1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 /* 40 * The order of the MMCR array is: 41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 42 * - 32-bit, MMCR0, MMCR1, MMCR2 43 */ 44 unsigned long mmcr[4]; 45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 51 unsigned int txn_flags; 52 int n_txn_start; 53 54 /* BHRB bits */ 55 u64 bhrb_filter; /* BHRB HW branch filter */ 56 unsigned int bhrb_users; 57 void *bhrb_context; 58 struct perf_branch_stack bhrb_stack; 59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 60 u64 ic_init; 61 }; 62 63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 64 65 static struct power_pmu *ppmu; 66 67 /* 68 * Normally, to ignore kernel events we set the FCS (freeze counters 69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 70 * hypervisor bit set in the MSR, or if we are running on a processor 71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 72 * then we need to use the FCHV bit to ignore kernel events. 73 */ 74 static unsigned int freeze_events_kernel = MMCR0_FCS; 75 76 /* 77 * 32-bit doesn't have MMCRA but does have an MMCR2, 78 * and a few other names are different. 79 */ 80 #ifdef CONFIG_PPC32 81 82 #define MMCR0_FCHV 0 83 #define MMCR0_PMCjCE MMCR0_PMCnCE 84 #define MMCR0_FC56 0 85 #define MMCR0_PMAO 0 86 #define MMCR0_EBE 0 87 #define MMCR0_BHRBA 0 88 #define MMCR0_PMCC 0 89 #define MMCR0_PMCC_U6 0 90 91 #define SPRN_MMCRA SPRN_MMCR2 92 #define MMCRA_SAMPLE_ENABLE 0 93 94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 95 { 96 return 0; 97 } 98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 99 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 100 { 101 return 0; 102 } 103 static inline void perf_read_regs(struct pt_regs *regs) 104 { 105 regs->result = 0; 106 } 107 static inline int perf_intr_is_nmi(struct pt_regs *regs) 108 { 109 return 0; 110 } 111 112 static inline int siar_valid(struct pt_regs *regs) 113 { 114 return 1; 115 } 116 117 static bool is_ebb_event(struct perf_event *event) { return false; } 118 static int ebb_event_check(struct perf_event *event) { return 0; } 119 static void ebb_event_add(struct perf_event *event) { } 120 static void ebb_switch_out(unsigned long mmcr0) { } 121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 122 { 123 return cpuhw->mmcr[0]; 124 } 125 126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 130 static void pmao_restore_workaround(bool ebb) { } 131 static bool use_ic(u64 event) 132 { 133 return false; 134 } 135 #endif /* CONFIG_PPC32 */ 136 137 static bool regs_use_siar(struct pt_regs *regs) 138 { 139 /* 140 * When we take a performance monitor exception the regs are setup 141 * using perf_read_regs() which overloads some fields, in particular 142 * regs->result to tell us whether to use SIAR. 143 * 144 * However if the regs are from another exception, eg. a syscall, then 145 * they have not been setup using perf_read_regs() and so regs->result 146 * is something random. 147 */ 148 return ((TRAP(regs) == 0xf00) && regs->result); 149 } 150 151 /* 152 * Things that are specific to 64-bit implementations. 153 */ 154 #ifdef CONFIG_PPC64 155 156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 157 { 158 unsigned long mmcra = regs->dsisr; 159 160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 162 if (slot > 1) 163 return 4 * (slot - 1); 164 } 165 166 return 0; 167 } 168 169 /* 170 * The user wants a data address recorded. 171 * If we're not doing instruction sampling, give them the SDAR 172 * (sampled data address). If we are doing instruction sampling, then 173 * only give them the SDAR if it corresponds to the instruction 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 176 */ 177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 178 { 179 unsigned long mmcra = regs->dsisr; 180 bool sdar_valid; 181 182 if (ppmu->flags & PPMU_HAS_SIER) 183 sdar_valid = regs->dar & SIER_SDAR_VALID; 184 else { 185 unsigned long sdsync; 186 187 if (ppmu->flags & PPMU_SIAR_VALID) 188 sdsync = POWER7P_MMCRA_SDAR_VALID; 189 else if (ppmu->flags & PPMU_ALT_SIPR) 190 sdsync = POWER6_MMCRA_SDSYNC; 191 else if (ppmu->flags & PPMU_NO_SIAR) 192 sdsync = MMCRA_SAMPLE_ENABLE; 193 else 194 sdsync = MMCRA_SDSYNC; 195 196 sdar_valid = mmcra & sdsync; 197 } 198 199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 200 *addrp = mfspr(SPRN_SDAR); 201 } 202 203 static bool regs_sihv(struct pt_regs *regs) 204 { 205 unsigned long sihv = MMCRA_SIHV; 206 207 if (ppmu->flags & PPMU_HAS_SIER) 208 return !!(regs->dar & SIER_SIHV); 209 210 if (ppmu->flags & PPMU_ALT_SIPR) 211 sihv = POWER6_MMCRA_SIHV; 212 213 return !!(regs->dsisr & sihv); 214 } 215 216 static bool regs_sipr(struct pt_regs *regs) 217 { 218 unsigned long sipr = MMCRA_SIPR; 219 220 if (ppmu->flags & PPMU_HAS_SIER) 221 return !!(regs->dar & SIER_SIPR); 222 223 if (ppmu->flags & PPMU_ALT_SIPR) 224 sipr = POWER6_MMCRA_SIPR; 225 226 return !!(regs->dsisr & sipr); 227 } 228 229 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 230 { 231 if (regs->msr & MSR_PR) 232 return PERF_RECORD_MISC_USER; 233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 234 return PERF_RECORD_MISC_HYPERVISOR; 235 return PERF_RECORD_MISC_KERNEL; 236 } 237 238 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 239 { 240 bool use_siar = regs_use_siar(regs); 241 242 if (!use_siar) 243 return perf_flags_from_msr(regs); 244 245 /* 246 * If we don't have flags in MMCRA, rather than using 247 * the MSR, we intuit the flags from the address in 248 * SIAR which should give slightly more reliable 249 * results 250 */ 251 if (ppmu->flags & PPMU_NO_SIPR) { 252 unsigned long siar = mfspr(SPRN_SIAR); 253 if (is_kernel_addr(siar)) 254 return PERF_RECORD_MISC_KERNEL; 255 return PERF_RECORD_MISC_USER; 256 } 257 258 /* PR has priority over HV, so order below is important */ 259 if (regs_sipr(regs)) 260 return PERF_RECORD_MISC_USER; 261 262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 263 return PERF_RECORD_MISC_HYPERVISOR; 264 265 return PERF_RECORD_MISC_KERNEL; 266 } 267 268 /* 269 * Overload regs->dsisr to store MMCRA so we only need to read it once 270 * on each interrupt. 271 * Overload regs->dar to store SIER if we have it. 272 * Overload regs->result to specify whether we should use the MSR (result 273 * is zero) or the SIAR (result is non zero). 274 */ 275 static inline void perf_read_regs(struct pt_regs *regs) 276 { 277 unsigned long mmcra = mfspr(SPRN_MMCRA); 278 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 279 int use_siar; 280 281 regs->dsisr = mmcra; 282 283 if (ppmu->flags & PPMU_HAS_SIER) 284 regs->dar = mfspr(SPRN_SIER); 285 286 /* 287 * If this isn't a PMU exception (eg a software event) the SIAR is 288 * not valid. Use pt_regs. 289 * 290 * If it is a marked event use the SIAR. 291 * 292 * If the PMU doesn't update the SIAR for non marked events use 293 * pt_regs. 294 * 295 * If the PMU has HV/PR flags then check to see if they 296 * place the exception in userspace. If so, use pt_regs. In 297 * continuous sampling mode the SIAR and the PMU exception are 298 * not synchronised, so they may be many instructions apart. 299 * This can result in confusing backtraces. We still want 300 * hypervisor samples as well as samples in the kernel with 301 * interrupts off hence the userspace check. 302 */ 303 if (TRAP(regs) != 0xf00) 304 use_siar = 0; 305 else if ((ppmu->flags & PPMU_NO_SIAR)) 306 use_siar = 0; 307 else if (marked) 308 use_siar = 1; 309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 310 use_siar = 0; 311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 312 use_siar = 0; 313 else 314 use_siar = 1; 315 316 regs->result = use_siar; 317 } 318 319 /* 320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 321 * it as an NMI. 322 */ 323 static inline int perf_intr_is_nmi(struct pt_regs *regs) 324 { 325 return (regs->softe & IRQS_DISABLED); 326 } 327 328 /* 329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 330 * must be sampled only if the SIAR-valid bit is set. 331 * 332 * For unmarked instructions and for processors that don't have the SIAR-Valid 333 * bit, assume that SIAR is valid. 