xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision c4f7ac64)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 #include <asm/interrupt.h>
21 
22 #ifdef CONFIG_PPC64
23 #include "internal.h"
24 #endif
25 
26 #define BHRB_MAX_ENTRIES	32
27 #define BHRB_TARGET		0x0000000000000002
28 #define BHRB_PREDICTION		0x0000000000000001
29 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
30 
31 struct cpu_hw_events {
32 	int n_events;
33 	int n_percpu;
34 	int disabled;
35 	int n_added;
36 	int n_limited;
37 	u8  pmcs_enabled;
38 	struct perf_event *event[MAX_HWEVENTS];
39 	u64 events[MAX_HWEVENTS];
40 	unsigned int flags[MAX_HWEVENTS];
41 	struct mmcr_regs mmcr;
42 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
43 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
44 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 
48 	unsigned int txn_flags;
49 	int n_txn_start;
50 
51 	/* BHRB bits */
52 	u64				bhrb_filter;	/* BHRB HW branch filter */
53 	unsigned int			bhrb_users;
54 	void				*bhrb_context;
55 	struct	perf_branch_stack	bhrb_stack;
56 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
57 	u64				ic_init;
58 
59 	/* Store the PMC values */
60 	unsigned long pmcs[MAX_HWEVENTS];
61 };
62 
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64 
65 static struct power_pmu *ppmu;
66 
67 /*
68  * Normally, to ignore kernel events we set the FCS (freeze counters
69  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70  * hypervisor bit set in the MSR, or if we are running on a processor
71  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72  * then we need to use the FCHV bit to ignore kernel events.
73  */
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
75 
76 /*
77  * 32-bit doesn't have MMCRA but does have an MMCR2,
78  * and a few other names are different.
79  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
80  * Define them as zero knowing that any code path accessing
81  * these registers (via mtspr/mfspr) are done under ppmu flag
82  * check for PPMU_ARCH_31 and we will not enter that code path
83  * for 32-bit.
84  */
85 #ifdef CONFIG_PPC32
86 
87 #define MMCR0_FCHV		0
88 #define MMCR0_PMCjCE		MMCR0_PMCnCE
89 #define MMCR0_FC56		0
90 #define MMCR0_PMAO		0
91 #define MMCR0_EBE		0
92 #define MMCR0_BHRBA		0
93 #define MMCR0_PMCC		0
94 #define MMCR0_PMCC_U6		0
95 
96 #define SPRN_MMCRA		SPRN_MMCR2
97 #define SPRN_MMCR3		0
98 #define SPRN_SIER2		0
99 #define SPRN_SIER3		0
100 #define MMCRA_SAMPLE_ENABLE	0
101 #define MMCRA_BHRB_DISABLE     0
102 #define MMCR0_PMCCEXT		0
103 
104 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
105 {
106 	return 0;
107 }
108 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
109 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
110 {
111 	return 0;
112 }
113 static inline void perf_read_regs(struct pt_regs *regs)
114 {
115 	regs->result = 0;
116 }
117 
118 static inline int siar_valid(struct pt_regs *regs)
119 {
120 	return 1;
121 }
122 
123 static bool is_ebb_event(struct perf_event *event) { return false; }
124 static int ebb_event_check(struct perf_event *event) { return 0; }
125 static void ebb_event_add(struct perf_event *event) { }
126 static void ebb_switch_out(unsigned long mmcr0) { }
127 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
128 {
129 	return cpuhw->mmcr.mmcr0;
130 }
131 
132 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
133 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
134 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
135 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
136 static void pmao_restore_workaround(bool ebb) { }
137 #endif /* CONFIG_PPC32 */
138 
139 bool is_sier_available(void)
140 {
141 	if (!ppmu)
142 		return false;
143 
144 	if (ppmu->flags & PPMU_HAS_SIER)
145 		return true;
146 
147 	return false;
148 }
149 
150 /*
151  * Return PMC value corresponding to the
152  * index passed.
153  */
154 unsigned long get_pmcs_ext_regs(int idx)
155 {
156 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
157 
158 	return cpuhw->pmcs[idx];
159 }
160 
161 static bool regs_use_siar(struct pt_regs *regs)
162 {
163 	/*
164 	 * When we take a performance monitor exception the regs are setup
165 	 * using perf_read_regs() which overloads some fields, in particular
166 	 * regs->result to tell us whether to use SIAR.
167 	 *
168 	 * However if the regs are from another exception, eg. a syscall, then
169 	 * they have not been setup using perf_read_regs() and so regs->result
170 	 * is something random.
171 	 */
172 	return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
173 }
174 
175 /*
176  * Things that are specific to 64-bit implementations.
177  */
178 #ifdef CONFIG_PPC64
179 
180 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
181 {
182 	unsigned long mmcra = regs->dsisr;
183 
184 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
185 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
186 		if (slot > 1)
187 			return 4 * (slot - 1);
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * The user wants a data address recorded.
195  * If we're not doing instruction sampling, give them the SDAR
196  * (sampled data address).  If we are doing instruction sampling, then
197  * only give them the SDAR if it corresponds to the instruction
198  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
199  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
200  */
201 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
202 {
203 	unsigned long mmcra = regs->dsisr;
204 	bool sdar_valid;
205 
206 	if (ppmu->flags & PPMU_HAS_SIER)
207 		sdar_valid = regs->dar & SIER_SDAR_VALID;
208 	else {
209 		unsigned long sdsync;
210 
211 		if (ppmu->flags & PPMU_SIAR_VALID)
212 			sdsync = POWER7P_MMCRA_SDAR_VALID;
213 		else if (ppmu->flags & PPMU_ALT_SIPR)
214 			sdsync = POWER6_MMCRA_SDSYNC;
215 		else if (ppmu->flags & PPMU_NO_SIAR)
216 			sdsync = MMCRA_SAMPLE_ENABLE;
217 		else
218 			sdsync = MMCRA_SDSYNC;
219 
220 		sdar_valid = mmcra & sdsync;
221 	}
222 
223 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
224 		*addrp = mfspr(SPRN_SDAR);
225 
226 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
227 		*addrp = 0;
228 }
229 
230 static bool regs_sihv(struct pt_regs *regs)
231 {
232 	unsigned long sihv = MMCRA_SIHV;
233 
234 	if (ppmu->flags & PPMU_HAS_SIER)
235 		return !!(regs->dar & SIER_SIHV);
236 
237 	if (ppmu->flags & PPMU_ALT_SIPR)
238 		sihv = POWER6_MMCRA_SIHV;
239 
240 	return !!(regs->dsisr & sihv);
241 }
242 
243 static bool regs_sipr(struct pt_regs *regs)
244 {
245 	unsigned long sipr = MMCRA_SIPR;
246 
247 	if (ppmu->flags & PPMU_HAS_SIER)
248 		return !!(regs->dar & SIER_SIPR);
249 
250 	if (ppmu->flags & PPMU_ALT_SIPR)
251 		sipr = POWER6_MMCRA_SIPR;
252 
253 	return !!(regs->dsisr & sipr);
254 }
255 
256 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
257 {
258 	if (regs->msr & MSR_PR)
259 		return PERF_RECORD_MISC_USER;
260 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
261 		return PERF_RECORD_MISC_HYPERVISOR;
262 	return PERF_RECORD_MISC_KERNEL;
263 }
264 
265 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
266 {
267 	bool use_siar = regs_use_siar(regs);
268 	unsigned long mmcra = regs->dsisr;
269 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
270 
271 	if (!use_siar)
272 		return perf_flags_from_msr(regs);
273 
274 	/*
275 	 * Check the address in SIAR to identify the
276 	 * privilege levels since the SIER[MSR_HV, MSR_PR]
277 	 * bits are not set for marked events in power10
278 	 * DD1.
279 	 */
280 	if (marked && (ppmu->flags & PPMU_P10_DD1)) {
281 		unsigned long siar = mfspr(SPRN_SIAR);
282 		if (siar) {
283 			if (is_kernel_addr(siar))
284 				return PERF_RECORD_MISC_KERNEL;
285 			return PERF_RECORD_MISC_USER;
286 		} else {
287 			if (is_kernel_addr(regs->nip))
288 				return PERF_RECORD_MISC_KERNEL;
289 			return PERF_RECORD_MISC_USER;
290 		}
291 	}
292 
293 	/*
294 	 * If we don't have flags in MMCRA, rather than using
295 	 * the MSR, we intuit the flags from the address in
296 	 * SIAR which should give slightly more reliable
297 	 * results
298 	 */
299 	if (ppmu->flags & PPMU_NO_SIPR) {
300 		unsigned long siar = mfspr(SPRN_SIAR);
301 		if (is_kernel_addr(siar))
302 			return PERF_RECORD_MISC_KERNEL;
303 		return PERF_RECORD_MISC_USER;
304 	}
305 
306 	/* PR has priority over HV, so order below is important */
307 	if (regs_sipr(regs))
308 		return PERF_RECORD_MISC_USER;
309 
310 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
311 		return PERF_RECORD_MISC_HYPERVISOR;
312 
313 	return PERF_RECORD_MISC_KERNEL;
314 }
315 
316 /*
317  * Overload regs->dsisr to store MMCRA so we only need to read it once
318  * on each interrupt.
319  * Overload regs->dar to store SIER if we have it.
320  * Overload regs->result to specify whether we should use the MSR (result
321  * is zero) or the SIAR (result is non zero).
322  */
323 static inline void perf_read_regs(struct pt_regs *regs)
324 {
325 	unsigned long mmcra = mfspr(SPRN_MMCRA);
326 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
327 	int use_siar;
328 
329 	regs->dsisr = mmcra;
330 
331 	if (ppmu->flags & PPMU_HAS_SIER)
332 		regs->dar = mfspr(SPRN_SIER);
333 
334 	/*
335 	 * If this isn't a PMU exception (eg a software event) the SIAR is
336 	 * not valid. Use pt_regs.
