1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 struct mmcr_regs mmcr; 41 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 42 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 43 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 44 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 46 47 unsigned int txn_flags; 48 int n_txn_start; 49 50 /* BHRB bits */ 51 u64 bhrb_filter; /* BHRB HW branch filter */ 52 unsigned int bhrb_users; 53 void *bhrb_context; 54 struct perf_branch_stack bhrb_stack; 55 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 56 u64 ic_init; 57 }; 58 59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 60 61 static struct power_pmu *ppmu; 62 63 /* 64 * Normally, to ignore kernel events we set the FCS (freeze counters 65 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 66 * hypervisor bit set in the MSR, or if we are running on a processor 67 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 68 * then we need to use the FCHV bit to ignore kernel events. 69 */ 70 static unsigned int freeze_events_kernel = MMCR0_FCS; 71 72 /* 73 * 32-bit doesn't have MMCRA but does have an MMCR2, 74 * and a few other names are different. 75 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. 76 * Define them as zero knowing that any code path accessing 77 * these registers (via mtspr/mfspr) are done under ppmu flag 78 * check for PPMU_ARCH_31 and we will not enter that code path 79 * for 32-bit. 80 */ 81 #ifdef CONFIG_PPC32 82 83 #define MMCR0_FCHV 0 84 #define MMCR0_PMCjCE MMCR0_PMCnCE 85 #define MMCR0_FC56 0 86 #define MMCR0_PMAO 0 87 #define MMCR0_EBE 0 88 #define MMCR0_BHRBA 0 89 #define MMCR0_PMCC 0 90 #define MMCR0_PMCC_U6 0 91 92 #define SPRN_MMCRA SPRN_MMCR2 93 #define SPRN_MMCR3 0 94 #define SPRN_SIER2 0 95 #define SPRN_SIER3 0 96 #define MMCRA_SAMPLE_ENABLE 0 97 #define MMCRA_BHRB_DISABLE 0 98 99 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 100 { 101 return 0; 102 } 103 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 104 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 105 { 106 return 0; 107 } 108 static inline void perf_read_regs(struct pt_regs *regs) 109 { 110 regs->result = 0; 111 } 112 static inline int perf_intr_is_nmi(struct pt_regs *regs) 113 { 114 return 0; 115 } 116 117 static inline int siar_valid(struct pt_regs *regs) 118 { 119 return 1; 120 } 121 122 static bool is_ebb_event(struct perf_event *event) { return false; } 123 static int ebb_event_check(struct perf_event *event) { return 0; } 124 static void ebb_event_add(struct perf_event *event) { } 125 static void ebb_switch_out(unsigned long mmcr0) { } 126 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 127 { 128 return cpuhw->mmcr.mmcr0; 129 } 130 131 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 132 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 133 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 134 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 135 static void pmao_restore_workaround(bool ebb) { } 136 #endif /* CONFIG_PPC32 */ 137 138 bool is_sier_available(void) 139 { 140 if (ppmu->flags & PPMU_HAS_SIER) 141 return true; 142 143 return false; 144 } 145 146 static bool regs_use_siar(struct pt_regs *regs) 147 { 148 /* 149 * When we take a performance monitor exception the regs are setup 150 * using perf_read_regs() which overloads some fields, in particular 151 * regs->result to tell us whether to use SIAR. 152 * 153 * However if the regs are from another exception, eg. a syscall, then 154 * they have not been setup using perf_read_regs() and so regs->result 155 * is something random. 156 */ 157 return ((TRAP(regs) == 0xf00) && regs->result); 158 } 159 160 /* 161 * Things that are specific to 64-bit implementations. 162 */ 163 #ifdef CONFIG_PPC64 164 165 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 166 { 167 unsigned long mmcra = regs->dsisr; 168 169 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 170 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 171 if (slot > 1) 172 return 4 * (slot - 1); 173 } 174 175 return 0; 176 } 177 178 /* 179 * The user wants a data address recorded. 180 * If we're not doing instruction sampling, give them the SDAR 181 * (sampled data address). If we are doing instruction sampling, then 182 * only give them the SDAR if it corresponds to the instruction 183 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 184 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 185 */ 186 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 187 { 188 unsigned long mmcra = regs->dsisr; 189 bool sdar_valid; 190 191 if (ppmu->flags & PPMU_HAS_SIER) 192 sdar_valid = regs->dar & SIER_SDAR_VALID; 193 else { 194 unsigned long sdsync; 195 196 if (ppmu->flags & PPMU_SIAR_VALID) 197 sdsync = POWER7P_MMCRA_SDAR_VALID; 198 else if (ppmu->flags & PPMU_ALT_SIPR) 199 sdsync = POWER6_MMCRA_SDSYNC; 200 else if (ppmu->flags & PPMU_NO_SIAR) 201 sdsync = MMCRA_SAMPLE_ENABLE; 202 else 203 sdsync = MMCRA_SDSYNC; 204 205 sdar_valid = mmcra & sdsync; 206 } 207 208 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 209 *addrp = mfspr(SPRN_SDAR); 210 211 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 212 *addrp = 0; 213 } 214 215 static bool regs_sihv(struct pt_regs *regs) 216 { 217 unsigned long sihv = MMCRA_SIHV; 218 219 if (ppmu->flags & PPMU_HAS_SIER) 220 return !!(regs->dar & SIER_SIHV); 221 222 if (ppmu->flags & PPMU_ALT_SIPR) 223 sihv = POWER6_MMCRA_SIHV; 224 225 return !!(regs->dsisr & sihv); 226 } 227 228 static bool regs_sipr(struct pt_regs *regs) 229 { 230 unsigned long sipr = MMCRA_SIPR; 231 232 if (ppmu->flags & PPMU_HAS_SIER) 233 return !!