334 */ 335 static inline int siar_valid(struct pt_regs *regs) 336 { 337 unsigned long mmcra = regs->dsisr; 338 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 339 340 if (marked) { 341 if (ppmu->flags & PPMU_HAS_SIER) 342 return regs->dar & SIER_SIAR_VALID; 343 344 if (ppmu->flags & PPMU_SIAR_VALID) 345 return mmcra & POWER7P_MMCRA_SIAR_VALID; 346 } 347 348 return 1; 349 } 350 351 352 /* Reset all possible BHRB entries */ 353 static void power_pmu_bhrb_reset(void) 354 { 355 asm volatile(PPC_CLRBHRB); 356 } 357 358 static void power_pmu_bhrb_enable(struct perf_event *event) 359 { 360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 361 362 if (!ppmu->bhrb_nr) 363 return; 364 365 /* Clear BHRB if we changed task context to avoid data leaks */ 366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 367 power_pmu_bhrb_reset(); 368 cpuhw->bhrb_context = event->ctx; 369 } 370 cpuhw->bhrb_users++; 371 perf_sched_cb_inc(event->ctx->pmu); 372 } 373 374 static void power_pmu_bhrb_disable(struct perf_event *event) 375 { 376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 377 378 if (!ppmu->bhrb_nr) 379 return; 380 381 WARN_ON_ONCE(!cpuhw->bhrb_users); 382 cpuhw->bhrb_users--; 383 perf_sched_cb_dec(event->ctx->pmu); 384 385 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 386 /* BHRB cannot be turned off when other 387 * events are active on the PMU. 388 */ 389 390 /* avoid stale pointer */ 391 cpuhw->bhrb_context = NULL; 392 } 393 } 394 395 /* Called from ctxsw to prevent one process's branch entries to 396 * mingle with the other process's entries during context switch. 397 */ 398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 399 { 400 if (!ppmu->bhrb_nr) 401 return; 402 403 if (sched_in) 404 power_pmu_bhrb_reset(); 405 } 406 /* Calculate the to address for a branch */ 407 static __u64 power_pmu_bhrb_to(u64 addr) 408 { 409 unsigned int instr; 410 int ret; 411 __u64 target; 412 413 if (is_kernel_addr(addr)) { 414 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr))) 415 return 0; 416 417 return branch_target(&instr); 418 } 419 420 /* Userspace: need copy instruction here then translate it */ 421 pagefault_disable(); 422 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 423 if (ret) { 424 pagefault_enable(); 425 return 0; 426 } 427 pagefault_enable(); 428 429 target = branch_target(&instr); 430 if ((!target) || (instr & BRANCH_ABSOLUTE)) 431 return target; 432 433 /* Translate relative branch target from kernel to user address */ 434 return target - (unsigned long)&instr + addr; 435 } 436 437 /* Processing BHRB entries */ 438 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 439 { 440 u64 val; 441 u64 addr; 442 int r_index, u_index, pred; 443 444 r_index = 0; 445 u_index = 0; 446 while (r_index < ppmu->bhrb_nr) { 447 /* Assembly read function */ 448 val = read_bhrb(r_index++); 449 if (!val) 450 /* Terminal marker: End of valid BHRB entries */ 451 break; 452 else { 453 addr = val & BHRB_EA; 454 pred = val & BHRB_PREDICTION; 455 456 if (!addr) 457 /* invalid entry */ 458 continue; 459 460 /* Branches are read most recent first (ie. mfbhrb 0 is 461 * the most recent branch). 462 * There are two types of valid entries: 463 * 1) a target entry which is the to address of a 464 * computed goto like a blr,bctr,btar. The next 465 * entry read from the bhrb will be branch 466 * corresponding to this target (ie. the actual 467 * blr/bctr/btar instruction). 468 * 2) a from address which is an actual branch. If a 469 * target entry proceeds this, then this is the 470 * matching branch for that target. If this is not 471 * following a target entry, then this is a branch 472 * where the target is given as an immediate field 473 * in the instruction (ie. an i or b form branch). 474 * In this case we need to read the instruction from 475 * memory to determine the target/to address. 476 */ 477 478 if (val & BHRB_TARGET) { 479 /* Target branches use two entries 480 * (ie. computed gotos/XL form) 481 */ 482 cpuhw->bhrb_entries[u_index].to = addr; 483 cpuhw->bhrb_entries[u_index].mispred = pred; 484 cpuhw->bhrb_entries[u_index].predicted = ~pred; 485 486 /* Get from address in next entry */ 487 val = read_bhrb(r_index++); 488 addr = val & BHRB_EA; 489 if (val & BHRB_TARGET) { 490 /* Shouldn't have two targets in a 491 row.. Reset index and try again */ 492 r_index--; 493 addr = 0; 494 } 495 cpuhw->bhrb_entries[u_index].from = addr; 496 } else { 497 /* Branches to immediate field 498 (ie I or B form) */ 499 cpuhw->bhrb_entries[u_index].from = addr; 500 cpuhw->bhrb_entries[u_index].to = 501 power_pmu_bhrb_to(addr); 502 cpuhw->bhrb_entries[u_index].mispred = pred; 503 cpuhw->bhrb_entries[u_index].predicted = ~pred; 504 } 505 u_index++; 506 507 } 508 } 509 cpuhw->bhrb_stack.nr = u_index; 510 return; 511 } 512 513 static bool is_ebb_event(struct perf_event *event) 514 { 515 /* 516 * This could be a per-PMU callback, but we'd rather avoid the cost. We 517 * check that the PMU supports EBB, meaning those that don't can still 518 * use bit 63 of the event code for something else if they wish. 519 */ 520 return (ppmu->flags & PPMU_ARCH_207S) && 521 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 522 } 523 524 static int ebb_event_check(struct perf_event *event) 525 { 526 struct perf_event *leader = event->group_leader; 527 528 /* Event and group leader must agree on EBB */ 529 if (is_ebb_event(leader) != is_ebb_event(event)) 530 return -EINVAL; 531 532 if (is_ebb_event(event)) { 533 if (!(event->attach_state & PERF_ATTACH_TASK)) 534 return -EINVAL; 535 536 if (!leader->attr.pinned || !leader->attr.exclusive) 537 return -EINVAL; 538 539 if (event->attr.freq || 540 event->attr.inherit || 541 event->attr.sample_type || 542 event->attr.sample_period || 543 event->attr.enable_on_exec) 544 return -EINVAL; 545 } 546 547 return 0; 548 } 549 550 static void ebb_event_add(struct perf_event *event) 551 { 552 if (!is_ebb_event(event) || current->thread.used_ebb) 553 return; 554 555 /* 556 * IFF this is the first time we've added an EBB event, set 557 * PMXE in the user MMCR0 so we can detect when it's cleared by 558 * userspace. We need this so that we can context switch while 559 * userspace is in the EBB handler (where PMXE is 0). 560 */ 561 current->thread.used_ebb = 1; 562 current->thread.mmcr0 |= MMCR0_PMXE; 563 } 564 565 static void ebb_switch_out(unsigned long mmcr0) 566 { 567 if (!(mmcr0 & MMCR0_EBE)) 568 return; 569 570 current->thread.siar = mfspr(SPRN_SIAR); 571 current->thread.sier = mfspr(SPRN_SIER); 572 current->thread.sdar = mfspr(SPRN_SDAR); 573 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 574 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 575 } 576 577 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 578 { 579 unsigned long mmcr0 = cpuhw->mmcr[0]; 580 581 if (!ebb) 582 goto out; 583 584 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 585 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 586 587 /* 588 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 589 * with pmao_restore_workaround() because we may add PMAO but we never 590 * clear it here. 591 */ 592 mmcr0 |= current->thread.mmcr0; 593 594 /* 595 * Be careful not to set PMXE if userspace had it cleared. This is also 596 * compatible with pmao_restore_workaround() because it has already 597 * cleared PMXE and we leave PMAO alone. 