337 	 *
338 	 * If it is a marked event use the SIAR.
339 	 *
340 	 * If the PMU doesn't update the SIAR for non marked events use
341 	 * pt_regs.
342 	 *
343 	 * If the PMU has HV/PR flags then check to see if they
344 	 * place the exception in userspace. If so, use pt_regs. In
345 	 * continuous sampling mode the SIAR and the PMU exception are
346 	 * not synchronised, so they may be many instructions apart.
347 	 * This can result in confusing backtraces. We still want
348 	 * hypervisor samples as well as samples in the kernel with
349 	 * interrupts off hence the userspace check.
350 	 */
351 	if (TRAP(regs) != INTERRUPT_PERFMON)
352 		use_siar = 0;
353 	else if ((ppmu->flags & PPMU_NO_SIAR))
354 		use_siar = 0;
355 	else if (marked)
356 		use_siar = 1;
357 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
358 		use_siar = 0;
359 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
360 		use_siar = 0;
361 	else
362 		use_siar = 1;
363 
364 	regs->result = use_siar;
365 }
366 
367 /*
368  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
369  * must be sampled only if the SIAR-valid bit is set.
370  *
371  * For unmarked instructions and for processors that don't have the SIAR-Valid
372  * bit, assume that SIAR is valid.
373  */
374 static inline int siar_valid(struct pt_regs *regs)
375 {
376 	unsigned long mmcra = regs->dsisr;
377 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
378 
379 	if (marked) {
380 		/*
381 		 * SIER[SIAR_VALID] is not set for some
382 		 * marked events on power10 DD1, so drop
383 		 * the check for SIER[SIAR_VALID] and return true.
384 		 */
385 		if (ppmu->flags & PPMU_P10_DD1)
386 			return 0x1;
387 		else if (ppmu->flags & PPMU_HAS_SIER)
388 			return regs->dar & SIER_SIAR_VALID;
389 
390 		if (ppmu->flags & PPMU_SIAR_VALID)
391 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
392 	}
393 
394 	return 1;
395 }
396 
397 
398 /* Reset all possible BHRB entries */
399 static void power_pmu_bhrb_reset(void)
400 {
401 	asm volatile(PPC_CLRBHRB);
402 }
403 
404 static void power_pmu_bhrb_enable(struct perf_event *event)
405 {
406 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
407 
408 	if (!ppmu->bhrb_nr)
409 		return;
410 
411 	/* Clear BHRB if we changed task context to avoid data leaks */
412 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
413 		power_pmu_bhrb_reset();
414 		cpuhw->bhrb_context = event->ctx;
415 	}
416 	cpuhw->bhrb_users++;
417 	perf_sched_cb_inc(event->ctx->pmu);
418 }
419 
420 static void power_pmu_bhrb_disable(struct perf_event *event)
421 {
422 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
423 
424 	if (!ppmu->bhrb_nr)
425 		return;
426 
427 	WARN_ON_ONCE(!cpuhw->bhrb_users);
428 	cpuhw->bhrb_users--;
429 	perf_sched_cb_dec(event->ctx->pmu);
430 
431 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
432 		/* BHRB cannot be turned off when other
433 		 * events are active on the PMU.
434 		 */
435 
436 		/* avoid stale pointer */
437 		cpuhw->bhrb_context = NULL;
438 	}
439 }
440 
441 /* Called from ctxsw to prevent one process's branch entries to
442  * mingle with the other process's entries during context switch.
443  */
444 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
445 {
446 	if (!ppmu->bhrb_nr)
447 		return;
448 
449 	if (sched_in)
450 		power_pmu_bhrb_reset();
451 }
452 /* Calculate the to address for a branch */
453 static __u64 power_pmu_bhrb_to(u64 addr)
454 {
455 	unsigned int instr;
456 	__u64 target;
457 
458 	if (is_kernel_addr(addr)) {
459 		if (copy_from_kernel_nofault(&instr, (void *)addr,
460 				sizeof(instr)))
461 			return 0;
462 
463 		return branch_target((struct ppc_inst *)&instr);
464 	}
465 
466 	/* Userspace: need copy instruction here then translate it */
467 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
468 			sizeof(instr)))
469 		return 0;
470 
471 	target = branch_target((struct ppc_inst *)&instr);
472 	if ((!target) || (instr & BRANCH_ABSOLUTE))
473 		return target;
474 
475 	/* Translate relative branch target from kernel to user address */
476 	return target - (unsigned long)&instr + addr;
477 }
478 
479 /* Processing BHRB entries */
480 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
481 {
482 	u64 val;
483 	u64 addr;
484 	int r_index, u_index, pred;
485 
486 	r_index = 0;
487 	u_index = 0;
488 	while (r_index < ppmu->bhrb_nr) {
489 		/* Assembly read function */
490 		val = read_bhrb(r_index++);
491 		if (!val)
492 			/* Terminal marker: End of valid BHRB entries */
493 			break;
494 		else {
495 			addr = val & BHRB_EA;
496 			pred = val & BHRB_PREDICTION;
497 
498 			if (!addr)
499 				/* invalid entry */
500 				continue;
501 
502 			/*
503 			 * BHRB rolling buffer could very much contain the kernel
504 			 * addresses at this point. Check the privileges before
505 			 * exporting it to userspace (avoid exposure of regions
506 			 * where we could have speculative execution)
507 			 * Incase of ISA v3.1, BHRB will capture only user-space
508 			 * addresses, hence include a check before filtering code
509 			 */
510 			if (!(ppmu->flags & PPMU_ARCH_31) &&
511 			    is_kernel_addr(addr) && event->attr.exclude_kernel)
512 				continue;
513 
514 			/* Branches are read most recent first (ie. mfbhrb 0 is
515 			 * the most recent branch).
516 			 * There are two types of valid entries:
517 			 * 1) a target entry which is the to address of a
518 			 *    computed goto like a blr,bctr,btar.  The next
519 			 *    entry read from the bhrb will be branch
520 			 *    corresponding to this target (ie. the actual
521 			 *    blr/bctr/btar instruction).
522 			 * 2) a from address which is an actual branch.  If a
523 			 *    target entry proceeds this, then this is the
524 			 *    matching branch for that target.  If this is not
525 			 *    following a target entry, then this is a branch
526 			 *    where the target is given as an immediate field
527 			 *    in the instruction (ie. an i or b form branch).
528 			 *    In this case we need to read the instruction from
529 			 *    memory to determine the target/to address.
530 			 */
531 
532 			if (val & BHRB_TARGET) {
533 				/* Target branches use two entries
534 				 * (ie. computed gotos/XL form)
535 				 */
536 				cpuhw->bhrb_entries[u_index].to = addr;
537 				cpuhw->bhrb_entries[u_index].mispred = pred;
538 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
539 
540 				/* Get from address in next entry */
541 				val = read_bhrb(r_index++);
542 				addr = val & BHRB_EA;
543 				if (val & BHRB_TARGET) {
544 					/* Shouldn't have two targets in a
545 					   row.. Reset index and try again */
546 					r_index--;
547 					addr = 0;
548 				}
549 				cpuhw->bhrb_entries[u_index].from = addr;
550 			} else {
551 				/* Branches to immediate field
552 				   (ie I or B form) */
553 				cpuhw->bhrb_entries[u_index].from = addr;
554 				cpuhw->bhrb_entries[u_index].to =
555 					power_pmu_bhrb_to(addr);
556 				cpuhw->bhrb_entries[u_index].mispred = pred;
557 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
558 			}
559 			u_index++;
560 
561 		}
562 	}
563 	cpuhw->bhrb_stack.nr = u_index;
564 	cpuhw->bhrb_stack.hw_idx = -1ULL;
565 	return;
566 }
567 
568 static bool is_ebb_event(struct perf_event *event)
569 {
570 	/*
571 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
572 	 * check that the PMU supports EBB, meaning those that don't can still
573 	 * use bit 63 of the event code for something else if they wish.
574 	 */
575 	return (ppmu->flags & PPMU_ARCH_207S) &&
576 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
577 }
578 
579 static int ebb_event_check(struct perf_event *event)
580 {
581 	struct perf_event *leader = event->group_leader;
582 
583 	/* Event and group leader must agree on EBB */
584 	if (is_ebb_event(leader) != is_ebb_event(event))
585 		return -EINVAL;
586 
587 	if (is_ebb_event(event)) {
588 		if (!(event->attach_state & PERF_ATTACH_TASK))
589 			return -EINVAL;
590 
591 		if (!leader->attr.pinned || !leader->attr.exclusive)
592 			return -EINVAL;
593 
594 		if (event->attr.freq ||
595 		    event->attr.inherit ||
596 		    event->attr.sample_type ||
597 		    event->attr.sample_period ||
598 		    event->attr.enable_on_exec)
599 			return -EINVAL;
600 	}
601 
602 	return 0;
603 }
604 
605 static void ebb_event_add(struct perf_event *event)
606 {
607 	if (!is_ebb_event(event) || current->thread.used_ebb)
608 		return;
609 
610 	/*
611 	 * IFF this is the first time we've added an EBB event, set
612 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
613 	 * userspace. We need this so that we can context switch while
614 	 * userspace is in the EBB handler (where PMXE is 0).