(regs->dar & SIER_SIPR); 234 235 if (ppmu->flags & PPMU_ALT_SIPR) 236 sipr = POWER6_MMCRA_SIPR; 237 238 return !!(regs->dsisr & sipr); 239 } 240 241 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 242 { 243 if (regs->msr & MSR_PR) 244 return PERF_RECORD_MISC_USER; 245 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 246 return PERF_RECORD_MISC_HYPERVISOR; 247 return PERF_RECORD_MISC_KERNEL; 248 } 249 250 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 251 { 252 bool use_siar = regs_use_siar(regs); 253 254 if (!use_siar) 255 return perf_flags_from_msr(regs); 256 257 /* 258 * If we don't have flags in MMCRA, rather than using 259 * the MSR, we intuit the flags from the address in 260 * SIAR which should give slightly more reliable 261 * results 262 */ 263 if (ppmu->flags & PPMU_NO_SIPR) { 264 unsigned long siar = mfspr(SPRN_SIAR); 265 if (is_kernel_addr(siar)) 266 return PERF_RECORD_MISC_KERNEL; 267 return PERF_RECORD_MISC_USER; 268 } 269 270 /* PR has priority over HV, so order below is important */ 271 if (regs_sipr(regs)) 272 return PERF_RECORD_MISC_USER; 273 274 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 275 return PERF_RECORD_MISC_HYPERVISOR; 276 277 return PERF_RECORD_MISC_KERNEL; 278 } 279 280 /* 281 * Overload regs->dsisr to store MMCRA so we only need to read it once 282 * on each interrupt. 283 * Overload regs->dar to store SIER if we have it. 284 * Overload regs->result to specify whether we should use the MSR (result 285 * is zero) or the SIAR (result is non zero). 286 */ 287 static inline void perf_read_regs(struct pt_regs *regs) 288 { 289 unsigned long mmcra = mfspr(SPRN_MMCRA); 290 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 291 int use_siar; 292 293 regs->dsisr = mmcra; 294 295 if (ppmu->flags & PPMU_HAS_SIER) 296 regs->dar = mfspr(SPRN_SIER); 297 298 /* 299 * If this isn't a PMU exception (eg a software event) the SIAR is 300 * not valid. Use pt_regs. 301 * 302 * If it is a marked event use the SIAR. 303 * 304 * If the PMU doesn't update the SIAR for non marked events use 305 * pt_regs. 306 * 307 * If the PMU has HV/PR flags then check to see if they 308 * place the exception in userspace. If so, use pt_regs. In 309 * continuous sampling mode the SIAR and the PMU exception are 310 * not synchronised, so they may be many instructions apart. 311 * This can result in confusing backtraces. We still want 312 * hypervisor samples as well as samples in the kernel with 313 * interrupts off hence the userspace check. 314 */ 315 if (TRAP(regs) != 0xf00) 316 use_siar = 0; 317 else if ((ppmu->flags & PPMU_NO_SIAR)) 318 use_siar = 0; 319 else if (marked) 320 use_siar = 1; 321 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 322 use_siar = 0; 323 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 324 use_siar = 0; 325 else 326 use_siar = 1; 327 328 regs->result = use_siar; 329 } 330 331 /* 332 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 333 * it as an NMI. 334 */ 335 static inline int perf_intr_is_nmi(struct pt_regs *regs) 336 { 337 return (regs->softe & IRQS_DISABLED); 338 } 339 340 /* 341 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 342 * must be sampled only if the SIAR-valid bit is set. 343 * 344 * For unmarked instructions and for processors that don't have the SIAR-Valid 345 * bit, assume that SIAR is valid. 346 */ 347 static inline int siar_valid(struct pt_regs *regs) 348 { 349 unsigned long mmcra = regs->dsisr; 350 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 351 352 if (marked) { 353 if (ppmu->flags & PPMU_HAS_SIER) 354 return regs->dar & SIER_SIAR_VALID; 355 356 if (ppmu->flags & PPMU_SIAR_VALID) 357 return mmcra & POWER7P_MMCRA_SIAR_VALID; 358 } 359 360 return 1; 361 } 362 363 364 /* Reset all possible BHRB entries */ 365 static void power_pmu_bhrb_reset(void) 366 { 367 asm volatile(PPC_CLRBHRB); 368 } 369 370 static void power_pmu_bhrb_enable(struct perf_event *event) 371 { 372 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 373 374 if (!ppmu->bhrb_nr) 375 return; 376 377 /* Clear BHRB if we changed task context to avoid data leaks */ 378 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 379 power_pmu_bhrb_reset(); 380 cpuhw->bhrb_context = event->ctx; 381 } 382 cpuhw->bhrb_users++; 383 perf_sched_cb_inc(event->ctx->pmu); 384 } 385 386 static void power_pmu_bhrb_disable(struct perf_event *event) 387 { 388 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 389 390 if (!ppmu->bhrb_nr) 391 return; 392 393 WARN_ON_ONCE(!cpuhw->bhrb_users); 394 cpuhw->bhrb_users--; 395 perf_sched_cb_dec(event->ctx->pmu); 396 397 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 398 /* BHRB cannot be turned off when other 399 * events are active on the PMU. 400 */ 401 402 /* avoid stale pointer */ 403 cpuhw->bhrb_context = NULL; 404 } 405 } 406 407 /* Called from ctxsw to prevent one process's branch entries to 408 * mingle with the other process's entries during context switch. 