598 */ 599 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 600 mmcr0 &= ~MMCR0_PMXE; 601 602 mtspr(SPRN_SIAR, current->thread.siar); 603 mtspr(SPRN_SIER, current->thread.sier); 604 mtspr(SPRN_SDAR, current->thread.sdar); 605 606 /* 607 * Merge the kernel & user values of MMCR2. The semantics we implement 608 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 609 * but not clear bits. If a task wants to be able to clear bits, ie. 610 * unfreeze counters, it should not set exclude_xxx in its events and 611 * instead manage the MMCR2 entirely by itself. 612 */ 613 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 614 out: 615 return mmcr0; 616 } 617 618 static void pmao_restore_workaround(bool ebb) 619 { 620 unsigned pmcs[6]; 621 622 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 623 return; 624 625 /* 626 * On POWER8E there is a hardware defect which affects the PMU context 627 * switch logic, ie. power_pmu_disable/enable(). 628 * 629 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 630 * by the hardware. Sometime later the actual PMU exception is 631 * delivered. 632 * 633 * If we context switch, or simply disable/enable, the PMU prior to the 634 * exception arriving, the exception will be lost when we clear PMAO. 635 * 636 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 637 * set, and this _should_ generate an exception. However because of the 638 * defect no exception is generated when we write PMAO, and we get 639 * stuck with no counters counting but no exception delivered. 640 * 641 * The workaround is to detect this case and tweak the hardware to 642 * create another pending PMU exception. 643 * 644 * We do that by setting up PMC6 (cycles) for an imminent overflow and 645 * enabling the PMU. That causes a new exception to be generated in the 646 * chip, but we don't take it yet because we have interrupts hard 647 * disabled. We then write back the PMU state as we want it to be seen 648 * by the exception handler. When we reenable interrupts the exception 649 * handler will be called and see the correct state. 650 * 651 * The logic is the same for EBB, except that the exception is gated by 652 * us having interrupts hard disabled as well as the fact that we are 653 * not in userspace. The exception is finally delivered when we return 654 * to userspace. 655 */ 656 657 /* Only if PMAO is set and PMAO_SYNC is clear */ 658 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 659 return; 660 661 /* If we're doing EBB, only if BESCR[GE] is set */ 662 if (ebb && !(current->thread.bescr & BESCR_GE)) 663 return; 664 665 /* 666 * We are already soft-disabled in power_pmu_enable(). We need to hard 667 * disable to actually prevent the PMU exception from firing. 668 */ 669 hard_irq_disable(); 670 671 /* 672 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 673 * Using read/write_pmc() in a for loop adds 12 function calls and 674 * almost doubles our code size. 675 */ 676 pmcs[0] = mfspr(SPRN_PMC1); 677 pmcs[1] = mfspr(SPRN_PMC2); 678 pmcs[2] = mfspr(SPRN_PMC3); 679 pmcs[3] = mfspr(SPRN_PMC4); 680 pmcs[4] = mfspr(SPRN_PMC5); 681 pmcs[5] = mfspr(SPRN_PMC6); 682 683 /* Ensure all freeze bits are unset */ 684 mtspr(SPRN_MMCR2, 0); 685 686 /* Set up PMC6 to overflow in one cycle */ 687 mtspr(SPRN_PMC6, 0x7FFFFFFE); 688 689 /* Enable exceptions and unfreeze PMC6 */ 690 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 691 692 /* Now we need to refreeze and restore the PMCs */ 693 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 694 695 mtspr(SPRN_PMC1, pmcs[0]); 696 mtspr(SPRN_PMC2, pmcs[1]); 697 mtspr(SPRN_PMC3, pmcs[2]); 698 mtspr(SPRN_PMC4, pmcs[3]); 699 mtspr(SPRN_PMC5, pmcs[4]); 700 mtspr(SPRN_PMC6, pmcs[5]); 701 } 702 703 static bool use_ic(u64 event) 704 { 705 if (cpu_has_feature(CPU_FTR_POWER9_DD1) && 706 (event == 0x200f2 || event == 0x300f2)) 707 return true; 708 709 return false; 710 } 711 #endif /* CONFIG_PPC64 */ 712 713 static void perf_event_interrupt(struct pt_regs *regs); 714 715 /* 716 * Read one performance monitor counter (PMC). 717 */ 718 static unsigned long read_pmc(int idx) 719 { 720 unsigned long val; 721 722 switch (idx) { 723 case 1: 724 val = mfspr(SPRN_PMC1); 725 break; 726 case 2: 727 val = mfspr(SPRN_PMC2); 728 break; 729 case 3: 730 val = mfspr(SPRN_PMC3); 731 break; 732 case 4: 733 val = mfspr(SPRN_PMC4); 734 break; 735 case 5: 736 val = mfspr(SPRN_PMC5); 737 break; 738 case 6: 739 val = mfspr(SPRN_PMC6); 740 break; 741 #ifdef CONFIG_PPC64 742 case 7: 743 val = mfspr(SPRN_PMC7); 744 break; 745 case 8: 746 val = mfspr(SPRN_PMC8); 747 break; 748 #endif /* CONFIG_PPC64 */ 749 default: 750 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 751 val = 0; 752 } 753 return val; 754 } 755 756 /* 757 * Write one PMC. 758 */ 759 static void write_pmc(int idx, unsigned long val) 760 { 761 switch (idx) { 762 case 1: 763 mtspr(SPRN_PMC1, val); 764 break; 765 case 2: 766 mtspr(SPRN_PMC2, val); 767 break; 768 case 3: 769 mtspr(SPRN_PMC3, val); 770 break; 771 case 4: 772 mtspr(SPRN_PMC4, val); 773 break; 774 case 5: 775 mtspr(SPRN_PMC5, val); 776 break; 777 case 6: 778 mtspr(SPRN_PMC6, val); 779 break; 780 #ifdef CONFIG_PPC64 781 case 7: 782 mtspr(SPRN_PMC7, val); 783 break; 784 case 8: 785 mtspr(SPRN_PMC8, val); 786 break; 787 #endif /* CONFIG_PPC64 */ 788 default: 789 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 790 } 791 } 792 793 /* Called from sysrq_handle_showregs() */ 794 void perf_event_print_debug(void) 795 { 796 unsigned long sdar, sier, flags; 797 u32 pmcs[MAX_HWEVENTS]; 798 int i; 799 800 if (!ppmu) { 801 pr_info("Performance monitor hardware not registered.\n"); 802 return; 803 } 804 805 if (!ppmu->n_counter) 806 return; 807 808 local_irq_save(flags); 809 810 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 811 smp_processor_id(), ppmu->name, ppmu->n_counter); 812 813 for (i = 0; i < ppmu->n_counter; i++) 814 pmcs[i] = read_pmc(i + 1); 815 816 for (; i < MAX_HWEVENTS; i++) 817 pmcs[i] = 0xdeadbeef; 818 819 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 820 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 821 822 if (ppmu->n_counter > 4) 823 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 824 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 825 826 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 827 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 828 829 sdar = sier = 0; 830 #ifdef CONFIG_PPC64 831 sdar = mfspr(SPRN_SDAR); 832 833 if (ppmu->flags & PPMU_HAS_SIER) 834 sier = mfspr(SPRN_SIER); 835 836 if (ppmu->flags & PPMU_ARCH_207S) { 837 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 838 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 839 pr_info("EBBRR: %016lx BESCR: %016lx\n", 840 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 841 } 842 #endif 843 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 844 mfspr(SPRN_SIAR), sdar, sier); 845 846 local_irq_restore(flags); 847 } 848 849 /* 850 * Check if a set of events can all go on the PMU at once. 851 * If they can't, this will look at alternative codes for the events 852 * and see if any combination of alternative codes is feasible. 853 * The feasible set is returned in event_id[]. 