615 	 */
616 	current->thread.used_ebb = 1;
617 	current->thread.mmcr0 |= MMCR0_PMXE;
618 }
619 
620 static void ebb_switch_out(unsigned long mmcr0)
621 {
622 	if (!(mmcr0 & MMCR0_EBE))
623 		return;
624 
625 	current->thread.siar  = mfspr(SPRN_SIAR);
626 	current->thread.sier  = mfspr(SPRN_SIER);
627 	current->thread.sdar  = mfspr(SPRN_SDAR);
628 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
629 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
630 	if (ppmu->flags & PPMU_ARCH_31) {
631 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
632 		current->thread.sier2 = mfspr(SPRN_SIER2);
633 		current->thread.sier3 = mfspr(SPRN_SIER3);
634 	}
635 }
636 
637 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
638 {
639 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
640 
641 	if (!ebb)
642 		goto out;
643 
644 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
645 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
646 
647 	/*
648 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
649 	 * with pmao_restore_workaround() because we may add PMAO but we never
650 	 * clear it here.
651 	 */
652 	mmcr0 |= current->thread.mmcr0;
653 
654 	/*
655 	 * Be careful not to set PMXE if userspace had it cleared. This is also
656 	 * compatible with pmao_restore_workaround() because it has already
657 	 * cleared PMXE and we leave PMAO alone.
658 	 */
659 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
660 		mmcr0 &= ~MMCR0_PMXE;
661 
662 	mtspr(SPRN_SIAR, current->thread.siar);
663 	mtspr(SPRN_SIER, current->thread.sier);
664 	mtspr(SPRN_SDAR, current->thread.sdar);
665 
666 	/*
667 	 * Merge the kernel & user values of MMCR2. The semantics we implement
668 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
669 	 * but not clear bits. If a task wants to be able to clear bits, ie.
670 	 * unfreeze counters, it should not set exclude_xxx in its events and
671 	 * instead manage the MMCR2 entirely by itself.
672 	 */
673 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
674 
675 	if (ppmu->flags & PPMU_ARCH_31) {
676 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
677 		mtspr(SPRN_SIER2, current->thread.sier2);
678 		mtspr(SPRN_SIER3, current->thread.sier3);
679 	}
680 out:
681 	return mmcr0;
682 }
683 
684 static void pmao_restore_workaround(bool ebb)
685 {
686 	unsigned pmcs[6];
687 
688 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
689 		return;
690 
691 	/*
692 	 * On POWER8E there is a hardware defect which affects the PMU context
693 	 * switch logic, ie. power_pmu_disable/enable().
694 	 *
695 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
696 	 * by the hardware. Sometime later the actual PMU exception is
697 	 * delivered.
698 	 *
699 	 * If we context switch, or simply disable/enable, the PMU prior to the
700 	 * exception arriving, the exception will be lost when we clear PMAO.
701 	 *
702 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
703 	 * set, and this _should_ generate an exception. However because of the
704 	 * defect no exception is generated when we write PMAO, and we get
705 	 * stuck with no counters counting but no exception delivered.
706 	 *
707 	 * The workaround is to detect this case and tweak the hardware to
708 	 * create another pending PMU exception.
709 	 *
710 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
711 	 * enabling the PMU. That causes a new exception to be generated in the
712 	 * chip, but we don't take it yet because we have interrupts hard
713 	 * disabled. We then write back the PMU state as we want it to be seen
714 	 * by the exception handler. When we reenable interrupts the exception
715 	 * handler will be called and see the correct state.
716 	 *
717 	 * The logic is the same for EBB, except that the exception is gated by
718 	 * us having interrupts hard disabled as well as the fact that we are
719 	 * not in userspace. The exception is finally delivered when we return
720 	 * to userspace.
721 	 */
722 
723 	/* Only if PMAO is set and PMAO_SYNC is clear */
724 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
725 		return;
726 
727 	/* If we're doing EBB, only if BESCR[GE] is set */
728 	if (ebb && !(current->thread.bescr & BESCR_GE))
729 		return;
730 
731 	/*
732 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
733 	 * disable to actually prevent the PMU exception from firing.
734 	 */
735 	hard_irq_disable();
736 
737 	/*
738 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
739 	 * Using read/write_pmc() in a for loop adds 12 function calls and
740 	 * almost doubles our code size.
741 	 */
742 	pmcs[0] = mfspr(SPRN_PMC1);
743 	pmcs[1] = mfspr(SPRN_PMC2);
744 	pmcs[2] = mfspr(SPRN_PMC3);
745 	pmcs[3] = mfspr(SPRN_PMC4);
746 	pmcs[4] = mfspr(SPRN_PMC5);
747 	pmcs[5] = mfspr(SPRN_PMC6);
748 
749 	/* Ensure all freeze bits are unset */
750 	mtspr(SPRN_MMCR2, 0);
751 
752 	/* Set up PMC6 to overflow in one cycle */
753 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
754 
755 	/* Enable exceptions and unfreeze PMC6 */
756 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
757 
758 	/* Now we need to refreeze and restore the PMCs */
759 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
760 
761 	mtspr(SPRN_PMC1, pmcs[0]);
762 	mtspr(SPRN_PMC2, pmcs[1]);
763 	mtspr(SPRN_PMC3, pmcs[2]);
764 	mtspr(SPRN_PMC4, pmcs[3]);
765 	mtspr(SPRN_PMC5, pmcs[4]);
766 	mtspr(SPRN_PMC6, pmcs[5]);
767 }
768 
769 #endif /* CONFIG_PPC64 */
770 
771 static void perf_event_interrupt(struct pt_regs *regs);
772 
773 /*
774  * Read one performance monitor counter (PMC).
775  */
776 static unsigned long read_pmc(int idx)
777 {
778 	unsigned long val;
779 
780 	switch (idx) {
781 	case 1:
782 		val = mfspr(SPRN_PMC1);
783 		break;
784 	case 2:
785 		val = mfspr(SPRN_PMC2);
786 		break;
787 	case 3:
788 		val = mfspr(SPRN_PMC3);
789 		break;
790 	case 4:
791 		val = mfspr(SPRN_PMC4);
792 		break;
793 	case 5:
794 		val = mfspr(SPRN_PMC5);
795 		break;
796 	case 6:
797 		val = mfspr(SPRN_PMC6);
798 		break;
799 #ifdef CONFIG_PPC64
800 	case 7:
801 		val = mfspr(SPRN_PMC7);
802 		break;
803 	case 8:
804 		val = mfspr(SPRN_PMC8);
805 		break;
806 #endif /* CONFIG_PPC64 */
807 	default:
808 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
809 		val = 0;
810 	}
811 	return val;
812 }
813 
814 /*
815  * Write one PMC.
816  */
817 static void write_pmc(int idx, unsigned long val)
818 {
819 	switch (idx) {
820 	case 1:
821 		mtspr(SPRN_PMC1, val);
822 		break;
823 	case 2:
824 		mtspr(SPRN_PMC2, val);
825 		break;
826 	case 3:
827 		mtspr(SPRN_PMC3, val);
828 		break;
829 	case 4:
830 		mtspr(SPRN_PMC4, val);
831 		break;
832 	case 5:
833 		mtspr(SPRN_PMC5, val);
834 		break;
835 	case 6:
836 		mtspr(SPRN_PMC6, val);
837 		break;
838 #ifdef CONFIG_PPC64
839 	case 7:
840 		mtspr(SPRN_PMC7, val);
841 		break;
842 	case 8:
843 		mtspr(SPRN_PMC8, val);
844 		break;
845 #endif /* CONFIG_PPC64 */
846 	default:
847 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
848 	}
849 }
850 
851 /* Called from sysrq_handle_showregs() */
852 void perf_event_print_debug(void)
853 {
854 	unsigned long sdar, sier, flags;
855 	u32 pmcs[MAX_HWEVENTS];
856 	int i;
857 
858 	if (!ppmu) {
859 		pr_info("Performance monitor hardware not registered.\n");
860 		return;
861 	}
862 
863 	if (!ppmu->n_counter)
864 		return;
865 
866 	local_irq_save(flags);
867 
868 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
869 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
870 
871 	for (i = 0; i < ppmu->n_counter; i++)
872 		pmcs[i] = read_pmc(i + 1);
873 
874 	for (; i < MAX_HWEVENTS; i++)
875 		pmcs[i] = 0xdeadbeef;
876 
877 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
878 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
879 
880 	if (ppmu->n_counter > 4)
881 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
882 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
883 
884 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
885 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
886 
887 	sdar = sier = 0;
888 #ifdef CONFIG_PPC64
889 	sdar = mfspr(SPRN_SDAR);
890 
891 	if (ppmu->flags & PPMU_HAS_SIER)
892 		sier = mfspr(SPRN_SIER);
893 
894 	if (ppmu->flags & PPMU_ARCH_207S) {
895 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
896 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
897 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
898 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
899 	}
900 
901 	if (ppmu->flags & PPMU_ARCH_31) {
902 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
903 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
904 	}
905 #endif
906 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
907 		mfspr(SPRN_SIAR), sdar, sier);
908 
909 	local_irq_restore(flags);
910 }
911 
912 /*
913  * Check if a set of events can all go on the PMU at once.
914  * If they can't, this will look at alternative codes for the events
915  * and see if any combination of alternative codes is feasible.
916  * The feasible set is returned in event_id[].