409 */ 410 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 411 { 412 if (!ppmu->bhrb_nr) 413 return; 414 415 if (sched_in) 416 power_pmu_bhrb_reset(); 417 } 418 /* Calculate the to address for a branch */ 419 static __u64 power_pmu_bhrb_to(u64 addr) 420 { 421 unsigned int instr; 422 __u64 target; 423 424 if (is_kernel_addr(addr)) { 425 if (copy_from_kernel_nofault(&instr, (void *)addr, 426 sizeof(instr))) 427 return 0; 428 429 return branch_target((struct ppc_inst *)&instr); 430 } 431 432 /* Userspace: need copy instruction here then translate it */ 433 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 434 sizeof(instr))) 435 return 0; 436 437 target = branch_target((struct ppc_inst *)&instr); 438 if ((!target) || (instr & BRANCH_ABSOLUTE)) 439 return target; 440 441 /* Translate relative branch target from kernel to user address */ 442 return target - (unsigned long)&instr + addr; 443 } 444 445 /* Processing BHRB entries */ 446 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 447 { 448 u64 val; 449 u64 addr; 450 int r_index, u_index, pred; 451 452 r_index = 0; 453 u_index = 0; 454 while (r_index < ppmu->bhrb_nr) { 455 /* Assembly read function */ 456 val = read_bhrb(r_index++); 457 if (!val) 458 /* Terminal marker: End of valid BHRB entries */ 459 break; 460 else { 461 addr = val & BHRB_EA; 462 pred = val & BHRB_PREDICTION; 463 464 if (!addr) 465 /* invalid entry */ 466 continue; 467 468 /* 469 * BHRB rolling buffer could very much contain the kernel 470 * addresses at this point. Check the privileges before 471 * exporting it to userspace (avoid exposure of regions 472 * where we could have speculative execution) 473 * Incase of ISA v3.1, BHRB will capture only user-space 474 * addresses, hence include a check before filtering code 475 */ 476 if (!(ppmu->flags & PPMU_ARCH_31) && 477 is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 478 continue; 479 480 /* Branches are read most recent first (ie. mfbhrb 0 is 481 * the most recent branch). 482 * There are two types of valid entries: 483 * 1) a target entry which is the to address of a 484 * computed goto like a blr,bctr,btar. The next 485 * entry read from the bhrb will be branch 486 * corresponding to this target (ie. the actual 487 * blr/bctr/btar instruction). 488 * 2) a from address which is an actual branch. If a 489 * target entry proceeds this, then this is the 490 * matching branch for that target. If this is not 491 * following a target entry, then this is a branch 492 * where the target is given as an immediate field 493 * in the instruction (ie. an i or b form branch). 494 * In this case we need to read the instruction from 495 * memory to determine the target/to address. 496 */ 497 498 if (val & BHRB_TARGET) { 499 /* Target branches use two entries 500 * (ie. computed gotos/XL form) 501 */ 502 cpuhw->bhrb_entries[u_index].to = addr; 503 cpuhw->bhrb_entries[u_index].mispred = pred; 504 cpuhw->bhrb_entries[u_index].predicted = ~pred; 505 506 /* Get from address in next entry */ 507 val = read_bhrb(r_index++); 508 addr = val & BHRB_EA; 509 if (val & BHRB_TARGET) { 510 /* Shouldn't have two targets in a 511 row.. Reset index and try again */ 512 r_index--; 513 addr = 0; 514 } 515 cpuhw->bhrb_entries[u_index].from = addr; 516 } else { 517 /* Branches to immediate field 518 (ie I or B form) */ 519 cpuhw->bhrb_entries[u_index].from = addr; 520 cpuhw->bhrb_entries[u_index].to = 521 power_pmu_bhrb_to(addr); 522 cpuhw->bhrb_entries[u_index].mispred = pred; 523 cpuhw->bhrb_entries[u_index].predicted = ~pred; 524 } 525 u_index++; 526 527 } 528 } 529 cpuhw->bhrb_stack.nr = u_index; 530 cpuhw->bhrb_stack.hw_idx = -1ULL; 531 return; 532 } 533 534 static bool is_ebb_event(struct perf_event *event) 535 { 536 /* 537 * This could be a per-PMU callback, but we'd rather avoid the cost. We 538 * check that the PMU supports EBB, meaning those that don't can still 539 * use bit 63 of the event code for something else if they wish. 540 */ 541 return (ppmu->flags & PPMU_ARCH_207S) && 542 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 543 } 544 545 static int ebb_event_check(struct perf_event *event) 546 { 547 struct perf_event *leader = event->group_leader; 548 549 /* Event and group leader must agree on EBB */ 550 if (is_ebb_event(leader) != is_ebb_event(event)) 551 return -EINVAL; 552 553 if (is_ebb_event(event)) { 554 if (!(event->attach_state & PERF_ATTACH_TASK)) 555 return -EINVAL; 556 557 if (!leader->attr.pinned || !leader->attr.exclusive) 558 return -EINVAL; 559 560 if (event->attr.freq || 561 event->attr.inherit || 562 event->attr.sample_type || 563 event->attr.sample_period || 564 event->attr.enable_on_exec) 565 return -EINVAL; 566 } 567 568 return 0; 569 } 570 571 static void ebb_event_add(struct perf_event *event) 572 { 573 if (!is_ebb_event(event) || current->thread.used_ebb) 574 return; 575 576 /* 577 * IFF this is the first time we've added an EBB event, set 578 * PMXE in the user MMCR0 so we can detect when it's cleared by 579 * userspace. We need this so that we can context switch while 580 * userspace is in the EBB handler (where PMXE is 0). 581 */ 582 current->thread.used_ebb = 1; 583 current->thread.mmcr0 |= MMCR0_PMXE; 584 } 585 586 static void ebb_switch_out(unsigned long mmcr0) 587 { 588 if (!(mmcr0 & MMCR0_EBE)) 589 return; 590 591 current->thread.siar = mfspr(SPRN_SIAR); 592 current->thread.sier = mfspr(SPRN_SIER); 593 current->thread.sdar = mfspr(SPRN_SDAR); 594 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 595 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 596 if (ppmu->flags & PPMU_ARCH_31) { 597 current->thread.mmcr3 = mfspr(SPRN_MMCR3); 598 current->thread.sier2 = mfspr(SPRN_SIER2); 599 current->thread.sier3 = mfspr(SPRN_SIER3); 600 } 601 } 602 603 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 604 { 605 unsigned long mmcr0 = cpuhw->mmcr.mmcr0; 606 607 if (!ebb) 608 goto out; 609 610 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 611 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 612 613 /* 614 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 615 * with pmao_restore_workaround() because we may add PMAO but we never 616 * clear it here. 617 */ 618 mmcr0 |= current->thread.mmcr0; 619 620 /* 621 * Be careful not to set PMXE if userspace had it cleared. This is also 622 * compatible with pmao_restore_workaround() because it has already 623 * cleared PMXE and we leave PMAO alone. 