854 */ 855 static int power_check_constraints(struct cpu_hw_events *cpuhw, 856 u64 event_id[], unsigned int cflags[], 857 int n_ev) 858 { 859 unsigned long mask, value, nv; 860 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 861 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 862 int i, j; 863 unsigned long addf = ppmu->add_fields; 864 unsigned long tadd = ppmu->test_adder; 865 866 if (n_ev > ppmu->n_counter) 867 return -1; 868 869 /* First see if the events will go on as-is */ 870 for (i = 0; i < n_ev; ++i) { 871 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 872 && !ppmu->limited_pmc_event(event_id[i])) { 873 ppmu->get_alternatives(event_id[i], cflags[i], 874 cpuhw->alternatives[i]); 875 event_id[i] = cpuhw->alternatives[i][0]; 876 } 877 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 878 &cpuhw->avalues[i][0])) 879 return -1; 880 } 881 value = mask = 0; 882 for (i = 0; i < n_ev; ++i) { 883 nv = (value | cpuhw->avalues[i][0]) + 884 (value & cpuhw->avalues[i][0] & addf); 885 if ((((nv + tadd) ^ value) & mask) != 0 || 886 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 887 cpuhw->amasks[i][0]) != 0) 888 break; 889 value = nv; 890 mask |= cpuhw->amasks[i][0]; 891 } 892 if (i == n_ev) 893 return 0; /* all OK */ 894 895 /* doesn't work, gather alternatives... */ 896 if (!ppmu->get_alternatives) 897 return -1; 898 for (i = 0; i < n_ev; ++i) { 899 choice[i] = 0; 900 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 901 cpuhw->alternatives[i]); 902 for (j = 1; j < n_alt[i]; ++j) 903 ppmu->get_constraint(cpuhw->alternatives[i][j], 904 &cpuhw->amasks[i][j], 905 &cpuhw->avalues[i][j]); 906 } 907 908 /* enumerate all possibilities and see if any will work */ 909 i = 0; 910 j = -1; 911 value = mask = nv = 0; 912 while (i < n_ev) { 913 if (j >= 0) { 914 /* we're backtracking, restore context */ 915 value = svalues[i]; 916 mask = smasks[i]; 917 j = choice[i]; 918 } 919 /* 920 * See if any alternative k for event_id i, 921 * where k > j, will satisfy the constraints. 922 */ 923 while (++j < n_alt[i]) { 924 nv = (value | cpuhw->avalues[i][j]) + 925 (value & cpuhw->avalues[i][j] & addf); 926 if ((((nv + tadd) ^ value) & mask) == 0 && 927 (((nv + tadd) ^ cpuhw->avalues[i][j]) 928 & cpuhw->amasks[i][j]) == 0) 929 break; 930 } 931 if (j >= n_alt[i]) { 932 /* 933 * No feasible alternative, backtrack 934 * to event_id i-1 and continue enumerating its 935 * alternatives from where we got up to. 936 */ 937 if (--i < 0) 938 return -1; 939 } else { 940 /* 941 * Found a feasible alternative for event_id i, 942 * remember where we got up to with this event_id, 943 * go on to the next event_id, and start with 944 * the first alternative for it. 945 */ 946 choice[i] = j; 947 svalues[i] = value; 948 smasks[i] = mask; 949 value = nv; 950 mask |= cpuhw->amasks[i][j]; 951 ++i; 952 j = -1; 953 } 954 } 955 956 /* OK, we have a feasible combination, tell the caller the solution */ 957 for (i = 0; i < n_ev; ++i) 958 event_id[i] = cpuhw->alternatives[i][choice[i]]; 959 return 0; 960 } 961 962 /* 963 * Check if newly-added events have consistent settings for 964 * exclude_{user,kernel,hv} with each other and any previously 965 * added events. 966 */ 967 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 968 int n_prev, int n_new) 969 { 970 int eu = 0, ek = 0, eh = 0; 971 int i, n, first; 972 struct perf_event *event; 973 974 /* 975 * If the PMU we're on supports per event exclude settings then we 976 * don't need to do any of this logic. NB. This assumes no PMU has both 977 * per event exclude and limited PMCs. 978 */ 979 if (ppmu->flags & PPMU_ARCH_207S) 980 return 0; 981 982 n = n_prev + n_new; 983 if (n <= 1) 984 return 0; 985 986 first = 1; 987 for (i = 0; i < n; ++i) { 988 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 989 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 990 continue; 991 } 992 event = ctrs[i]; 993 if (first) { 994 eu = event->attr.exclude_user; 995 ek = event->attr.exclude_kernel; 996 eh = event->attr.exclude_hv; 997 first = 0; 998 } else if (event->attr.exclude_user != eu || 999 event->attr.exclude_kernel != ek || 1000 event->attr.exclude_hv != eh) { 1001 return -EAGAIN; 1002 } 1003 } 1004 1005 if (eu || ek || eh) 1006 for (i = 0; i < n; ++i) 1007 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1008 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1009 1010 return 0; 1011 } 1012 1013 static u64 check_and_compute_delta(u64 prev, u64 val) 1014 { 1015 u64 delta = (val - prev) & 0xfffffffful; 1016 1017 /* 1018 * POWER7 can roll back counter values, if the new value is smaller 1019 * than the previous value it will cause the delta and the counter to 1020 * have bogus values unless we rolled a counter over. If a coutner is 1021 * rolled back, it will be smaller, but within 256, which is the maximum 1022 * number of events to rollback at once. If we detect a rollback 1023 * return 0. This can lead to a small lack of precision in the 1024 * counters. 1025 */ 1026 if (prev > val && (prev - val) < 256) 1027 delta = 0; 1028 1029 return delta; 1030 } 1031 1032 static void power_pmu_read(struct perf_event *event) 1033 { 1034 s64 val, delta, prev; 1035 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1036 1037 if (event->hw.state & PERF_HES_STOPPED) 1038 return; 1039 1040 if (!event->hw.idx) 1041 return; 1042 1043 if (is_ebb_event(event)) { 1044 val = read_pmc(event->hw.idx); 1045 if (use_ic(event->attr.config)) { 1046 val = mfspr(SPRN_IC); 1047 if (val > cpuhw->ic_init) 1048 val = val - cpuhw->ic_init; 1049 else 1050 val = val + (0 - cpuhw->ic_init); 1051 } 1052 local64_set(&event->hw.prev_count, val); 1053 return; 1054 } 1055 1056 /* 1057 * Performance monitor interrupts come even when interrupts 1058 * are soft-disabled, as long as interrupts are hard-enabled. 1059 * Therefore we treat them like NMIs. 1060 */ 1061 do { 1062 prev = local64_read(&event->hw.prev_count); 1063 barrier(); 1064 val = read_pmc(event->hw.idx); 1065 if (use_ic(event->attr.config)) { 1066 val = mfspr(SPRN_IC); 1067 if (val > cpuhw->ic_init) 1068 val = val - cpuhw->ic_init; 1069 else 1070 val = val + (0 - cpuhw->ic_init); 1071 } 1072 delta = check_and_compute_delta(prev, val); 1073 if (!delta) 1074 return; 1075 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1076 1077 local64_add(delta, &event->count); 1078 1079 /* 1080 * A number of places program the PMC with (0x80000000 - period_left). 1081 * We never want period_left to be less than 1 because we will program 1082 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1083 * roll around to 0 before taking an exception. We have seen this 1084 * on POWER8. 1085 * 1086 * To fix this, clamp the minimum value of period_left to 1. 1087 */ 1088 do { 1089 prev = local64_read(&event->hw.period_left); 1090 val = prev - delta; 1091 if (val < 1) 1092 val = 1; 1093 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1094 } 1095 1096 /* 1097 * On some machines, PMC5 and PMC6 can't be written, don't respect 1098 * the freeze conditions, and don't generate interrupts. This tells 1099 * us if `event' is using such a PMC. 1100 */ 1101 static int is_limited_pmc(int pmcnum) 1102 { 1103 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1104 && (pmcnum == 5 || pmcnum == 6); 1105 } 1106 1107 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1108 unsigned long pmc5, unsigned long pmc6) 1109 { 1110 struct perf_event *event; 1111 u64 val, prev, delta; 1112 int i; 1113 1114 for (i = 0; i < cpuhw->n_limited; ++i) { 1115 event = cpuhw->limited_counter[i]; 1116 if (!event->hw.idx) 1117 continue; 1118 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1119 prev = local64_read(&event->hw.prev_count); 1120 event->hw.idx = 0; 1121 delta = check_and_compute_delta(prev, val); 1122 if (delta) 1123 local64_add(delta, &event->count); 1124 } 1125 } 1126 1127 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1128 unsigned long pmc5, unsigned long pmc6) 1129 { 1130 struct perf_event *event; 1131 u64 val, prev; 1132 int i; 1133 1134 for (i = 0; i < cpuhw->n_limited; ++i) { 1135 event = cpuhw->limited_counter[i]; 1136 event->hw.idx = cpuhw->limited_hwidx[i]; 1137 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1138 prev = local64_read(&event->hw.prev_count); 1139 if (check_and_compute_delta(prev, val)) 1140 local64_set(&event->hw.prev_count, val); 1141 perf_event_update_userpage(event); 1142 } 1143 } 1144 1145 /* 1146 * Since limited events don't respect the freeze conditions, we 1147 * have to read them immediately after freezing or unfreezing the 1148 * other events. We try to keep the values from the limited 1149 * events as consistent as possible by keeping the delay (in 1150 * cycles and instructions) between freezing/unfreezing and reading 1151 * the limited events as small and consistent as possible. 