917  */
918 static int power_check_constraints(struct cpu_hw_events *cpuhw,
919 				   u64 event_id[], unsigned int cflags[],
920 				   int n_ev, struct perf_event **event)
921 {
922 	unsigned long mask, value, nv;
923 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
924 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
925 	int i, j;
926 	unsigned long addf = ppmu->add_fields;
927 	unsigned long tadd = ppmu->test_adder;
928 	unsigned long grp_mask = ppmu->group_constraint_mask;
929 	unsigned long grp_val = ppmu->group_constraint_val;
930 
931 	if (n_ev > ppmu->n_counter)
932 		return -1;
933 
934 	/* First see if the events will go on as-is */
935 	for (i = 0; i < n_ev; ++i) {
936 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
937 		    && !ppmu->limited_pmc_event(event_id[i])) {
938 			ppmu->get_alternatives(event_id[i], cflags[i],
939 					       cpuhw->alternatives[i]);
940 			event_id[i] = cpuhw->alternatives[i][0];
941 		}
942 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
943 					 &cpuhw->avalues[i][0], event[i]->attr.config1))
944 			return -1;
945 	}
946 	value = mask = 0;
947 	for (i = 0; i < n_ev; ++i) {
948 		nv = (value | cpuhw->avalues[i][0]) +
949 			(value & cpuhw->avalues[i][0] & addf);
950 
951 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
952 			break;
953 
954 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
955 			& (~grp_mask)) != 0)
956 			break;
957 
958 		value = nv;
959 		mask |= cpuhw->amasks[i][0];
960 	}
961 	if (i == n_ev) {
962 		if ((value & mask & grp_mask) != (mask & grp_val))
963 			return -1;
964 		else
965 			return 0;	/* all OK */
966 	}
967 
968 	/* doesn't work, gather alternatives... */
969 	if (!ppmu->get_alternatives)
970 		return -1;
971 	for (i = 0; i < n_ev; ++i) {
972 		choice[i] = 0;
973 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
974 						  cpuhw->alternatives[i]);
975 		for (j = 1; j < n_alt[i]; ++j)
976 			ppmu->get_constraint(cpuhw->alternatives[i][j],
977 					     &cpuhw->amasks[i][j],
978 					     &cpuhw->avalues[i][j],
979 					     event[i]->attr.config1);
980 	}
981 
982 	/* enumerate all possibilities and see if any will work */
983 	i = 0;
984 	j = -1;
985 	value = mask = nv = 0;
986 	while (i < n_ev) {
987 		if (j >= 0) {
988 			/* we're backtracking, restore context */
989 			value = svalues[i];
990 			mask = smasks[i];
991 			j = choice[i];
992 		}
993 		/*
994 		 * See if any alternative k for event_id i,
995 		 * where k > j, will satisfy the constraints.
996 		 */
997 		while (++j < n_alt[i]) {
998 			nv = (value | cpuhw->avalues[i][j]) +
999 				(value & cpuhw->avalues[i][j] & addf);
1000 			if ((((nv + tadd) ^ value) & mask) == 0 &&
1001 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
1002 			     & cpuhw->amasks[i][j]) == 0)
1003 				break;
1004 		}
1005 		if (j >= n_alt[i]) {
1006 			/*
1007 			 * No feasible alternative, backtrack
1008 			 * to event_id i-1 and continue enumerating its
1009 			 * alternatives from where we got up to.
1010 			 */
1011 			if (--i < 0)
1012 				return -1;
1013 		} else {
1014 			/*
1015 			 * Found a feasible alternative for event_id i,
1016 			 * remember where we got up to with this event_id,
1017 			 * go on to the next event_id, and start with
1018 			 * the first alternative for it.
1019 			 */
1020 			choice[i] = j;
1021 			svalues[i] = value;
1022 			smasks[i] = mask;
1023 			value = nv;
1024 			mask |= cpuhw->amasks[i][j];
1025 			++i;
1026 			j = -1;
1027 		}
1028 	}
1029 
1030 	/* OK, we have a feasible combination, tell the caller the solution */
1031 	for (i = 0; i < n_ev; ++i)
1032 		event_id[i] = cpuhw->alternatives[i][choice[i]];
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Check if newly-added events have consistent settings for
1038  * exclude_{user,kernel,hv} with each other and any previously
1039  * added events.
1040  */
1041 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1042 			  int n_prev, int n_new)
1043 {
1044 	int eu = 0, ek = 0, eh = 0;
1045 	int i, n, first;
1046 	struct perf_event *event;
1047 
1048 	/*
1049 	 * If the PMU we're on supports per event exclude settings then we
1050 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1051 	 * per event exclude and limited PMCs.
1052 	 */
1053 	if (ppmu->flags & PPMU_ARCH_207S)
1054 		return 0;
1055 
1056 	n = n_prev + n_new;
1057 	if (n <= 1)
1058 		return 0;
1059 
1060 	first = 1;
1061 	for (i = 0; i < n; ++i) {
1062 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1063 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1064 			continue;
1065 		}
1066 		event = ctrs[i];
1067 		if (first) {
1068 			eu = event->attr.exclude_user;
1069 			ek = event->attr.exclude_kernel;
1070 			eh = event->attr.exclude_hv;
1071 			first = 0;
1072 		} else if (event->attr.exclude_user != eu ||
1073 			   event->attr.exclude_kernel != ek ||
1074 			   event->attr.exclude_hv != eh) {
1075 			return -EAGAIN;
1076 		}
1077 	}
1078 
1079 	if (eu || ek || eh)
1080 		for (i = 0; i < n; ++i)
1081 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1082 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1083 
1084 	return 0;
1085 }
1086 
1087 static u64 check_and_compute_delta(u64 prev, u64 val)
1088 {
1089 	u64 delta = (val - prev) & 0xfffffffful;
1090 
1091 	/*
1092 	 * POWER7 can roll back counter values, if the new value is smaller
1093 	 * than the previous value it will cause the delta and the counter to
1094 	 * have bogus values unless we rolled a counter over.  If a coutner is
1095 	 * rolled back, it will be smaller, but within 256, which is the maximum
1096 	 * number of events to rollback at once.  If we detect a rollback
1097 	 * return 0.  This can lead to a small lack of precision in the
1098 	 * counters.
1099 	 */
1100 	if (prev > val && (prev - val) < 256)
1101 		delta = 0;
1102 
1103 	return delta;
1104 }
1105 
1106 static void power_pmu_read(struct perf_event *event)
1107 {
1108 	s64 val, delta, prev;
1109 
1110 	if (event->hw.state & PERF_HES_STOPPED)
1111 		return;
1112 
1113 	if (!event->hw.idx)
1114 		return;
1115 
1116 	if (is_ebb_event(event)) {
1117 		val = read_pmc(event->hw.idx);
1118 		local64_set(&event->hw.prev_count, val);
1119 		return;
1120 	}
1121 
1122 	/*
1123 	 * Performance monitor interrupts come even when interrupts
1124 	 * are soft-disabled, as long as interrupts are hard-enabled.
1125 	 * Therefore we treat them like NMIs.
1126 	 */
1127 	do {
1128 		prev = local64_read(&event->hw.prev_count);
1129 		barrier();
1130 		val = read_pmc(event->hw.idx);
1131 		delta = check_and_compute_delta(prev, val);
1132 		if (!delta)
1133 			return;
1134 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1135 
1136 	local64_add(delta, &event->count);
1137 
1138 	/*
1139 	 * A number of places program the PMC with (0x80000000 - period_left).
1140 	 * We never want period_left to be less than 1 because we will program
1141 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1142 	 * roll around to 0 before taking an exception. We have seen this
1143 	 * on POWER8.
1144 	 *
1145 	 * To fix this, clamp the minimum value of period_left to 1.
1146 	 */
1147 	do {
1148 		prev = local64_read(&event->hw.period_left);
1149 		val = prev - delta;
1150 		if (val < 1)
1151 			val = 1;
1152 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1153 }
1154 
1155 /*
1156  * On some machines, PMC5 and PMC6 can't be written, don't respect
1157  * the freeze conditions, and don't generate interrupts.  This tells
1158  * us if `event' is using such a PMC.
1159  */
1160 static int is_limited_pmc(int pmcnum)
1161 {
1162 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1163 		&& (pmcnum == 5 || pmcnum == 6);
1164 }
1165 
1166 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1167 				    unsigned long pmc5, unsigned long pmc6)
1168 {
1169 	struct perf_event *event;
1170 	u64 val, prev, delta;
1171 	int i;
1172 
1173 	for (i = 0; i < cpuhw->n_limited; ++i) {
1174 		event = cpuhw->limited_counter[i];
1175 		if (!event->hw.idx)
1176 			continue;
1177 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1178 		prev = local64_read(&event->hw.prev_count);
1179 		event->hw.idx = 0;
1180 		delta = check_and_compute_delta(prev, val);
1181 		if (delta)
1182 			local64_add(delta, &event->count);
1183 	}
1184 }
1185 
1186 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1187 				  unsigned long pmc5, unsigned long pmc6)
1188 {
1189 	struct perf_event *event;
1190 	u64 val, prev;
1191 	int i;
1192 
1193 	for (i = 0; i < cpuhw->n_limited; ++i) {
1194 		event = cpuhw->limited_counter[i];
1195 		event->hw.idx = cpuhw->limited_hwidx[i];
1196 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1197 		prev = local64_read(&event->hw.prev_count);
1198 		if (check_and_compute_delta(prev, val))
1199 			local64_set(&event->hw.prev_count, val);
1200 		perf_event_update_userpage(event);
1201 	}
1202 }
1203 
1204 /*
1205  * Since limited events don't respect the freeze conditions, we
1206  * have to read them immediately after freezing or unfreezing the
1207  * other events.  We try to keep the values from the limited
1208  * events as consistent as possible by keeping the delay (in
1209  * cycles and instructions) between freezing/unfreezing and reading
1210  * the limited events as small and consistent as possible.
1211  * Therefore, if any limited events are in use, we read them
1212  * both, and always in the same order, to minimize variability,
1213  * and do it inside the same asm that writes MMCR0.
1214  */
1215 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1216 {
1217 	unsigned long pmc5, pmc6;
1218 
1219 	if (!cpuhw->n_limited) {
1220 		mtspr(SPRN_MMCR0, mmcr0);
1221 		return;
1222 	}
1223 
1224 	/*
1225 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1226 	 * To ensure we don't get a performance monitor interrupt
1227 	 * between writing MMCR0 and freezing/thawing the limited
1228 	 * events, we first write MMCR0 with the event overflow
1229 	 * interrupt enable bits turned off.