624 */ 625 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 626 mmcr0 &= ~MMCR0_PMXE; 627 628 mtspr(SPRN_SIAR, current->thread.siar); 629 mtspr(SPRN_SIER, current->thread.sier); 630 mtspr(SPRN_SDAR, current->thread.sdar); 631 632 /* 633 * Merge the kernel & user values of MMCR2. The semantics we implement 634 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 635 * but not clear bits. If a task wants to be able to clear bits, ie. 636 * unfreeze counters, it should not set exclude_xxx in its events and 637 * instead manage the MMCR2 entirely by itself. 638 */ 639 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); 640 641 if (ppmu->flags & PPMU_ARCH_31) { 642 mtspr(SPRN_MMCR3, current->thread.mmcr3); 643 mtspr(SPRN_SIER2, current->thread.sier2); 644 mtspr(SPRN_SIER3, current->thread.sier3); 645 } 646 out: 647 return mmcr0; 648 } 649 650 static void pmao_restore_workaround(bool ebb) 651 { 652 unsigned pmcs[6]; 653 654 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 655 return; 656 657 /* 658 * On POWER8E there is a hardware defect which affects the PMU context 659 * switch logic, ie. power_pmu_disable/enable(). 660 * 661 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 662 * by the hardware. Sometime later the actual PMU exception is 663 * delivered. 664 * 665 * If we context switch, or simply disable/enable, the PMU prior to the 666 * exception arriving, the exception will be lost when we clear PMAO. 667 * 668 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 669 * set, and this _should_ generate an exception. However because of the 670 * defect no exception is generated when we write PMAO, and we get 671 * stuck with no counters counting but no exception delivered. 672 * 673 * The workaround is to detect this case and tweak the hardware to 674 * create another pending PMU exception. 675 * 676 * We do that by setting up PMC6 (cycles) for an imminent overflow and 677 * enabling the PMU. That causes a new exception to be generated in the 678 * chip, but we don't take it yet because we have interrupts hard 679 * disabled. We then write back the PMU state as we want it to be seen 680 * by the exception handler. When we reenable interrupts the exception 681 * handler will be called and see the correct state. 682 * 683 * The logic is the same for EBB, except that the exception is gated by 684 * us having interrupts hard disabled as well as the fact that we are 685 * not in userspace. The exception is finally delivered when we return 686 * to userspace. 687 */ 688 689 /* Only if PMAO is set and PMAO_SYNC is clear */ 690 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 691 return; 692 693 /* If we're doing EBB, only if BESCR[GE] is set */ 694 if (ebb && !(current->thread.bescr & BESCR_GE)) 695 return; 696 697 /* 698 * We are already soft-disabled in power_pmu_enable(). We need to hard 699 * disable to actually prevent the PMU exception from firing. 700 */ 701 hard_irq_disable(); 702 703 /* 704 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 705 * Using read/write_pmc() in a for loop adds 12 function calls and 706 * almost doubles our code size. 707 */ 708 pmcs[0] = mfspr(SPRN_PMC1); 709 pmcs[1] = mfspr(SPRN_PMC2); 710 pmcs[2] = mfspr(SPRN_PMC3); 711 pmcs[3] = mfspr(SPRN_PMC4); 712 pmcs[4] = mfspr(SPRN_PMC5); 713 pmcs[5] = mfspr(SPRN_PMC6); 714 715 /* Ensure all freeze bits are unset */ 716 mtspr(SPRN_MMCR2, 0); 717 718 /* Set up PMC6 to overflow in one cycle */ 719 mtspr(SPRN_PMC6, 0x7FFFFFFE); 720 721 /* Enable exceptions and unfreeze PMC6 */ 722 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 723 724 /* Now we need to refreeze and restore the PMCs */ 725 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 726 727 mtspr(SPRN_PMC1, pmcs[0]); 728 mtspr(SPRN_PMC2, pmcs[1]); 729 mtspr(SPRN_PMC3, pmcs[2]); 730 mtspr(SPRN_PMC4, pmcs[3]); 731 mtspr(SPRN_PMC5, pmcs[4]); 732 mtspr(SPRN_PMC6, pmcs[5]); 733 } 734 735 #endif /* CONFIG_PPC64 */ 736 737 static void perf_event_interrupt(struct pt_regs *regs); 738 739 /* 740 * Read one performance monitor counter (PMC). 741 */ 742 static unsigned long read_pmc(int idx) 743 { 744 unsigned long val; 745 746 switch (idx) { 747 case 1: 748 val = mfspr(SPRN_PMC1); 749 break; 750 case 2: 751 val = mfspr(SPRN_PMC2); 752 break; 753 case 3: 754 val = mfspr(SPRN_PMC3); 755 break; 756 case 4: 757 val = mfspr(SPRN_PMC4); 758 break; 759 case 5: 760 val = mfspr(SPRN_PMC5); 761 break; 762 case 6: 763 val = mfspr(SPRN_PMC6); 764 break; 765 #ifdef CONFIG_PPC64 766 case 7: 767 val = mfspr(SPRN_PMC7); 768 break; 769 case 8: 770 val = mfspr(SPRN_PMC8); 771 break; 772 #endif /* CONFIG_PPC64 */ 773 default: 774 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 775 val = 0; 776 } 777 return val; 778 } 779 780 /* 781 * Write one PMC. 782 */ 783 static void write_pmc(int idx, unsigned long val) 784 { 785 switch (idx) { 786 case 1: 787 mtspr(SPRN_PMC1, val); 788 break; 789 case 2: 790 mtspr(SPRN_PMC2, val); 791 break; 792 case 3: 793 mtspr(SPRN_PMC3, val); 794 break; 795 case 4: 796 mtspr(SPRN_PMC4, val); 797 break; 798 case 5: 799 mtspr(SPRN_PMC5, val); 800 break; 801 case 6: 802 mtspr(SPRN_PMC6, val); 803 break; 804 #ifdef CONFIG_PPC64 805 case 7: 806 mtspr(SPRN_PMC7, val); 807 break; 808 case 8: 809 mtspr(SPRN_PMC8, val); 810 break; 811 #endif /* CONFIG_PPC64 */ 812 default: 813 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 814 } 815 } 816 817 /* Called from sysrq_handle_showregs() */ 818 void perf_event_print_debug(void) 819 { 820 unsigned long sdar, sier, flags; 821 u32 pmcs[MAX_HWEVENTS]; 822 int i; 823 824 if (!ppmu) { 825 pr_info("Performance monitor hardware not registered.