1152 * Therefore, if any limited events are in use, we read them 1153 * both, and always in the same order, to minimize variability, 1154 * and do it inside the same asm that writes MMCR0. 1155 */ 1156 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1157 { 1158 unsigned long pmc5, pmc6; 1159 1160 if (!cpuhw->n_limited) { 1161 mtspr(SPRN_MMCR0, mmcr0); 1162 return; 1163 } 1164 1165 /* 1166 * Write MMCR0, then read PMC5 and PMC6 immediately. 1167 * To ensure we don't get a performance monitor interrupt 1168 * between writing MMCR0 and freezing/thawing the limited 1169 * events, we first write MMCR0 with the event overflow 1170 * interrupt enable bits turned off. 1171 */ 1172 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1173 : "=&r" (pmc5), "=&r" (pmc6) 1174 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1175 "i" (SPRN_MMCR0), 1176 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1177 1178 if (mmcr0 & MMCR0_FC) 1179 freeze_limited_counters(cpuhw, pmc5, pmc6); 1180 else 1181 thaw_limited_counters(cpuhw, pmc5, pmc6); 1182 1183 /* 1184 * Write the full MMCR0 including the event overflow interrupt 1185 * enable bits, if necessary. 1186 */ 1187 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1188 mtspr(SPRN_MMCR0, mmcr0); 1189 } 1190 1191 /* 1192 * Disable all events to prevent PMU interrupts and to allow 1193 * events to be added or removed. 1194 */ 1195 static void power_pmu_disable(struct pmu *pmu) 1196 { 1197 struct cpu_hw_events *cpuhw; 1198 unsigned long flags, mmcr0, val; 1199 1200 if (!ppmu) 1201 return; 1202 local_irq_save(flags); 1203 cpuhw = this_cpu_ptr(&cpu_hw_events); 1204 1205 if (!cpuhw->disabled) { 1206 /* 1207 * Check if we ever enabled the PMU on this cpu. 1208 */ 1209 if (!cpuhw->pmcs_enabled) { 1210 ppc_enable_pmcs(); 1211 cpuhw->pmcs_enabled = 1; 1212 } 1213 1214 /* 1215 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1216 */ 1217 val = mmcr0 = mfspr(SPRN_MMCR0); 1218 val |= MMCR0_FC; 1219 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1220 MMCR0_FC56); 1221 1222 /* 1223 * The barrier is to make sure the mtspr has been 1224 * executed and the PMU has frozen the events etc. 1225 * before we return. 1226 */ 1227 write_mmcr0(cpuhw, val); 1228 mb(); 1229 1230 /* 1231 * Disable instruction sampling if it was enabled 1232 */ 1233 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1234 mtspr(SPRN_MMCRA, 1235 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1236 mb(); 1237 } 1238 1239 cpuhw->disabled = 1; 1240 cpuhw->n_added = 0; 1241 1242 ebb_switch_out(mmcr0); 1243 } 1244 1245 local_irq_restore(flags); 1246 } 1247 1248 /* 1249 * Re-enable all events if disable == 0. 1250 * If we were previously disabled and events were added, then 1251 * put the new config on the PMU. 1252 */ 1253 static void power_pmu_enable(struct pmu *pmu) 1254 { 1255 struct perf_event *event; 1256 struct cpu_hw_events *cpuhw; 1257 unsigned long flags; 1258 long i; 1259 unsigned long val, mmcr0; 1260 s64 left; 1261 unsigned int hwc_index[MAX_HWEVENTS]; 1262 int n_lim; 1263 int idx; 1264 bool ebb; 1265 1266 if (!ppmu) 1267 return; 1268 local_irq_save(flags); 1269 1270 cpuhw = this_cpu_ptr(&cpu_hw_events); 1271 if (!cpuhw->disabled) 1272 goto out; 1273 1274 if (cpuhw->n_events == 0) { 1275 ppc_set_pmu_inuse(0); 1276 goto out; 1277 } 1278 1279 cpuhw->disabled = 0; 1280 1281 /* 1282 * EBB requires an exclusive group and all events must have the EBB 1283 * flag set, or not set, so we can just check a single event. Also we 1284 * know we have at least one event. 1285 */ 1286 ebb = is_ebb_event(cpuhw->event[0]); 1287 1288 /* 1289 * If we didn't change anything, or only removed events, 1290 * no need to recalculate MMCR* settings and reset the PMCs. 1291 * Just reenable the PMU with the current MMCR* settings 1292 * (possibly updated for removal of events). 1293 */ 1294 if (!cpuhw->n_added) { 1295 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1296 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1297 goto out_enable; 1298 } 1299 1300 /* 1301 * Clear all MMCR settings and recompute them for the new set of events. 1302 */ 1303 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1304 1305 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1306 cpuhw->mmcr, cpuhw->event)) { 1307 /* shouldn't ever get here */ 1308 printk(KERN_ERR "oops compute_mmcr failed\n"); 1309 goto out; 1310 } 1311 1312 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1313 /* 1314 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1315 * bits for the first event. We have already checked that all 1316 * events have the same value for these bits as the first event. 1317 */ 1318 event = cpuhw->event[0]; 1319 if (event->attr.exclude_user) 1320 cpuhw->mmcr[0] |= MMCR0_FCP; 1321 if (event->attr.exclude_kernel) 1322 cpuhw->mmcr[0] |= freeze_events_kernel; 1323 if (event->attr.exclude_hv) 1324 cpuhw->mmcr[0] |= MMCR0_FCHV; 1325 } 1326 1327 /* 1328 * Write the new configuration to MMCR* with the freeze 1329 * bit set and set the hardware events to their initial values. 1330 * Then unfreeze the events. 1331 */ 1332 ppc_set_pmu_inuse(1); 1333 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1334 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1335 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1336 | MMCR0_FC); 1337 if (ppmu->flags & PPMU_ARCH_207S) 1338 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1339 1340 /* 1341 * Read off any pre-existing events that need to move 1342 * to another PMC. 1343 */ 1344 for (i = 0; i < cpuhw->n_events; ++i) { 1345 event = cpuhw->event[i]; 1346 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1347 power_pmu_read(event); 1348 write_pmc(event->hw.idx, 0); 1349 event->hw.idx = 0; 1350 } 1351 } 1352 1353 /* 1354 * Initialize the PMCs for all the new and moved events. 1355 */ 1356 cpuhw->n_limited = n_lim = 0; 1357 for (i = 0; i < cpuhw->n_events; ++i) { 1358 event = cpuhw->event[i]; 1359 if (event->hw.idx) 1360 continue; 1361 idx = hwc_index[i] + 1; 1362 if (is_limited_pmc(idx)) { 1363 cpuhw->limited_counter[n_lim] = event; 1364 cpuhw->limited_hwidx[n_lim] = idx; 1365 ++n_lim; 1366 continue; 1367 } 1368 1369 if (ebb) 1370 val = local64_read(&event->hw.prev_count); 1371 else { 1372 val = 0; 1373 if (event->hw.sample_period) { 1374 left = local64_read(&event->hw.period_left); 1375 if (left < 0x80000000L) 1376 val = 0x80000000L - left; 1377 } 1378 local64_set(&event->hw.prev_count, val); 1379 } 1380 1381 event->hw.idx = idx; 1382 if (event->hw.state & PERF_HES_STOPPED) 1383 val = 0; 1384 write_pmc(idx, val); 1385 1386 perf_event_update_userpage(event); 1387 } 1388 cpuhw->n_limited = n_lim; 1389 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1390 1391 out_enable: 1392 pmao_restore_workaround(ebb); 1393 1394 mmcr0 = ebb_switch_in(ebb, cpuhw); 1395 1396 mb(); 1397 if (cpuhw->bhrb_users) 1398 ppmu->config_bhrb(cpuhw->bhrb_filter); 1399 1400 write_mmcr0(cpuhw, mmcr0); 1401 1402 /* 1403 * Enable instruction sampling if necessary 1404 */ 1405 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1406 mb(); 1407 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1408 } 1409 1410 out: 1411 1412 local_irq_restore(flags); 1413 } 1414 1415 static int collect_events(struct perf_event *group, int max_count, 1416 struct perf_event *ctrs[], u64 *events, 1417 unsigned int *flags) 1418 { 1419 int n = 0; 1420 struct perf_event *event; 1421 1422 if (group->pmu->task_ctx_nr == perf_hw_context) { 1423 if (n >= max_count) 1424 return -1; 1425 ctrs[n] = group; 1426 flags[n] = group->hw.event_base; 1427 events[n++] = group->hw.config; 1428 } 1429 for_each_sibling_event(event, group) { 1430 if (event->pmu->task_ctx_nr == perf_hw_context && 1431 event->state != PERF_EVENT_STATE_OFF) { 1432 if (n >= max_count) 1433 return -1; 1434 ctrs[n] = event; 1435 flags[n] = event->hw.event_base; 1436 events[n++] = event->hw.config; 1437 } 1438 } 1439 return n; 1440 } 1441 1442 /* 1443 * Add a event to the PMU. 1444 * If all events are not already frozen, then we disable and 1445 * re-enable the PMU in order to get hw_perf_enable to do the 1446 * actual work of reconfiguring the PMU. 1447 */ 1448 static int power_pmu_add(struct perf_event *event, int ef_flags) 1449 { 1450 struct cpu_hw_events *cpuhw; 1451 unsigned long flags; 1452 int n0; 1453 int ret = -EAGAIN; 1454 1455 local_irq_save(flags); 1456 perf_pmu_disable(event->pmu); 1457 1458 /* 1459 * Add the event to the list (if there is room) 1460 * and check whether the total set is still feasible. 1461 */ 1462 cpuhw = this_cpu_ptr(&cpu_hw_events); 1463 n0 = cpuhw->n_events; 1464 if (n0 >= ppmu->n_counter) 1465 goto out; 1466 cpuhw->event[n0] = event; 1467 cpuhw->events[n0] = event->hw.config; 1468 cpuhw->flags[n0] = event->hw.event_base; 1469 1470 /* 1471 * This event may have been disabled/stopped in record_and_restart() 1472 * because we exceeded the ->event_limit. If re-starting the event, 1473 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1474 * notification is re-enabled. 1475 */ 1476 if (!(ef_flags & PERF_EF_START)) 1477 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1478 else 1479 event->hw.state = 0; 1480 1481 /* 1482 * If group events scheduling transaction was started, 1483 * skip the schedulability test here, it will be performed 1484 * at commit time(->commit_txn) as a whole 1485 */ 1486 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1487 goto nocheck; 1488 1489 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1490 goto out; 1491 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1492 goto out; 1493 event->hw.config = cpuhw->events[n0]; 1494 1495 nocheck: 1496 ebb_event_add(event); 1497 1498 ++cpuhw->n_events; 1499 ++cpuhw->n_added; 1500 1501 ret = 0; 1502 out: 1503 if (has_branch_stack(event)) { 1504 power_pmu_bhrb_enable(event); 1505 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1506 event->attr.branch_sample_type); 1507 } 1508 1509 /* 1510 * Workaround for POWER9 DD1 to use the Instruction Counter 1511 * register value for instruction counting 1512 */ 1513 if (use_ic(event->attr.config)) 1514 cpuhw->ic_init = mfspr(SPRN_IC); 1515 1516 perf_pmu_enable(event->pmu); 1517 local_irq_restore(flags); 1518 return ret; 1519 } 1520 1521 /* 1522 * Remove a event from the PMU. 1523 */ 1524 static void power_pmu_del(struct perf_event *event, int ef_flags) 1525 { 1526 struct cpu_hw_events *cpuhw; 1527 long i; 1528 unsigned long flags; 1529 1530 local_irq_save(flags); 1531 perf_pmu_disable(event->pmu); 1532 1533 power_pmu_read(event); 1534 1535 cpuhw = this_cpu_ptr(&cpu_hw_events); 1536 for (i = 0; i < cpuhw->n_events; ++i) { 1537 if (event == cpuhw->event[i]) { 1538 while (++i < cpuhw->n_events) { 1539 cpuhw->event[i-1] = cpuhw->event[i]; 1540 cpuhw->events[i-1] = cpuhw->events[i]; 1541 cpuhw->flags[i-1] = cpuhw->flags[i]; 1542 } 1543 --cpuhw->n_events; 1544 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1545 if (event->hw.idx) { 1546 write_pmc(event->hw.idx, 0); 1547 event->hw.idx = 0; 1548 } 1549 perf_event_update_userpage(event); 1550 break; 1551 } 1552 } 1553 for (i = 0; i < cpuhw->n_limited; ++i) 1554 if (event == cpuhw->limited_counter[i]) 1555 break; 1556 if (i < cpuhw->n_limited) { 1557 while (++i < cpuhw->n_limited) { 1558 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1559 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1560 } 1561 --cpuhw->n_limited; 1562 } 1563 if (cpuhw->n_events == 0) { 1564 /* disable exceptions if no events are running */ 1565 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1566 } 1567 1568 if (has_branch_stack(event)) 1569 power_pmu_bhrb_disable(event); 1570 1571 perf_pmu_enable(event->pmu); 1572 local_irq_restore(flags); 1573 } 1574 1575 /* 1576 * POWER-PMU does not support disabling individual counters, hence 1577 * program their cycle counter to their max value and ignore the interrupts. 1578 */ 1579 1580 static void power_pmu_start(struct perf_event *event, int ef_flags) 1581 { 1582 unsigned long flags; 1583 s64 left; 1584 unsigned long val; 1585 1586 if (!event->hw.idx || !event->hw.sample_period) 1587 return; 1588 1589 if (!(event->hw.state & PERF_HES_STOPPED)) 1590 return; 1591 1592 if (ef_flags & PERF_EF_RELOAD) 1593 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1594 1595 local_irq_save(flags); 1596 perf_pmu_disable(event->pmu); 1597 1598 event->hw.state = 0; 1599 left = local64_read(&event->hw.period_left); 1600 1601 val = 0; 1602 if (left < 0x80000000L) 1603 val = 0x80000000L - left; 1604 1605 write_pmc(event->hw.idx, val); 1606 1607 perf_event_update_userpage(event); 1608 perf_pmu_enable(event->pmu); 1609 local_irq_restore(flags); 1610 } 1611 1612 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1613 { 1614 unsigned long flags; 1615 1616 if (!event->hw.idx || !event->hw.sample_period) 1617 return; 1618 1619 if (event->hw.state & PERF_HES_STOPPED) 1620 return; 1621 1622 local_irq_save(flags); 1623 perf_pmu_disable(event->pmu); 1624 1625 power_pmu_read(event); 1626 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1627 write_pmc(event->hw.idx, 0); 1628 1629 perf_event_update_userpage(event); 1630 perf_pmu_enable(event->pmu); 1631 local_irq_restore(flags); 1632 } 1633 1634 /* 1635 * Start group events scheduling transaction 1636 * Set the flag to make pmu::enable() not perform the 1637 * schedulability test, it will be performed at commit time 1638 * 1639 * We only support PERF_PMU_TXN_ADD transactions. Save the 1640 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1641 * transactions. 1642 */ 1643 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1644 { 1645 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1646 1647 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1648 1649 cpuhw->txn_flags = txn_flags; 1650 if (txn_flags & ~PERF_PMU_TXN_ADD) 1651 return; 1652 1653 perf_pmu_disable(pmu); 1654 cpuhw->n_txn_start = cpuhw->n_events; 1655 } 1656 1657 /* 1658 * Stop group events scheduling transaction 1659 * Clear the flag and pmu::enable() will perform the 1660 * schedulability test. 1661 */ 1662 static void power_pmu_cancel_txn(struct pmu *pmu) 1663 { 1664 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1665 unsigned int txn_flags; 1666 1667 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1668 1669 txn_flags = cpuhw->txn_flags; 1670 cpuhw->txn_flags = 0; 1671 if (txn_flags & ~PERF_PMU_TXN_ADD) 1672 return; 1673 1674 perf_pmu_enable(pmu); 1675 } 1676 1677 /* 1678 * Commit group events scheduling transaction 1679 * Perform the group schedulability test as a whole 1680 * Return 0 if success 1681 */ 1682 static int power_pmu_commit_txn(struct pmu *pmu) 1683 { 1684 struct cpu_hw_events *cpuhw; 1685 long i, n; 1686 1687 if (!ppmu) 1688 return -EAGAIN; 1689 1690 cpuhw = this_cpu_ptr(&cpu_hw_events); 1691 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1692 1693 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1694 cpuhw->txn_flags = 0; 1695 return 0; 1696 } 1697 1698 n = cpuhw->n_events; 1699 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1700 return -EAGAIN; 1701 