1230 	 */
1231 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1232 		     : "=&r" (pmc5), "=&r" (pmc6)
1233 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1234 		       "i" (SPRN_MMCR0),
1235 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1236 
1237 	if (mmcr0 & MMCR0_FC)
1238 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1239 	else
1240 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1241 
1242 	/*
1243 	 * Write the full MMCR0 including the event overflow interrupt
1244 	 * enable bits, if necessary.
1245 	 */
1246 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1247 		mtspr(SPRN_MMCR0, mmcr0);
1248 }
1249 
1250 /*
1251  * Disable all events to prevent PMU interrupts and to allow
1252  * events to be added or removed.
1253  */
1254 static void power_pmu_disable(struct pmu *pmu)
1255 {
1256 	struct cpu_hw_events *cpuhw;
1257 	unsigned long flags, mmcr0, val, mmcra;
1258 
1259 	if (!ppmu)
1260 		return;
1261 	local_irq_save(flags);
1262 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1263 
1264 	if (!cpuhw->disabled) {
1265 		/*
1266 		 * Check if we ever enabled the PMU on this cpu.
1267 		 */
1268 		if (!cpuhw->pmcs_enabled) {
1269 			ppc_enable_pmcs();
1270 			cpuhw->pmcs_enabled = 1;
1271 		}
1272 
1273 		/*
1274 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1275 		 */
1276 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1277 		val |= MMCR0_FC;
1278 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1279 			 MMCR0_FC56);
1280 		/* Set mmcr0 PMCCEXT for p10 */
1281 		if (ppmu->flags & PPMU_ARCH_31)
1282 			val |= MMCR0_PMCCEXT;
1283 
1284 		/*
1285 		 * The barrier is to make sure the mtspr has been
1286 		 * executed and the PMU has frozen the events etc.
1287 		 * before we return.
1288 		 */
1289 		write_mmcr0(cpuhw, val);
1290 		mb();
1291 		isync();
1292 
1293 		val = mmcra = cpuhw->mmcr.mmcra;
1294 
1295 		/*
1296 		 * Disable instruction sampling if it was enabled
1297 		 */
1298 		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1299 			val &= ~MMCRA_SAMPLE_ENABLE;
1300 
1301 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1302 		if (ppmu->flags & PPMU_ARCH_31)
1303 			val |= MMCRA_BHRB_DISABLE;
1304 
1305 		/*
1306 		 * Write SPRN_MMCRA if mmcra has either disabled
1307 		 * instruction sampling or BHRB.
1308 		 */
1309 		if (val != mmcra) {
1310 			mtspr(SPRN_MMCRA, mmcra);
1311 			mb();
1312 			isync();
1313 		}
1314 
1315 		cpuhw->disabled = 1;
1316 		cpuhw->n_added = 0;
1317 
1318 		ebb_switch_out(mmcr0);
1319 
1320 #ifdef CONFIG_PPC64
1321 		/*
1322 		 * These are readable by userspace, may contain kernel
1323 		 * addresses and are not switched by context switch, so clear
1324 		 * them now to avoid leaking anything to userspace in general
1325 		 * including to another process.
1326 		 */
1327 		if (ppmu->flags & PPMU_ARCH_207S) {
1328 			mtspr(SPRN_SDAR, 0);
1329 			mtspr(SPRN_SIAR, 0);
1330 		}
1331 #endif
1332 	}
1333 
1334 	local_irq_restore(flags);
1335 }
1336 
1337 /*
1338  * Re-enable all events if disable == 0.
1339  * If we were previously disabled and events were added, then
1340  * put the new config on the PMU.
1341  */
1342 static void power_pmu_enable(struct pmu *pmu)
1343 {
1344 	struct perf_event *event;
1345 	struct cpu_hw_events *cpuhw;
1346 	unsigned long flags;
1347 	long i;
1348 	unsigned long val, mmcr0;
1349 	s64 left;
1350 	unsigned int hwc_index[MAX_HWEVENTS];
1351 	int n_lim;
1352 	int idx;
1353 	bool ebb;
1354 
1355 	if (!ppmu)
1356 		return;
1357 	local_irq_save(flags);
1358 
1359 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1360 	if (!cpuhw->disabled)
1361 		goto out;
1362 
1363 	if (cpuhw->n_events == 0) {
1364 		ppc_set_pmu_inuse(0);
1365 		goto out;
1366 	}
1367 
1368 	cpuhw->disabled = 0;
1369 
1370 	/*
1371 	 * EBB requires an exclusive group and all events must have the EBB
1372 	 * flag set, or not set, so we can just check a single event. Also we
1373 	 * know we have at least one event.
1374 	 */
1375 	ebb = is_ebb_event(cpuhw->event[0]);
1376 
1377 	/*
1378 	 * If we didn't change anything, or only removed events,
1379 	 * no need to recalculate MMCR* settings and reset the PMCs.
1380 	 * Just reenable the PMU with the current MMCR* settings
1381 	 * (possibly updated for removal of events).
1382 	 */
1383 	if (!cpuhw->n_added) {
1384 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1385 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1386 		if (ppmu->flags & PPMU_ARCH_31)
1387 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1388 		goto out_enable;
1389 	}
1390 
1391 	/*
1392 	 * Clear all MMCR settings and recompute them for the new set of events.
1393 	 */
1394 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1395 
1396 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1397 			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1398 		/* shouldn't ever get here */
1399 		printk(KERN_ERR "oops compute_mmcr failed\n");
1400 		goto out;
1401 	}
1402 
1403 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1404 		/*
1405 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1406 		 * bits for the first event. We have already checked that all
1407 		 * events have the same value for these bits as the first event.
1408 		 */
1409 		event = cpuhw->event[0];
1410 		if (event->attr.exclude_user)
1411 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1412 		if (event->attr.exclude_kernel)
1413 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1414 		if (event->attr.exclude_hv)
1415 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1416 	}
1417 
1418 	/*
1419 	 * Write the new configuration to MMCR* with the freeze
1420 	 * bit set and set the hardware events to their initial values.
1421 	 * Then unfreeze the events.
1422 	 */
1423 	ppc_set_pmu_inuse(1);
1424 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1425 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1426 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1427 				| MMCR0_FC);
1428 	if (ppmu->flags & PPMU_ARCH_207S)
1429 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1430 
1431 	if (ppmu->flags & PPMU_ARCH_31)
1432 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1433 
1434 	/*
1435 	 * Read off any pre-existing events that need to move
1436 	 * to another PMC.
1437 	 */
1438 	for (i = 0; i < cpuhw->n_events; ++i) {
1439 		event = cpuhw->event[i];
1440 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1441 			power_pmu_read(event);
1442 			write_pmc(event->hw.idx, 0);
1443 			event->hw.idx = 0;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Initialize the PMCs for all the new and moved events.
1449 	 */
1450 	cpuhw->n_limited = n_lim = 0;
1451 	for (i = 0; i < cpuhw->n_events; ++i) {
1452 		event = cpuhw->event[i];
1453 		if (event->hw.idx)
1454 			continue;
1455 		idx = hwc_index[i] + 1;
1456 		if (is_limited_pmc(idx)) {
1457 			cpuhw->limited_counter[n_lim] = event;
1458 			cpuhw->limited_hwidx[n_lim] = idx;
1459 			++n_lim;
1460 			continue;
1461 		}
1462 
1463 		if (ebb)
1464 			val = local64_read(&event->hw.prev_count);
1465 		else {
1466 			val = 0;
1467 			if (event->hw.sample_period) {
1468 				left = local64_read(&event->hw.period_left);
1469 				if (left < 0x80000000L)
1470 					val = 0x80000000L - left;
1471 			}
1472 			local64_set(&event->hw.prev_count, val);
1473 		}
1474 
1475 		event->hw.idx = idx;
1476 		if (event->hw.state & PERF_HES_STOPPED)
1477 			val = 0;
1478 		write_pmc(idx, val);
1479 
1480 		perf_event_update_userpage(event);
1481 	}
1482 	cpuhw->n_limited = n_lim;
1483 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1484 
1485  out_enable:
1486 	pmao_restore_workaround(ebb);
1487 
1488 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1489 
1490 	mb();
1491 	if (cpuhw->bhrb_users)
1492 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1493 
1494 	write_mmcr0(cpuhw, mmcr0);
1495 
1496 	/*
1497 	 * Enable instruction sampling if necessary
1498 	 */
1499 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1500 		mb();
1501 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1502 	}
1503 
1504  out:
1505 
1506 	local_irq_restore(flags);
1507 }
1508 
1509 static int collect_events(struct perf_event *group, int max_count,
1510 			  struct perf_event *ctrs[], u64 *events,
1511 			  unsigned int *flags)
1512 {
1513 	int n = 0;
1514 	struct perf_event *event;
1515 
1516 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1517 		if (n >= max_count)
1518 			return -1;
1519 		ctrs[n] = group;
1520 		flags[n] = group->hw.event_base;
1521 		events[n++] = group->hw.config;
1522 	}
1523 	for_each_sibling_event(event, group) {
1524 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1525 		    event->state != PERF_EVENT_STATE_OFF) {
1526 			if (n >= max_count)
1527 				return -1;
1528 			ctrs[n] = event;
1529 			flags[n] = event->hw.event_base;
1530 			events[n++] = event->hw.config;
1531 		}
1532 	}
1533 	return n;
1534 }
1535 
1536 /*
1537  * Add an event to the PMU.
1538  * If all events are not already frozen, then we disable and
1539  * re-enable the PMU in order to get hw_perf_enable to do the
1540  * actual work of reconfiguring the PMU.