\n"); 826 return; 827 } 828 829 if (!ppmu->n_counter) 830 return; 831 832 local_irq_save(flags); 833 834 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 835 smp_processor_id(), ppmu->name, ppmu->n_counter); 836 837 for (i = 0; i < ppmu->n_counter; i++) 838 pmcs[i] = read_pmc(i + 1); 839 840 for (; i < MAX_HWEVENTS; i++) 841 pmcs[i] = 0xdeadbeef; 842 843 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 844 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 845 846 if (ppmu->n_counter > 4) 847 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 848 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 849 850 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 851 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 852 853 sdar = sier = 0; 854 #ifdef CONFIG_PPC64 855 sdar = mfspr(SPRN_SDAR); 856 857 if (ppmu->flags & PPMU_HAS_SIER) 858 sier = mfspr(SPRN_SIER); 859 860 if (ppmu->flags & PPMU_ARCH_207S) { 861 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 862 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 863 pr_info("EBBRR: %016lx BESCR: %016lx\n", 864 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 865 } 866 867 if (ppmu->flags & PPMU_ARCH_31) { 868 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", 869 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); 870 } 871 #endif 872 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 873 mfspr(SPRN_SIAR), sdar, sier); 874 875 local_irq_restore(flags); 876 } 877 878 /* 879 * Check if a set of events can all go on the PMU at once. 880 * If they can't, this will look at alternative codes for the events 881 * and see if any combination of alternative codes is feasible. 882 * The feasible set is returned in event_id[]. 883 */ 884 static int power_check_constraints(struct cpu_hw_events *cpuhw, 885 u64 event_id[], unsigned int cflags[], 886 int n_ev) 887 { 888 unsigned long mask, value, nv; 889 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 890 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 891 int i, j; 892 unsigned long addf = ppmu->add_fields; 893 unsigned long tadd = ppmu->test_adder; 894 unsigned long grp_mask = ppmu->group_constraint_mask; 895 unsigned long grp_val = ppmu->group_constraint_val; 896 897 if (n_ev > ppmu->n_counter) 898 return -1; 899 900 /* First see if the events will go on as-is */ 901 for (i = 0; i < n_ev; ++i) { 902 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 903 && !ppmu->limited_pmc_event(event_id[i])) { 904 ppmu->get_alternatives(event_id[i], cflags[i], 905 cpuhw->alternatives[i]); 906 event_id[i] = cpuhw->alternatives[i][0]; 907 } 908 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 909 &cpuhw->avalues[i][0])) 910 return -1; 911 } 912 value = mask = 0; 913 for (i = 0; i < n_ev; ++i) { 914 nv = (value | cpuhw->avalues[i][0]) + 915 (value & cpuhw->avalues[i][0] & addf); 916 917 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 918 break; 919 920 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 921 & (~grp_mask)) != 0) 922 break; 923 924 value = nv; 925 mask |= cpuhw->amasks[i][0]; 926 } 927 if (i == n_ev) { 928 if ((value & mask & grp_mask) != (mask & grp_val)) 929 return -1; 930 else 931 return 0; /* all OK */ 932 } 933 934 /* doesn't work, gather alternatives... */ 935 if (!ppmu->get_alternatives) 936 return -1; 937 for (i = 0; i < n_ev; ++i) { 938 choice[i] = 0; 939 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 940 cpuhw->alternatives[i]); 941 for (j = 1; j < n_alt[i]; ++j) 942 ppmu->get_constraint(cpuhw->alternatives[i][j], 943 &cpuhw->amasks[i][j], 944 &cpuhw->avalues[i][j]); 945 } 946 947 /* enumerate all possibilities and see if any will work */ 948 i = 0; 949 j = -1; 950 value = mask = nv = 0; 951 while (i < n_ev) { 952 if (j >= 0) { 953 /* we're backtracking, restore context */ 954 value = svalues[i]; 955 mask = smasks[i]; 956 j = choice[i]; 957 } 958 /* 959 * See if any alternative k for event_id i, 960 * where k > j, will satisfy the constraints. 961 */ 962 while (++j < n_alt[i]) { 963 nv = (value | cpuhw->avalues[i][j]) + 964 (value & cpuhw->avalues[i][j] & addf); 965 if ((((nv + tadd) ^ value) & mask) == 0 && 966 (((nv + tadd) ^ cpuhw->avalues[i][j]) 967 & cpuhw->amasks[i][j]) == 0) 968 break; 969 } 970 if (j >= n_alt[i]) { 971 /* 972 * No feasible alternative, backtrack 973 * to event_id i-1 and continue enumerating its 974 * alternatives from where we got up to. 975 */ 976 if (--i < 0) 977 return -1; 978 } else { 979 /* 980 * Found a feasible alternative for event_id i, 981 * remember where we got up to with this event_id, 982 * go on to the next event_id, and start with 983 * the first alternative for it. 984 */ 985 choice[i] = j; 986 svalues[i] = value; 987 smasks[i] = mask; 988 value = nv; 989 mask |= cpuhw->amasks[i][j]; 990 ++i; 991 j = -1; 992 } 993 } 994 995 /* OK, we have a feasible combination, tell the caller the solution */ 996 for (i = 0; i < n_ev; ++i) 997 event_id[i] = cpuhw->alternatives[i][choice[i]]; 998 return 0; 999 } 1000 1001 /* 1002 * Check if newly-added events have consistent settings for 1003 * exclude_{user,kernel,hv} with each other and any previously 1004 * added events. 