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1702 if (i < 0) 1703 return -EAGAIN; 1704 1705 for (i = cpuhw->n_txn_start; i < n; ++i) 1706 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1707 1708 cpuhw->txn_flags = 0; 1709 perf_pmu_enable(pmu); 1710 return 0; 1711 } 1712 1713 /* 1714 * Return 1 if we might be able to put event on a limited PMC, 1715 * or 0 if not. 1716 * A event can only go on a limited PMC if it counts something 1717 * that a limited PMC can count, doesn't require interrupts, and 1718 * doesn't exclude any processor mode. 1719 */ 1720 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1721 unsigned int flags) 1722 { 1723 int n; 1724 u64 alt[MAX_EVENT_ALTERNATIVES]; 1725 1726 if (event->attr.exclude_user 1727 || event->attr.exclude_kernel 1728 || event->attr.exclude_hv 1729 || event->attr.sample_period) 1730 return 0; 1731 1732 if (ppmu->limited_pmc_event(ev)) 1733 return 1; 1734 1735 /* 1736 * The requested event_id isn't on a limited PMC already; 1737 * see if any alternative code goes on a limited PMC. 1738 */ 1739 if (!ppmu->get_alternatives) 1740 return 0; 1741 1742 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1743 n = ppmu->get_alternatives(ev, flags, alt); 1744 1745 return n > 0; 1746 } 1747 1748 /* 1749 * Find an alternative event_id that goes on a normal PMC, if possible, 1750 * and return the event_id code, or 0 if there is no such alternative. 1751 * (Note: event_id code 0 is "don't count" on all machines.) 1752 */ 1753 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1754 { 1755 u64 alt[MAX_EVENT_ALTERNATIVES]; 1756 int n; 1757 1758 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1759 n = ppmu->get_alternatives(ev, flags, alt); 1760 if (!n) 1761 return 0; 1762 return alt[0]; 1763 } 1764 1765 /* Number of perf_events counting hardware events */ 1766 static atomic_t num_events; 1767 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1768 static DEFINE_MUTEX(pmc_reserve_mutex); 1769 1770 /* 1771 * Release the PMU if this is the last perf_event. 1772 */ 1773 static void hw_perf_event_destroy(struct perf_event *event) 1774 { 1775 if (!atomic_add_unless(&num_events, -1, 1)) { 1776 mutex_lock(&pmc_reserve_mutex); 1777 if (atomic_dec_return(&num_events) == 0) 1778 release_pmc_hardware(); 1779 mutex_unlock(&pmc_reserve_mutex); 1780 } 1781 } 1782 1783 /* 1784 * Translate a generic cache event_id config to a raw event_id code. 1785 */ 1786 static int hw_perf_cache_event(u64 config, u64 *eventp) 1787 { 1788 unsigned long type, op, result; 1789 int ev; 1790 1791 if (!ppmu->cache_events) 1792 return -EINVAL; 1793 1794 /* unpack config */ 1795 type = config & 0xff; 1796 op = (config >> 8) & 0xff; 1797 result = (config >> 16) & 0xff; 1798 1799 if (type >= PERF_COUNT_HW_CACHE_MAX || 1800 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1801 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1802 return -EINVAL; 1803 1804 ev = (*ppmu->cache_events)[type][op][result]; 1805 if (ev == 0) 1806 return -EOPNOTSUPP; 1807 if (ev == -1) 1808 return -EINVAL; 1809 *eventp = ev; 1810 return 0; 1811 } 1812 1813 static int power_pmu_event_init(struct perf_event *event) 1814 { 1815 u64 ev; 1816 unsigned long flags; 1817 struct perf_event *ctrs[MAX_HWEVENTS]; 1818 u64 events[MAX_HWEVENTS]; 1819 unsigned int cflags[MAX_HWEVENTS]; 1820 int n; 1821 int err; 1822 struct cpu_hw_events *cpuhw; 1823 1824 if (!ppmu) 1825 return -ENOENT; 1826 1827 if (has_branch_stack(event)) { 1828 /* PMU has BHRB enabled */ 1829 if (!(ppmu->flags & PPMU_ARCH_207S)) 1830 return -EOPNOTSUPP; 1831 } 1832 1833 switch (event->attr.type) { 1834 case PERF_TYPE_HARDWARE: 1835 ev = event->attr.config; 1836 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1837 return -EOPNOTSUPP; 1838 ev = ppmu->generic_events[ev]; 1839 break; 1840 case PERF_TYPE_HW_CACHE: 1841 err = hw_perf_cache_event(event->attr.config, &ev); 1842 if (err) 1843 return err; 1844 break; 1845 case PERF_TYPE_RAW: 1846 ev = event->attr.config; 1847 break; 1848 default: 1849 return -ENOENT; 1850 } 1851 1852 event->hw.config_base = ev; 1853 event->hw.idx = 0; 1854 1855 /* 1856 * If we are not running on a hypervisor, force the 1857 * exclude_hv bit to 0 so that we don't care what 1858 * the user set it to. 1859 */ 1860 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1861 event->attr.exclude_hv = 0; 1862 1863 /* 1864 * If this is a per-task event, then we can use 1865 * PM_RUN_* events interchangeably with their non RUN_* 1866 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1867 * XXX we should check if the task is an idle task. 1868 */ 1869 flags = 0; 1870 if (event->attach_state & PERF_ATTACH_TASK) 1871 flags |= PPMU_ONLY_COUNT_RUN; 1872 1873 /* 1874 * If this machine has limited events, check whether this 1875 * event_id could go on a limited event. 1876 */ 1877 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1878 if (can_go_on_limited_pmc(event, ev, flags)) { 1879 flags |= PPMU_LIMITED_PMC_OK; 1880 } else if (ppmu->limited_pmc_event(ev)) { 1881 /* 1882 * The requested event_id is on a limited PMC, 1883 * but we can't use a limited PMC; see if any 1884 * alternative goes on a normal PMC. 1885 */ 1886 ev = normal_pmc_alternative(ev, flags); 1887 if (!ev) 1888 return -EINVAL; 1889 } 1890 } 1891 1892 /* Extra checks for EBB */ 1893 err = ebb_event_check(event); 1894 if (err) 1895 return err; 1896 1897 /* 1898 * If this is in a group, check if it can go on with all the 1899 * other hardware events in the group. We assume the event 1900 * hasn't been linked into its leader's sibling list at this point. 1901 */ 1902 n = 0; 1903 if (event->group_leader != event) { 1904 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1905 ctrs, events, cflags); 1906 if (n < 0) 1907 return -EINVAL; 1908 } 1909 events[n] = ev; 1910 ctrs[n] = event; 1911 cflags[n] = flags; 1912 if (check_excludes(ctrs, cflags, n, 1)) 1913 return -EINVAL; 1914 1915 cpuhw = &get_cpu_var(cpu_hw_events); 1916 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1917 1918 if (has_branch_stack(event)) { 1919 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1920 event->attr.branch_sample_type); 1921 1922 if (cpuhw->bhrb_filter == -1) { 1923 put_cpu_var(cpu_hw_events); 1924 return -EOPNOTSUPP; 1925 } 1926 } 1927 1928 put_cpu_var(cpu_hw_events); 1929 if (err) 1930 return -EINVAL; 1931 1932 event->hw.config = events[n]; 1933 event->hw.event_base = cflags[n]; 1934 event->hw.last_period = event->hw.sample_period; 1935 local64_set(&event->hw.period_left, event->hw.last_period); 1936 1937 /* 1938 * For EBB events we just context switch the PMC value, we don't do any 1939 * of the sample_period logic. We use hw.prev_count for this. 1940 */ 1941 if (is_ebb_event(event)) 1942 local64_set(&event->hw.prev_count, 0); 1943 1944 /* 1945 * See if we need to reserve the PMU. 1946 * If no events are currently in use, then we have to take a 1947 * mutex to ensure that we don't race with another task doing 1948 * reserve_pmc_hardware or release_pmc_hardware. 1949 */ 1950 err = 0; 1951 if (!atomic_inc_not_zero(&num_events)) { 1952 mutex_lock(&pmc_reserve_mutex); 1953 if (atomic_read(&num_events) == 0 && 1954 reserve_pmc_hardware(perf_event_interrupt)) 1955 err = -EBUSY; 1956 else 1957 atomic_inc(&num_events); 1958 mutex_unlock(&pmc_reserve_mutex); 1959 } 1960 event->destroy = hw_perf_event_destroy; 1961 1962 return err; 1963 } 1964 1965 static int power_pmu_event_idx(struct perf_event *event) 1966 { 1967 return event->hw.idx; 1968 } 1969 1970 ssize_t power_events_sysfs_show(struct device *dev, 1971 struct device_attribute *attr, char *page) 1972 { 1973 struct perf_pmu_events_attr *pmu_attr; 1974 1975 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1976 1977 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1978 } 1979 1980 static struct pmu power_pmu = { 1981 .pmu_enable = power_pmu_enable, 1982 .pmu_disable = power_pmu_disable, 1983 .event_init = power_pmu_event_init, 1984 .add = power_pmu_add, 1985 .del = power_pmu_del, 1986 .start = power_pmu_start, 1987 .stop = power_pmu_stop, 1988 .read = power_pmu_read, 1989 .start_txn = power_pmu_start_txn, 1990 .cancel_txn = power_pmu_cancel_txn, 1991 .commit_txn = power_pmu_commit_txn, 1992 .event_idx = power_pmu_event_idx, 1993 .sched_task = power_pmu_sched_task, 1994 }; 1995 1996 /* 1997 * A counter has overflowed; update its count and record 1998 * things if requested. Note that interrupts are hard-disabled 1999 * here so there is no possibility of being interrupted. 