1541  */
1542 static int power_pmu_add(struct perf_event *event, int ef_flags)
1543 {
1544 	struct cpu_hw_events *cpuhw;
1545 	unsigned long flags;
1546 	int n0;
1547 	int ret = -EAGAIN;
1548 
1549 	local_irq_save(flags);
1550 	perf_pmu_disable(event->pmu);
1551 
1552 	/*
1553 	 * Add the event to the list (if there is room)
1554 	 * and check whether the total set is still feasible.
1555 	 */
1556 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1557 	n0 = cpuhw->n_events;
1558 	if (n0 >= ppmu->n_counter)
1559 		goto out;
1560 	cpuhw->event[n0] = event;
1561 	cpuhw->events[n0] = event->hw.config;
1562 	cpuhw->flags[n0] = event->hw.event_base;
1563 
1564 	/*
1565 	 * This event may have been disabled/stopped in record_and_restart()
1566 	 * because we exceeded the ->event_limit. If re-starting the event,
1567 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1568 	 * notification is re-enabled.
1569 	 */
1570 	if (!(ef_flags & PERF_EF_START))
1571 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1572 	else
1573 		event->hw.state = 0;
1574 
1575 	/*
1576 	 * If group events scheduling transaction was started,
1577 	 * skip the schedulability test here, it will be performed
1578 	 * at commit time(->commit_txn) as a whole
1579 	 */
1580 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1581 		goto nocheck;
1582 
1583 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1584 		goto out;
1585 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1586 		goto out;
1587 	event->hw.config = cpuhw->events[n0];
1588 
1589 nocheck:
1590 	ebb_event_add(event);
1591 
1592 	++cpuhw->n_events;
1593 	++cpuhw->n_added;
1594 
1595 	ret = 0;
1596  out:
1597 	if (has_branch_stack(event)) {
1598 		u64 bhrb_filter = -1;
1599 
1600 		if (ppmu->bhrb_filter_map)
1601 			bhrb_filter = ppmu->bhrb_filter_map(
1602 				event->attr.branch_sample_type);
1603 
1604 		if (bhrb_filter != -1) {
1605 			cpuhw->bhrb_filter = bhrb_filter;
1606 			power_pmu_bhrb_enable(event);
1607 		}
1608 	}
1609 
1610 	perf_pmu_enable(event->pmu);
1611 	local_irq_restore(flags);
1612 	return ret;
1613 }
1614 
1615 /*
1616  * Remove an event from the PMU.
1617  */
1618 static void power_pmu_del(struct perf_event *event, int ef_flags)
1619 {
1620 	struct cpu_hw_events *cpuhw;
1621 	long i;
1622 	unsigned long flags;
1623 
1624 	local_irq_save(flags);
1625 	perf_pmu_disable(event->pmu);
1626 
1627 	power_pmu_read(event);
1628 
1629 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1630 	for (i = 0; i < cpuhw->n_events; ++i) {
1631 		if (event == cpuhw->event[i]) {
1632 			while (++i < cpuhw->n_events) {
1633 				cpuhw->event[i-1] = cpuhw->event[i];
1634 				cpuhw->events[i-1] = cpuhw->events[i];
1635 				cpuhw->flags[i-1] = cpuhw->flags[i];
1636 			}
1637 			--cpuhw->n_events;
1638 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1639 			if (event->hw.idx) {
1640 				write_pmc(event->hw.idx, 0);
1641 				event->hw.idx = 0;
1642 			}
1643 			perf_event_update_userpage(event);
1644 			break;
1645 		}
1646 	}
1647 	for (i = 0; i < cpuhw->n_limited; ++i)
1648 		if (event == cpuhw->limited_counter[i])
1649 			break;
1650 	if (i < cpuhw->n_limited) {
1651 		while (++i < cpuhw->n_limited) {
1652 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1653 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1654 		}
1655 		--cpuhw->n_limited;
1656 	}
1657 	if (cpuhw->n_events == 0) {
1658 		/* disable exceptions if no events are running */
1659 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1660 	}
1661 
1662 	if (has_branch_stack(event))
1663 		power_pmu_bhrb_disable(event);
1664 
1665 	perf_pmu_enable(event->pmu);
1666 	local_irq_restore(flags);
1667 }
1668 
1669 /*
1670  * POWER-PMU does not support disabling individual counters, hence
1671  * program their cycle counter to their max value and ignore the interrupts.
1672  */
1673 
1674 static void power_pmu_start(struct perf_event *event, int ef_flags)
1675 {
1676 	unsigned long flags;
1677 	s64 left;
1678 	unsigned long val;
1679 
1680 	if (!event->hw.idx || !event->hw.sample_period)
1681 		return;
1682 
1683 	if (!(event->hw.state & PERF_HES_STOPPED))
1684 		return;
1685 
1686 	if (ef_flags & PERF_EF_RELOAD)
1687 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1688 
1689 	local_irq_save(flags);
1690 	perf_pmu_disable(event->pmu);
1691 
1692 	event->hw.state = 0;
1693 	left = local64_read(&event->hw.period_left);
1694 
1695 	val = 0;
1696 	if (left < 0x80000000L)
1697 		val = 0x80000000L - left;
1698 
1699 	write_pmc(event->hw.idx, val);
1700 
1701 	perf_event_update_userpage(event);
1702 	perf_pmu_enable(event->pmu);
1703 	local_irq_restore(flags);
1704 }
1705 
1706 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1707 {
1708 	unsigned long flags;
1709 
1710 	if (!event->hw.idx || !event->hw.sample_period)
1711 		return;
1712 
1713 	if (event->hw.state & PERF_HES_STOPPED)
1714 		return;
1715 
1716 	local_irq_save(flags);
1717 	perf_pmu_disable(event->pmu);
1718 
1719 	power_pmu_read(event);
1720 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1721 	write_pmc(event->hw.idx, 0);
1722 
1723 	perf_event_update_userpage(event);
1724 	perf_pmu_enable(event->pmu);
1725 	local_irq_restore(flags);
1726 }
1727 
1728 /*
1729  * Start group events scheduling transaction
1730  * Set the flag to make pmu::enable() not perform the
1731  * schedulability test, it will be performed at commit time
1732  *
1733  * We only support PERF_PMU_TXN_ADD transactions. Save the
1734  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1735  * transactions.
1736  */
1737 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1738 {
1739 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1740 
1741 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1742 
1743 	cpuhw->txn_flags = txn_flags;
1744 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1745 		return;
1746 
1747 	perf_pmu_disable(pmu);
1748 	cpuhw->n_txn_start = cpuhw->n_events;
1749 }
1750 
1751 /*
1752  * Stop group events scheduling transaction
1753  * Clear the flag and pmu::enable() will perform the
1754  * schedulability test.
1755  */
1756 static void power_pmu_cancel_txn(struct pmu *pmu)
1757 {
1758 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1759 	unsigned int txn_flags;
1760 
1761 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1762 
1763 	txn_flags = cpuhw->txn_flags;
1764 	cpuhw->txn_flags = 0;
1765 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1766 		return;
1767 
1768 	perf_pmu_enable(pmu);
1769 }
1770 
1771 /*
1772  * Commit group events scheduling transaction
1773  * Perform the group schedulability test as a whole
1774  * Return 0 if success
1775  */
1776 static int power_pmu_commit_txn(struct pmu *pmu)
1777 {
1778 	struct cpu_hw_events *cpuhw;
1779 	long i, n;
1780 
1781 	if (!ppmu)
1782 		return -EAGAIN;
1783 
1784 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1785 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1786 
1787 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1788 		cpuhw->txn_flags = 0;
1789 		return 0;
1790 	}
1791 
1792 	n = cpuhw->n_events;
1793 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1794 		return -EAGAIN;
1795 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1796 	if (i < 0)
1797 		return -EAGAIN;
1798 
1799 	for (i = cpuhw->n_txn_start; i < n; ++i)
1800 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1801 
1802 	cpuhw->txn_flags = 0;
1803 	perf_pmu_enable(pmu);
1804 	return 0;
1805 }
1806 
1807 /*
1808  * Return 1 if we might be able to put event on a limited PMC,
1809  * or 0 if not.
1810  * An event can only go on a limited PMC if it counts something
1811  * that a limited PMC can count, doesn't require interrupts, and
1812  * doesn't exclude any processor mode.
1813  */
1814 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1815 				 unsigned int flags)
1816 {
1817 	int n;
1818 	u64 alt[MAX_EVENT_ALTERNATIVES];
1819 
1820 	if (event->attr.exclude_user
1821 	    || event->attr.exclude_kernel
1822 	    || event->attr.exclude_hv
1823 	    || event->attr.sample_period)
1824 		return 0;
1825 
1826 	if (ppmu->limited_pmc_event(ev))
1827 		return 1;
1828 
1829 	/*
1830 	 * The requested event_id isn't on a limited PMC already;
1831 	 * see if any alternative code goes on a limited PMC.
1832 	 */
1833 	if (!ppmu->get_alternatives)
1834 		return 0;
1835 
1836 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1837 	n = ppmu->get_alternatives(ev, flags, alt);
1838 
1839 	return n > 0;
1840 }
1841 
1842 /*
1843  * Find an alternative event_id that goes on a normal PMC, if possible,
1844  * and return the event_id code, or 0 if there is no such alternative.
1845  * (Note: event_id code 0 is "don't count" on all machines.)