1005 */ 1006 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 1007 int n_prev, int n_new) 1008 { 1009 int eu = 0, ek = 0, eh = 0; 1010 int i, n, first; 1011 struct perf_event *event; 1012 1013 /* 1014 * If the PMU we're on supports per event exclude settings then we 1015 * don't need to do any of this logic. NB. This assumes no PMU has both 1016 * per event exclude and limited PMCs. 1017 */ 1018 if (ppmu->flags & PPMU_ARCH_207S) 1019 return 0; 1020 1021 n = n_prev + n_new; 1022 if (n <= 1) 1023 return 0; 1024 1025 first = 1; 1026 for (i = 0; i < n; ++i) { 1027 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1028 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1029 continue; 1030 } 1031 event = ctrs[i]; 1032 if (first) { 1033 eu = event->attr.exclude_user; 1034 ek = event->attr.exclude_kernel; 1035 eh = event->attr.exclude_hv; 1036 first = 0; 1037 } else if (event->attr.exclude_user != eu || 1038 event->attr.exclude_kernel != ek || 1039 event->attr.exclude_hv != eh) { 1040 return -EAGAIN; 1041 } 1042 } 1043 1044 if (eu || ek || eh) 1045 for (i = 0; i < n; ++i) 1046 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1047 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1048 1049 return 0; 1050 } 1051 1052 static u64 check_and_compute_delta(u64 prev, u64 val) 1053 { 1054 u64 delta = (val - prev) & 0xfffffffful; 1055 1056 /* 1057 * POWER7 can roll back counter values, if the new value is smaller 1058 * than the previous value it will cause the delta and the counter to 1059 * have bogus values unless we rolled a counter over. If a coutner is 1060 * rolled back, it will be smaller, but within 256, which is the maximum 1061 * number of events to rollback at once. If we detect a rollback 1062 * return 0. This can lead to a small lack of precision in the 1063 * counters. 1064 */ 1065 if (prev > val && (prev - val) < 256) 1066 delta = 0; 1067 1068 return delta; 1069 } 1070 1071 static void power_pmu_read(struct perf_event *event) 1072 { 1073 s64 val, delta, prev; 1074 1075 if (event->hw.state & PERF_HES_STOPPED) 1076 return; 1077 1078 if (!event->hw.idx) 1079 return; 1080 1081 if (is_ebb_event(event)) { 1082 val = read_pmc(event->hw.idx); 1083 local64_set(&event->hw.prev_count, val); 1084 return; 1085 } 1086 1087 /* 1088 * Performance monitor interrupts come even when interrupts 1089 * are soft-disabled, as long as interrupts are hard-enabled. 1090 * Therefore we treat them like NMIs. 1091 */ 1092 do { 1093 prev = local64_read(&event->hw.prev_count); 1094 barrier(); 1095 val = read_pmc(event->hw.idx); 1096 delta = check_and_compute_delta(prev, val); 1097 if (!delta) 1098 return; 1099 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1100 1101 local64_add(delta, &event->count); 1102 1103 /* 1104 * A number of places program the PMC with (0x80000000 - period_left). 1105 * We never want period_left to be less than 1 because we will program 1106 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1107 * roll around to 0 before taking an exception. We have seen this 1108 * on POWER8. 1109 * 1110 * To fix this, clamp the minimum value of period_left to 1. 1111 */ 1112 do { 1113 prev = local64_read(&event->hw.period_left); 1114 val = prev - delta; 1115 if (val < 1) 1116 val = 1; 1117 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1118 } 1119 1120 /* 1121 * On some machines, PMC5 and PMC6 can't be written, don't respect 1122 * the freeze conditions, and don't generate interrupts. This tells 1123 * us if `event' is using such a PMC. 1124 */ 1125 static int is_limited_pmc(int pmcnum) 1126 { 1127 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1128 && (pmcnum == 5 || pmcnum == 6); 1129 } 1130 1131 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1132 unsigned long pmc5, unsigned long pmc6) 1133 { 1134 struct perf_event *event; 1135 u64 val, prev, delta; 1136 int i; 1137 1138 for (i = 0; i < cpuhw->n_limited; ++i) { 1139 event = cpuhw->limited_counter[i]; 1140 if (!event->hw.idx) 1141 continue; 1142 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1143 prev = local64_read(&event->hw.prev_count); 1144 event->hw.idx = 0; 1145 delta = check_and_compute_delta(prev, val); 1146 if (delta) 1147 local64_add(delta, &event->count); 1148 } 1149 } 1150 1151 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1152 unsigned long pmc5, unsigned long pmc6) 1153 { 1154 struct perf_event *event; 1155 u64 val, prev; 1156 int i; 1157 1158 for (i = 0; i < cpuhw->n_limited; ++i) { 1159 event = cpuhw->limited_counter[i]; 1160 event->hw.idx = cpuhw->limited_hwidx[i]; 1161 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1162 prev = local64_read(&event->hw.prev_count); 1163 if (check_and_compute_delta(prev, val)) 1164 local64_set(&event->hw.prev_count, val); 1165 perf_event_update_userpage(event); 1166 } 1167 } 1168 1169 /* 1170 * Since limited events don't respect the freeze conditions, we 1171 * have to read them immediately after freezing or unfreezing the 1172 * other events. We try to keep the values from the limited 1173 * events as consistent as possible by keeping the delay (in 1174 * cycles and instructions) between freezing/unfreezing and reading 1175 * the limited events as small and consistent as possible. 1176 * Therefore, if any limited events are in use, we read them 1177 * both, and always in the same order, to minimize variability, 1178 * and do it inside the same asm that writes MMCR0. 1179 */ 1180 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1181 { 1182 unsigned long pmc5, pmc6; 1183 1184 if (!cpuhw->n_limited) { 1185 mtspr(SPRN_MMCR0, mmcr0); 1186 return; 1187 } 1188 1189 /* 1190 * Write MMCR0, then read PMC5 and PMC6 immediately. 1191 * To ensure we don't get a performance monitor interrupt 1192 * between writing MMCR0 and freezing/thawing the limited 1193 * events, we first write MMCR0 with the event overflow 1194 * interrupt enable bits turned off. 1195 */ 1196 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1197 : "=&r" (pmc5), "=&r" (pmc6) 1198 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1199 "i" (SPRN_MMCR0), 1200 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1201 1202 if (mmcr0 & MMCR0_FC) 1203 freeze_limited_counters(cpuhw, pmc5, pmc6); 1204 else 1205 thaw_limited_counters(cpuhw, pmc5, pmc6); 1206 1207 /* 1208 * Write the full MMCR0 including the event overflow interrupt 1209 * enable bits, if necessary. 