2000 */ 2001 static void record_and_restart(struct perf_event *event, unsigned long val, 2002 struct pt_regs *regs) 2003 { 2004 u64 period = event->hw.sample_period; 2005 s64 prev, delta, left; 2006 int record = 0; 2007 2008 if (event->hw.state & PERF_HES_STOPPED) { 2009 write_pmc(event->hw.idx, 0); 2010 return; 2011 } 2012 2013 /* we don't have to worry about interrupts here */ 2014 prev = local64_read(&event->hw.prev_count); 2015 delta = check_and_compute_delta(prev, val); 2016 local64_add(delta, &event->count); 2017 2018 /* 2019 * See if the total period for this event has expired, 2020 * and update for the next period. 2021 */ 2022 val = 0; 2023 left = local64_read(&event->hw.period_left) - delta; 2024 if (delta == 0) 2025 left++; 2026 if (period) { 2027 if (left <= 0) { 2028 left += period; 2029 if (left <= 0) 2030 left = period; 2031 record = siar_valid(regs); 2032 event->hw.last_period = event->hw.sample_period; 2033 } 2034 if (left < 0x80000000LL) 2035 val = 0x80000000LL - left; 2036 } 2037 2038 write_pmc(event->hw.idx, val); 2039 local64_set(&event->hw.prev_count, val); 2040 local64_set(&event->hw.period_left, left); 2041 perf_event_update_userpage(event); 2042 2043 /* 2044 * Finally record data if requested. 2045 */ 2046 if (record) { 2047 struct perf_sample_data data; 2048 2049 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2050 2051 if (event->attr.sample_type & 2052 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2053 perf_get_data_addr(regs, &data.addr); 2054 2055 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2056 struct cpu_hw_events *cpuhw; 2057 cpuhw = this_cpu_ptr(&cpu_hw_events); 2058 power_pmu_bhrb_read(cpuhw); 2059 data.br_stack = &cpuhw->bhrb_stack; 2060 } 2061 2062 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2063 ppmu->get_mem_data_src) 2064 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2065 2066 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2067 ppmu->get_mem_weight) 2068 ppmu->get_mem_weight(&data.weight); 2069 2070 if (perf_event_overflow(event, &data, regs)) 2071 power_pmu_stop(event, 0); 2072 } 2073 } 2074 2075 /* 2076 * Called from generic code to get the misc flags (i.e. processor mode) 2077 * for an event_id. 2078 */ 2079 unsigned long perf_misc_flags(struct pt_regs *regs) 2080 { 2081 u32 flags = perf_get_misc_flags(regs); 2082 2083 if (flags) 2084 return flags; 2085 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2086 PERF_RECORD_MISC_KERNEL; 2087 } 2088 2089 /* 2090 * Called from generic code to get the instruction pointer 2091 * for an event_id. 2092 */ 2093 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2094 { 2095 bool use_siar = regs_use_siar(regs); 2096 2097 if (use_siar && siar_valid(regs)) 2098 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2099 else if (use_siar) 2100 return 0; // no valid instruction pointer 2101 else 2102 return regs->nip; 2103 } 2104 2105 static bool pmc_overflow_power7(unsigned long val) 2106 { 2107 /* 2108 * Events on POWER7 can roll back if a speculative event doesn't 2109 * eventually complete. Unfortunately in some rare cases they will 2110 * raise a performance monitor exception. We need to catch this to 2111 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2112 * cycles from overflow. 2113 * 2114 * We only do this if the first pass fails to find any overflowing 2115 * PMCs because a user might set a period of less than 256 and we 2116 * don't want to mistakenly reset them. 2117 */ 2118 if ((0x80000000 - val) <= 256) 2119 return true; 2120 2121 return false; 2122 } 2123 2124 static bool pmc_overflow(unsigned long val) 2125 { 2126 if ((int)val < 0) 2127 return true; 2128 2129 return false; 2130 } 2131 2132 /* 2133 * Performance monitor interrupt stuff 2134 */ 2135 static void perf_event_interrupt(struct pt_regs *regs) 2136 { 2137 int i, j; 2138 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2139 struct perf_event *event; 2140 unsigned long val[8]; 2141 int found, active; 2142 int nmi; 2143 2144 if (cpuhw->n_limited) 2145 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2146 mfspr(SPRN_PMC6)); 2147 2148 perf_read_regs(regs); 2149 2150 nmi = perf_intr_is_nmi(regs); 2151 if (nmi) 2152 nmi_enter(); 2153 else 2154 irq_enter(); 2155 2156 /* Read all the PMCs since we'll need them a bunch of times */ 2157 for (i = 0; i < ppmu->n_counter; ++i) 2158 val[i] = read_pmc(i + 1); 2159 2160 /* Try to find what caused the IRQ */ 2161 found = 0; 2162 for (i = 0; i < ppmu->n_counter; ++i) { 2163 if (!pmc_overflow(val[i])) 2164 continue; 2165 if (is_limited_pmc(i + 1)) 2166 continue; /* these won't generate IRQs */ 2167 /* 2168 * We've found one that's overflowed. For active 2169 * counters we need to log this. For inactive 2170 * counters, we need to reset it anyway 2171 */ 2172 found = 1; 2173 active = 0; 2174 for (j = 0; j < cpuhw->n_events; ++j) { 2175 event = cpuhw->event[j]; 2176 if (event->hw.idx == (i + 1)) { 2177 active = 1; 2178 record_and_restart(event, val[i], regs); 2179 break; 2180 } 2181 } 2182 if (!active) 2183 /* reset non active counters that have overflowed */ 2184 write_pmc(i + 1, 0); 2185 } 2186 if (!found && pvr_version_is(PVR_POWER7)) { 2187 /* check active counters for special buggy p7 overflow */ 2188 for (i = 0; i < cpuhw->n_events; ++i) { 2189 event = cpuhw->event[i]; 2190 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2191 continue; 2192 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2193 /* event has overflowed in a buggy way*/ 2194 found = 1; 2195 record_and_restart(event, 2196 val[event->hw.idx - 1], 2197 regs); 2198 } 2199 } 2200 } 2201 if (!found && !nmi && printk_ratelimit()) 2202 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2203 2204 /* 2205 * Reset MMCR0 to its normal value. This will set PMXE and 2206 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2207 * and thus allow interrupts to occur again. 2208 * XXX might want to use MSR.PM to keep the events frozen until 2209 * we get back out of this interrupt. 2210 */ 2211 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2212 2213 if (nmi) 2214 nmi_exit(); 2215 else 2216 irq_exit(); 2217 } 2218 2219 static int power_pmu_prepare_cpu(unsigned int cpu) 2220 { 2221 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2222 2223 if (ppmu) { 2224 memset(cpuhw, 0, sizeof(*cpuhw)); 2225 cpuhw->mmcr[0] = MMCR0_FC; 2226 } 2227 return 0; 2228 } 2229 2230 int register_power_pmu(struct power_pmu *pmu) 2231 { 2232 if (ppmu) 2233 return -EBUSY; /* something's already registered */ 2234 2235 ppmu = pmu; 2236 pr_info("%s performance monitor hardware support registered\n", 2237 pmu->name); 2238 2239 power_pmu.attr_groups = ppmu->attr_groups; 2240 2241 #ifdef MSR_HV 2242 /* 2243 * Use FCHV to ignore kernel events if MSR.HV is set. 2244 */ 2245 if (mfmsr() & MSR_HV) 2246 freeze_events_kernel = MMCR0_FCHV; 2247 #endif /* CONFIG_PPC64 */ 2248 2249 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2250 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2251 power_pmu_prepare_cpu, NULL); 2252 return 0; 2253 } 2254