1846  */
1847 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1848 {
1849 	u64 alt[MAX_EVENT_ALTERNATIVES];
1850 	int n;
1851 
1852 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1853 	n = ppmu->get_alternatives(ev, flags, alt);
1854 	if (!n)
1855 		return 0;
1856 	return alt[0];
1857 }
1858 
1859 /* Number of perf_events counting hardware events */
1860 static atomic_t num_events;
1861 /* Used to avoid races in calling reserve/release_pmc_hardware */
1862 static DEFINE_MUTEX(pmc_reserve_mutex);
1863 
1864 /*
1865  * Release the PMU if this is the last perf_event.
1866  */
1867 static void hw_perf_event_destroy(struct perf_event *event)
1868 {
1869 	if (!atomic_add_unless(&num_events, -1, 1)) {
1870 		mutex_lock(&pmc_reserve_mutex);
1871 		if (atomic_dec_return(&num_events) == 0)
1872 			release_pmc_hardware();
1873 		mutex_unlock(&pmc_reserve_mutex);
1874 	}
1875 }
1876 
1877 /*
1878  * Translate a generic cache event_id config to a raw event_id code.
1879  */
1880 static int hw_perf_cache_event(u64 config, u64 *eventp)
1881 {
1882 	unsigned long type, op, result;
1883 	u64 ev;
1884 
1885 	if (!ppmu->cache_events)
1886 		return -EINVAL;
1887 
1888 	/* unpack config */
1889 	type = config & 0xff;
1890 	op = (config >> 8) & 0xff;
1891 	result = (config >> 16) & 0xff;
1892 
1893 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1894 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1895 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1896 		return -EINVAL;
1897 
1898 	ev = (*ppmu->cache_events)[type][op][result];
1899 	if (ev == 0)
1900 		return -EOPNOTSUPP;
1901 	if (ev == -1)
1902 		return -EINVAL;
1903 	*eventp = ev;
1904 	return 0;
1905 }
1906 
1907 static bool is_event_blacklisted(u64 ev)
1908 {
1909 	int i;
1910 
1911 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1912 		if (ppmu->blacklist_ev[i] == ev)
1913 			return true;
1914 	}
1915 
1916 	return false;
1917 }
1918 
1919 static int power_pmu_event_init(struct perf_event *event)
1920 {
1921 	u64 ev;
1922 	unsigned long flags, irq_flags;
1923 	struct perf_event *ctrs[MAX_HWEVENTS];
1924 	u64 events[MAX_HWEVENTS];
1925 	unsigned int cflags[MAX_HWEVENTS];
1926 	int n;
1927 	int err;
1928 	struct cpu_hw_events *cpuhw;
1929 
1930 	if (!ppmu)
1931 		return -ENOENT;
1932 
1933 	if (has_branch_stack(event)) {
1934 	        /* PMU has BHRB enabled */
1935 		if (!(ppmu->flags & PPMU_ARCH_207S))
1936 			return -EOPNOTSUPP;
1937 	}
1938 
1939 	switch (event->attr.type) {
1940 	case PERF_TYPE_HARDWARE:
1941 		ev = event->attr.config;
1942 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1943 			return -EOPNOTSUPP;
1944 
1945 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1946 			return -EINVAL;
1947 		ev = ppmu->generic_events[ev];
1948 		break;
1949 	case PERF_TYPE_HW_CACHE:
1950 		err = hw_perf_cache_event(event->attr.config, &ev);
1951 		if (err)
1952 			return err;
1953 
1954 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1955 			return -EINVAL;
1956 		break;
1957 	case PERF_TYPE_RAW:
1958 		ev = event->attr.config;
1959 
1960 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1961 			return -EINVAL;
1962 		break;
1963 	default:
1964 		return -ENOENT;
1965 	}
1966 
1967 	/*
1968 	 * PMU config registers have fields that are
1969 	 * reserved and some specific values for bit fields are reserved.
1970 	 * For ex., MMCRA[61:62] is Randome Sampling Mode (SM)
1971 	 * and value of 0b11 to this field is reserved.
1972 	 * Check for invalid values in attr.config.
1973 	 */
1974 	if (ppmu->check_attr_config &&
1975 	    ppmu->check_attr_config(event))
1976 		return -EINVAL;
1977 
1978 	event->hw.config_base = ev;
1979 	event->hw.idx = 0;
1980 
1981 	/*
1982 	 * If we are not running on a hypervisor, force the
1983 	 * exclude_hv bit to 0 so that we don't care what
1984 	 * the user set it to.
1985 	 */
1986 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1987 		event->attr.exclude_hv = 0;
1988 
1989 	/*
1990 	 * If this is a per-task event, then we can use
1991 	 * PM_RUN_* events interchangeably with their non RUN_*
1992 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1993 	 * XXX we should check if the task is an idle task.
1994 	 */
1995 	flags = 0;
1996 	if (event->attach_state & PERF_ATTACH_TASK)
1997 		flags |= PPMU_ONLY_COUNT_RUN;
1998 
1999 	/*
2000 	 * If this machine has limited events, check whether this
2001 	 * event_id could go on a limited event.
2002 	 */
2003 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2004 		if (can_go_on_limited_pmc(event, ev, flags)) {
2005 			flags |= PPMU_LIMITED_PMC_OK;
2006 		} else if (ppmu->limited_pmc_event(ev)) {
2007 			/*
2008 			 * The requested event_id is on a limited PMC,
2009 			 * but we can't use a limited PMC; see if any
2010 			 * alternative goes on a normal PMC.
2011 			 */
2012 			ev = normal_pmc_alternative(ev, flags);
2013 			if (!ev)
2014 				return -EINVAL;
2015 		}
2016 	}
2017 
2018 	/* Extra checks for EBB */
2019 	err = ebb_event_check(event);
2020 	if (err)
2021 		return err;
2022 
2023 	/*
2024 	 * If this is in a group, check if it can go on with all the
2025 	 * other hardware events in the group.  We assume the event
2026 	 * hasn't been linked into its leader's sibling list at this point.
2027 	 */
2028 	n = 0;
2029 	if (event->group_leader != event) {
2030 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
2031 				   ctrs, events, cflags);
2032 		if (n < 0)
2033 			return -EINVAL;
2034 	}
2035 	events[n] = ev;
2036 	ctrs[n] = event;
2037 	cflags[n] = flags;
2038 	if (check_excludes(ctrs, cflags, n, 1))
2039 		return -EINVAL;
2040 
2041 	local_irq_save(irq_flags);
2042 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2043 
2044 	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2045 
2046 	if (has_branch_stack(event)) {
2047 		u64 bhrb_filter = -1;
2048 
2049 		if (ppmu->bhrb_filter_map)
2050 			bhrb_filter = ppmu->bhrb_filter_map(
2051 					event->attr.branch_sample_type);
2052 
2053 		if (bhrb_filter == -1) {
2054 			local_irq_restore(irq_flags);
2055 			return -EOPNOTSUPP;
2056 		}
2057 		cpuhw->bhrb_filter = bhrb_filter;
2058 	}
2059 
2060 	local_irq_restore(irq_flags);
2061 	if (err)
2062 		return -EINVAL;
2063 
2064 	event->hw.config = events[n];
2065 	event->hw.event_base = cflags[n];
2066 	event->hw.last_period = event->hw.sample_period;
2067 	local64_set(&event->hw.period_left, event->hw.last_period);
2068 
2069 	/*
2070 	 * For EBB events we just context switch the PMC value, we don't do any
2071 	 * of the sample_period logic. We use hw.prev_count for this.
2072 	 */
2073 	if (is_ebb_event(event))
2074 		local64_set(&event->hw.prev_count, 0);
2075 
2076 	/*
2077 	 * See if we need to reserve the PMU.
2078 	 * If no events are currently in use, then we have to take a
2079 	 * mutex to ensure that we don't race with another task doing
2080 	 * reserve_pmc_hardware or release_pmc_hardware.
2081 	 */
2082 	err = 0;
2083 	if (!atomic_inc_not_zero(&num_events)) {
2084 		mutex_lock(&pmc_reserve_mutex);
2085 		if (atomic_read(&num_events) == 0 &&
2086 		    reserve_pmc_hardware(perf_event_interrupt))
2087 			err = -EBUSY;
2088 		else
2089 			atomic_inc(&num_events);
2090 		mutex_unlock(&pmc_reserve_mutex);
2091 	}
2092 	event->destroy = hw_perf_event_destroy;
2093 
2094 	return err;
2095 }
2096 
2097 static int power_pmu_event_idx(struct perf_event *event)
2098 {
2099 	return event->hw.idx;
2100 }
2101 
2102 ssize_t power_events_sysfs_show(struct device *dev,
2103 				struct device_attribute *attr, char *page)
2104 {
2105 	struct perf_pmu_events_attr *pmu_attr;
2106 
2107 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2108 
2109 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2110 }
2111 
2112 static struct pmu power_pmu = {
2113 	.pmu_enable	= power_pmu_enable,
2114 	.pmu_disable	= power_pmu_disable,
2115 	.event_init	= power_pmu_event_init,
2116 	.add		= power_pmu_add,
2117 	.del		= power_pmu_del,
2118 	.start		= power_pmu_start,
2119 	.stop		= power_pmu_stop,
2120 	.read		= power_pmu_read,
2121 	.start_txn	= power_pmu_start_txn,
2122 	.cancel_txn	= power_pmu_cancel_txn,
2123 	.commit_txn	= power_pmu_commit_txn,
2124 	.event_idx	= power_pmu_event_idx,
2125 	.sched_task	= power_pmu_sched_task,
2126 };
2127 
2128 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
2129 				PERF_SAMPLE_PHYS_ADDR |		\
2130 				PERF_SAMPLE_DATA_PAGE_SIZE)
2131 /*
2132  * A counter has overflowed; update its count and record
2133  * things if requested.  Note that interrupts are hard-disabled
2134  * here so there is no possibility of being interrupted.