1210 */ 1211 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1212 mtspr(SPRN_MMCR0, mmcr0); 1213 } 1214 1215 /* 1216 * Disable all events to prevent PMU interrupts and to allow 1217 * events to be added or removed. 1218 */ 1219 static void power_pmu_disable(struct pmu *pmu) 1220 { 1221 struct cpu_hw_events *cpuhw; 1222 unsigned long flags, mmcr0, val, mmcra; 1223 1224 if (!ppmu) 1225 return; 1226 local_irq_save(flags); 1227 cpuhw = this_cpu_ptr(&cpu_hw_events); 1228 1229 if (!cpuhw->disabled) { 1230 /* 1231 * Check if we ever enabled the PMU on this cpu. 1232 */ 1233 if (!cpuhw->pmcs_enabled) { 1234 ppc_enable_pmcs(); 1235 cpuhw->pmcs_enabled = 1; 1236 } 1237 1238 /* 1239 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1240 */ 1241 val = mmcr0 = mfspr(SPRN_MMCR0); 1242 val |= MMCR0_FC; 1243 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1244 MMCR0_FC56); 1245 1246 /* 1247 * The barrier is to make sure the mtspr has been 1248 * executed and the PMU has frozen the events etc. 1249 * before we return. 1250 */ 1251 write_mmcr0(cpuhw, val); 1252 mb(); 1253 isync(); 1254 1255 val = mmcra = cpuhw->mmcr.mmcra; 1256 1257 /* 1258 * Disable instruction sampling if it was enabled 1259 */ 1260 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) 1261 val &= ~MMCRA_SAMPLE_ENABLE; 1262 1263 /* Disable BHRB via mmcra (BHRBRD) for p10 */ 1264 if (ppmu->flags & PPMU_ARCH_31) 1265 val |= MMCRA_BHRB_DISABLE; 1266 1267 /* 1268 * Write SPRN_MMCRA if mmcra has either disabled 1269 * instruction sampling or BHRB. 1270 */ 1271 if (val != mmcra) { 1272 mtspr(SPRN_MMCRA, mmcra); 1273 mb(); 1274 isync(); 1275 } 1276 1277 cpuhw->disabled = 1; 1278 cpuhw->n_added = 0; 1279 1280 ebb_switch_out(mmcr0); 1281 1282 #ifdef CONFIG_PPC64 1283 /* 1284 * These are readable by userspace, may contain kernel 1285 * addresses and are not switched by context switch, so clear 1286 * them now to avoid leaking anything to userspace in general 1287 * including to another process. 1288 */ 1289 if (ppmu->flags & PPMU_ARCH_207S) { 1290 mtspr(SPRN_SDAR, 0); 1291 mtspr(SPRN_SIAR, 0); 1292 } 1293 #endif 1294 } 1295 1296 local_irq_restore(flags); 1297 } 1298 1299 /* 1300 * Re-enable all events if disable == 0. 1301 * If we were previously disabled and events were added, then 1302 * put the new config on the PMU. 1303 */ 1304 static void power_pmu_enable(struct pmu *pmu) 1305 { 1306 struct perf_event *event; 1307 struct cpu_hw_events *cpuhw; 1308 unsigned long flags; 1309 long i; 1310 unsigned long val, mmcr0; 1311 s64 left; 1312 unsigned int hwc_index[MAX_HWEVENTS]; 1313 int n_lim; 1314 int idx; 1315 bool ebb; 1316 1317 if (!ppmu) 1318 return; 1319 local_irq_save(flags); 1320 1321 cpuhw = this_cpu_ptr(&cpu_hw_events); 1322 if (!cpuhw->disabled) 1323 goto out; 1324 1325 if (cpuhw->n_events == 0) { 1326 ppc_set_pmu_inuse(0); 1327 goto out; 1328 } 1329 1330 cpuhw->disabled = 0; 1331 1332 /* 1333 * EBB requires an exclusive group and all events must have the EBB 1334 * flag set, or not set, so we can just check a single event. Also we 1335 * know we have at least one event. 1336 */ 1337 ebb = is_ebb_event(cpuhw->event[0]); 1338 1339 /* 1340 * If we didn't change anything, or only removed events, 1341 * no need to recalculate MMCR* settings and reset the PMCs. 1342 * Just reenable the PMU with the current MMCR* settings 1343 * (possibly updated for removal of events). 1344 */ 1345 if (!cpuhw->n_added) { 1346 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1347 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1348 if (ppmu->flags & PPMU_ARCH_31) 1349 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1350 goto out_enable; 1351 } 1352 1353 /* 1354 * Clear all MMCR settings and recompute them for the new set of events. 1355 */ 1356 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1357 1358 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1359 &cpuhw->mmcr, cpuhw->event)) { 1360 /* shouldn't ever get here */ 1361 printk(KERN_ERR "oops compute_mmcr failed\n"); 1362 goto out; 1363 } 1364 1365 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1366 /* 1367 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1368 * bits for the first event. We have already checked that all 1369 * events have the same value for these bits as the first event. 1370 */ 1371 event = cpuhw->event[0]; 1372 if (event->attr.exclude_user) 1373 cpuhw->mmcr.mmcr0 |= MMCR0_FCP; 1374 if (event->attr.exclude_kernel) 1375 cpuhw->mmcr.mmcr0 |= freeze_events_kernel; 1376 if (event->attr.exclude_hv) 1377 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; 1378 } 1379 1380 /* 1381 * Write the new configuration to MMCR* with the freeze 1382 * bit set and set the hardware events to their initial values. 1383 * Then unfreeze the events. 1384 */ 1385 ppc_set_pmu_inuse(1); 1386 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1387 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1388 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1389 | MMCR0_FC); 1390 if (ppmu->flags & PPMU_ARCH_207S) 1391 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); 1392 1393 if (ppmu->flags & PPMU_ARCH_31) 1394 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1395 1396 /* 1397 * Read off any pre-existing events that need to move 1398 * to another PMC. 1399 */ 1400 for (i = 0; i < cpuhw->n_events; ++i) { 1401 event = cpuhw->event[i]; 1402 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1403 power_pmu_read(event); 1404 write_pmc(event->hw.idx, 0); 1405 event->hw.idx = 0; 1406 } 1407 } 1408 1409 /* 1410 * Initialize the PMCs for all the new and moved events. 