset them. 2282 */ 2283 if ((0x80000000 - val) <= 256) 2284 return true; 2285 2286 return false; 2287 } 2288 2289 static bool pmc_overflow(unsigned long val) 2290 { 2291 if ((int)val < 0) 2292 return true; 2293 2294 return false; 2295 } 2296 2297 /* 2298 * Performance monitor interrupt stuff 2299 */ 2300 static void __perf_event_interrupt(struct pt_regs *regs) 2301 { 2302 int i, j; 2303 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2304 struct perf_event *event; 2305 int found, active; 2306 2307 if (cpuhw->n_limited) 2308 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2309 mfspr(SPRN_PMC6)); 2310 2311 perf_read_regs(regs); 2312 2313 /* Read all the PMCs since we'll need them a bunch of times */ 2314 for (i = 0; i < ppmu->n_counter; ++i) 2315 cpuhw->pmcs[i] = read_pmc(i + 1); 2316 2317 /* Try to find what caused the IRQ */ 2318 found = 0; 2319 for (i = 0; i < ppmu->n_counter; ++i) { 2320 if (!pmc_overflow(cpuhw->pmcs[i])) 2321 continue; 2322 if (is_limited_pmc(i + 1)) 2323 continue; /* these won't generate IRQs */ 2324 /* 2325 * We've found one that's overflowed. For active 2326 * counters we need to log this. For inactive 2327 * counters, we need to reset it anyway 2328 */ 2329 found = 1; 2330 active = 0; 2331 for (j = 0; j < cpuhw->n_events; ++j) { 2332 event = cpuhw->event[j]; 2333 if (event->hw.idx == (i + 1)) { 2334 active = 1; 2335 record_and_restart(event, cpuhw->pmcs[i], regs); 2336 break; 2337 } 2338 } 2339 if (!active) 2340 /* reset non active counters that have overflowed */ 2341 write_pmc(i + 1, 0); 2342 } 2343 if (!found && pvr_version_is(PVR_POWER7)) { 2344 /* check active counters for special buggy p7 overflow */ 2345 for (i = 0; i < cpuhw->n_events; ++i) { 2346 event = cpuhw->event[i]; 2347 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2348 continue; 2349 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) { 2350 /* event has overflowed in a buggy way*/ 2351 found = 1; 2352 record_and_restart(event, 2353 cpuhw->pmcs[event->hw.idx - 1], 2354 regs); 2355 } 2356 } 2357 } 2358 if (unlikely(!found) && !arch_irq_disabled_regs(regs)) 2359 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2360 2361 /* 2362 * Reset MMCR0 to its normal value. This will set PMXE and 2363 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2364 * and thus allow interrupts to occur again. 2365 * XXX might want to use MSR.PM to keep the events frozen until 2366 * we get back out of this interrupt. 2367 */ 2368 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); 2369 2370 /* Clear the cpuhw->pmcs */ 2371 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs)); 2372 2373 } 2374 2375 static void perf_event_interrupt(struct pt_regs *regs) 2376 { 2377 u64 start_clock = sched_clock(); 2378 2379 __perf_event_interrupt(regs); 2380 perf_sample_event_took(sched_clock() - start_clock); 2381 } 2382 2383 static int power_pmu_prepare_cpu(unsigned int cpu) 2384 { 2385 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2386 2387 if (ppmu) { 2388 memset(cpuhw, 0, sizeof(*cpuhw)); 2389 cpuhw->mmcr.mmcr0 = MMCR0_FC; 2390 } 2391 return 0; 2392 } 2393 2394 int register_power_pmu(struct power_pmu *pmu) 2395 { 2396 if (ppmu) 2397 return -EBUSY; /* something's already registered */ 2398 2399 ppmu = pmu; 2400 pr_info("%s performance monitor hardware support registered\n", 2401 pmu->name); 2402 2403 power_pmu.attr_groups = ppmu->attr_groups; 2404 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS); 2405 2406 #ifdef MSR_HV 2407 /* 2408 * Use FCHV to ignore kernel events if MSR.HV is set. 2409 */ 2410 if (mfmsr() & MSR_HV) 2411 freeze_events_kernel = MMCR0_FCHV; 2412 #endif /* CONFIG_PPC64 */ 2413 2414 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2415 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2416 power_pmu_prepare_cpu, NULL); 2417 return 0; 2418 } 2419 2420 #ifdef CONFIG_PPC64 2421 static int __init init_ppc64_pmu(void) 2422 { 2423 /* run through all the pmu drivers one at a time */ 2424 if (!init_power5_pmu()) 2425 return 0; 2426 else if (!init_power5p_pmu()) 2427 return 0; 2428 else if (!init_power6_pmu()) 2429 return 0; 2430 else if (!init_power7_pmu()) 2431 return 0; 2432 else if (!init_power8_pmu()) 2433 return 0; 2434 else if (!init_power9_pmu()) 2435 return 0; 2436 else if (!init_power10_pmu()) 2437 return 0; 2438 else if (!init_ppc970_pmu()) 2439 return 0; 2440 else 2441 return init_generic_compat_pmu(); 2442 } 2443 early_initcall(init_ppc64_pmu); 2444 #endif 2445