2135  */
2136 static void record_and_restart(struct perf_event *event, unsigned long val,
2137 			       struct pt_regs *regs)
2138 {
2139 	u64 period = event->hw.sample_period;
2140 	s64 prev, delta, left;
2141 	int record = 0;
2142 
2143 	if (event->hw.state & PERF_HES_STOPPED) {
2144 		write_pmc(event->hw.idx, 0);
2145 		return;
2146 	}
2147 
2148 	/* we don't have to worry about interrupts here */
2149 	prev = local64_read(&event->hw.prev_count);
2150 	delta = check_and_compute_delta(prev, val);
2151 	local64_add(delta, &event->count);
2152 
2153 	/*
2154 	 * See if the total period for this event has expired,
2155 	 * and update for the next period.
2156 	 */
2157 	val = 0;
2158 	left = local64_read(&event->hw.period_left) - delta;
2159 	if (delta == 0)
2160 		left++;
2161 	if (period) {
2162 		if (left <= 0) {
2163 			left += period;
2164 			if (left <= 0)
2165 				left = period;
2166 
2167 			/*
2168 			 * If address is not requested in the sample via
2169 			 * PERF_SAMPLE_IP, just record that sample irrespective
2170 			 * of SIAR valid check.
2171 			 */
2172 			if (event->attr.sample_type & PERF_SAMPLE_IP)
2173 				record = siar_valid(regs);
2174 			else
2175 				record = 1;
2176 
2177 			event->hw.last_period = event->hw.sample_period;
2178 		}
2179 		if (left < 0x80000000LL)
2180 			val = 0x80000000LL - left;
2181 	}
2182 
2183 	write_pmc(event->hw.idx, val);
2184 	local64_set(&event->hw.prev_count, val);
2185 	local64_set(&event->hw.period_left, left);
2186 	perf_event_update_userpage(event);
2187 
2188 	/*
2189 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2190 	 * address even when freeze on supervisor state (kernel) is set in
2191 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2192 	 * these cases.
2193 	 */
2194 	if (event->attr.exclude_kernel &&
2195 	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
2196 	    is_kernel_addr(mfspr(SPRN_SIAR)))
2197 		record = 0;
2198 
2199 	/*
2200 	 * Finally record data if requested.
2201 	 */
2202 	if (record) {
2203 		struct perf_sample_data data;
2204 
2205 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2206 
2207 		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2208 			perf_get_data_addr(event, regs, &data.addr);
2209 
2210 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2211 			struct cpu_hw_events *cpuhw;
2212 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2213 			power_pmu_bhrb_read(event, cpuhw);
2214 			data.br_stack = &cpuhw->bhrb_stack;
2215 		}
2216 
2217 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2218 						ppmu->get_mem_data_src)
2219 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2220 
2221 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2222 						ppmu->get_mem_weight)
2223 			ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2224 
2225 		if (perf_event_overflow(event, &data, regs))
2226 			power_pmu_stop(event, 0);
2227 	} else if (period) {
2228 		/* Account for interrupt in case of invalid SIAR */
2229 		if (perf_event_account_interrupt(event))
2230 			power_pmu_stop(event, 0);
2231 	}
2232 }
2233 
2234 /*
2235  * Called from generic code to get the misc flags (i.e. processor mode)
2236  * for an event_id.
2237  */
2238 unsigned long perf_misc_flags(struct pt_regs *regs)
2239 {
2240 	u32 flags = perf_get_misc_flags(regs);
2241 
2242 	if (flags)
2243 		return flags;
2244 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2245 		PERF_RECORD_MISC_KERNEL;
2246 }
2247 
2248 /*
2249  * Called from generic code to get the instruction pointer
2250  * for an event_id.
2251  */
2252 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2253 {
2254 	bool use_siar = regs_use_siar(regs);
2255 	unsigned long siar = mfspr(SPRN_SIAR);
2256 
2257 	if (ppmu->flags & PPMU_P10_DD1) {
2258 		if (siar)
2259 			return siar;
2260 		else
2261 			return regs->nip;
2262 	} else if (use_siar && siar_valid(regs))
2263 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2264 	else if (use_siar)
2265 		return 0;		// no valid instruction pointer
2266 	else
2267 		return regs->nip;
2268 }
2269 
2270 static bool pmc_overflow_power7(unsigned long val)
2271 {
2272 	/*
2273 	 * Events on POWER7 can roll back if a speculative event doesn't
2274 	 * eventually complete. Unfortunately in some rare cases they will
2275 	 * raise a performance monitor exception. We need to catch this to
2276 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2277 	 * cycles from overflow.
2278 	 *
2279 	 * We only do this if the first pass fails to find any overflowing
2280 	 * PMCs because a user might set a period of less than 256 and we
2281 	 * don't want to mistakenly reset them.
2282 	 */
2283 	if ((0x80000000 - val) <= 256)
2284 		return true;
2285 
2286 	return false;
2287 }
2288 
2289 static bool pmc_overflow(unsigned long val)
2290 {
2291 	if ((int)val < 0)
2292 		return true;
2293 
2294 	return false;
2295 }
2296 
2297 /*
2298  * Performance monitor interrupt stuff
2299  */
2300 static void __perf_event_interrupt(struct pt_regs *regs)
2301 {
2302 	int i, j;
2303 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2304 	struct perf_event *event;
2305 	int found, active;
2306 
2307 	if (cpuhw->n_limited)
2308 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2309 					mfspr(SPRN_PMC6));
2310 
2311 	perf_read_regs(regs);
2312 
2313 	/* Read all the PMCs since we'll need them a bunch of times */
2314 	for (i = 0; i < ppmu->n_counter; ++i)
2315 		cpuhw->pmcs[i] = read_pmc(i + 1);
2316 
2317 	/* Try to find what caused the IRQ */
2318 	found = 0;
2319 	for (i = 0; i < ppmu->n_counter; ++i) {
2320 		if (!pmc_overflow(cpuhw->pmcs[i]))
2321 			continue;
2322 		if (is_limited_pmc(i + 1))
2323 			continue; /* these won't generate IRQs */
2324 		/*
2325 		 * We've found one that's overflowed.  For active
2326 		 * counters we need to log this.  For inactive
2327 		 * counters, we need to reset it anyway
2328 		 */
2329 		found = 1;
2330 		active = 0;
2331 		for (j = 0; j < cpuhw->n_events; ++j) {
2332 			event = cpuhw->event[j];
2333 			if (event->hw.idx == (i + 1)) {
2334 				active = 1;
2335 				record_and_restart(event, cpuhw->pmcs[i], regs);
2336 				break;
2337 			}
2338 		}
2339 		if (!active)
2340 			/* reset non active counters that have overflowed */
2341 			write_pmc(i + 1, 0);
2342 	}
2343 	if (!found && pvr_version_is(PVR_POWER7)) {
2344 		/* check active counters for special buggy p7 overflow */
2345 		for (i = 0; i < cpuhw->n_events; ++i) {
2346 			event = cpuhw->event[i];
2347 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2348 				continue;
2349 			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2350 				/* event has overflowed in a buggy way*/
2351 				found = 1;
2352 				record_and_restart(event,
2353 						   cpuhw->pmcs[event->hw.idx - 1],
2354 						   regs);
2355 			}
2356 		}
2357 	}
2358 	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2359 		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2360 
2361 	/*
2362 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2363 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2364 	 * and thus allow interrupts to occur again.
2365 	 * XXX might want to use MSR.PM to keep the events frozen until
2366 	 * we get back out of this interrupt.
2367 	 */
2368 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2369 
2370 	/* Clear the cpuhw->pmcs */
2371 	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2372 
2373 }
2374 
2375 static void perf_event_interrupt(struct pt_regs *regs)
2376 {
2377 	u64 start_clock = sched_clock();
2378 
2379 	__perf_event_interrupt(regs);
2380 	perf_sample_event_took(sched_clock() - start_clock);
2381 }
2382 
2383 static int power_pmu_prepare_cpu(unsigned int cpu)
2384 {
2385 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2386 
2387 	if (ppmu) {
2388 		memset(cpuhw, 0, sizeof(*cpuhw));
2389 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2390 	}
2391 	return 0;
2392 }
2393 
2394 int register_power_pmu(struct power_pmu *pmu)
2395 {
2396 	if (ppmu)
2397 		return -EBUSY;		/* something's already registered */
2398 
2399 	ppmu = pmu;
2400 	pr_info("%s performance monitor hardware support registered\n",
2401 		pmu->name);
2402 
2403 	power_pmu.attr_groups = ppmu->attr_groups;
2404 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2405 
2406 #ifdef MSR_HV
2407 	/*
2408 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2409 	 */
2410 	if (mfmsr() & MSR_HV)
2411 		freeze_events_kernel = MMCR0_FCHV;
2412 #endif /* CONFIG_PPC64 */
2413 
2414 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2415 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2416 			  power_pmu_prepare_cpu, NULL);
2417 	return 0;
2418 }
2419 
2420 #ifdef CONFIG_PPC64
2421 static int __init init_ppc64_pmu(void)
2422 {
2423 	/* run through all the pmu drivers one at a time */
2424 	if (!init_power5_pmu())
2425 		return 0;
2426 	else if (!init_power5p_pmu())
2427 		return 0;
2428 	else if (!init_power6_pmu())
2429 		return 0;
2430 	else if (!init_power7_pmu())
2431 		return 0;
2432 	else if (!init_power8_pmu())
2433 		return 0;
2434 	else if (!init_power9_pmu())
2435 		return 0;
2436 	else if (!init_power10_pmu())
2437 		return 0;
2438 	else if (!init_ppc970_pmu())
2439 		return 0;
2440 	else
2441 		return init_generic_compat_pmu();
2442 }
2443 early_initcall(init_ppc64_pmu);
2444 #endif
2445