1411 */ 1412 cpuhw->n_limited = n_lim = 0; 1413 for (i = 0; i < cpuhw->n_events; ++i) { 1414 event = cpuhw->event[i]; 1415 if (event->hw.idx) 1416 continue; 1417 idx = hwc_index[i] + 1; 1418 if (is_limited_pmc(idx)) { 1419 cpuhw->limited_counter[n_lim] = event; 1420 cpuhw->limited_hwidx[n_lim] = idx; 1421 ++n_lim; 1422 continue; 1423 } 1424 1425 if (ebb) 1426 val = local64_read(&event->hw.prev_count); 1427 else { 1428 val = 0; 1429 if (event->hw.sample_period) { 1430 left = local64_read(&event->hw.period_left); 1431 if (left < 0x80000000L) 1432 val = 0x80000000L - left; 1433 } 1434 local64_set(&event->hw.prev_count, val); 1435 } 1436 1437 event->hw.idx = idx; 1438 if (event->hw.state & PERF_HES_STOPPED) 1439 val = 0; 1440 write_pmc(idx, val); 1441 1442 perf_event_update_userpage(event); 1443 } 1444 cpuhw->n_limited = n_lim; 1445 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; 1446 1447 out_enable: 1448 pmao_restore_workaround(ebb); 1449 1450 mmcr0 = ebb_switch_in(ebb, cpuhw); 1451 1452 mb(); 1453 if (cpuhw->bhrb_users) 1454 ppmu->config_bhrb(cpuhw->bhrb_filter); 1455 1456 write_mmcr0(cpuhw, mmcr0); 1457 1458 /* 1459 * Enable instruction sampling if necessary 1460 */ 1461 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { 1462 mb(); 1463 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); 1464 } 1465 1466 out: 1467 1468 local_irq_restore(flags); 1469 } 1470 1471 static int collect_events(struct perf_event *group, int max_count, 1472 struct perf_event *ctrs[], u64 *events, 1473 unsigned int *flags) 1474 { 1475 int n = 0; 1476 struct perf_event *event; 1477 1478 if (group->pmu->task_ctx_nr == perf_hw_context) { 1479 if (n >= max_count) 1480 return -1; 1481 ctrs[n] = group; 1482 flags[n] = group->hw.event_base; 1483 events[n++] = group->hw.config; 1484 } 1485 for_each_sibling_event(event, group) { 1486 if (event->pmu->task_ctx_nr == perf_hw_context && 1487 event->state != PERF_EVENT_STATE_OFF) { 1488 if (n >= max_count) 1489 return -1; 1490 ctrs[n] = event; 1491 flags[n] = event->hw.event_base; 1492 events[n++] = event->hw.config; 1493 } 1494 } 1495 return n; 1496 } 1497 1498 /* 1499 * Add an event to the PMU. 1500 * If all events are not already frozen, then we disable and 1501 * re-enable the PMU in order to get hw_perf_enable to do the 1502 * actual work of reconfiguring the PMU. 1503 */ 1504 static int power_pmu_add(struct perf_event *event, int ef_flags) 1505 { 1506 struct cpu_hw_events *cpuhw; 1507 unsigned long flags; 1508 int n0; 1509 int ret = -EAGAIN; 1510 1511 local_irq_save(flags); 1512 perf_pmu_disable(event->pmu); 1513 1514 /* 1515 * Add the event to the list (if there is room) 1516 * and check whether the total set is still feasible. 1517 */ 1518 cpuhw = this_cpu_ptr(&cpu_hw_events); 1519 n0 = cpuhw->n_events; 1520 if (n0 >= ppmu->n_counter) 1521 goto out; 1522 cpuhw->event[n0] = event; 1523 cpuhw->events[n0] = event->hw.config; 1524 cpuhw->flags[n0] = event->hw.event_base; 1525 1526 /* 1527 * This event may have been disabled/stopped in record_and_restart() 1528 * because we exceeded the ->event_limit. If re-starting the event, 1529 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1530 * notification is re-enabled. 1531 */ 1532 if (!(ef_flags & PERF_EF_START)) 1533 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1534 else 1535 event->hw.state = 0; 1536 1537 /* 1538 * If group events scheduling transaction was started, 1539 * skip the schedulability test here, it will be performed 1540 * at commit time(->commit_txn) as a whole 1541 */ 1542 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1543 goto nocheck; 1544 1545 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1546 goto out; 1547 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1548 goto out; 1549 event->hw.config = cpuhw->events[n0]; 1550 1551 nocheck: 1552 ebb_event_add(event); 1553 1554 ++cpuhw->n_events; 1555 ++cpuhw->n_added; 1556 1557 ret = 0; 1558 out: 1559 if (has_branch_stack(event)) { 1560 power_pmu_bhrb_enable(event); 1561 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1562 event->attr.branch_sample_type); 1563 } 1564 1565 perf_pmu_enable(event->pmu); 1566 local_irq_restore(flags); 1567 return ret; 1568 } 1569 1570 /* 1571 * Remove an event from the PMU. 1572 */ 1573 static void power_pmu_del(struct perf_event *event, int ef_flags) 1574 { 1575 struct cpu_hw_events *cpuhw; 1576 long i; 1577 unsigned long flags; 1578 1579 local_irq_save(flags); 1580 perf_pmu_disable(event->pmu); 1581 1582 power_pmu_read(event); 1583 1584 cpuhw = this_cpu_ptr(&cpu_hw_events); 1585 for (i = 0; i < cpuhw->n_events; ++i) { 1586 if (event == cpuhw->event[i]) { 1587 while (++i < cpuhw->n_events) { 1588 cpuhw->event[i-1] = cpuhw->event[i]; 1589 cpuhw->events[i-1] = cpuhw->events[i]; 1590 cpuhw->flags[i-1] = cpuhw->flags[i]; 1591 } 1592 --cpuhw->n_events; 1593 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); 1594 if (event->hw.idx) { 1595 write_pmc(event->hw.idx, 0); 1596 event->hw.idx = 0; 1597 } 1598 perf_event_update_userpage(event); 1599 break; 1600 } 1601 } 1602 for (i = 0; i < cpuhw->n_limited; ++i) 1603 if (event == cpuhw->limited_counter[i]) 1604 break; 1605 if (i < cpuhw->n_limited) { 1606 while (++i < cpuhw->n_limited) { 1607 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1608 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1609 } 1610 --cpuhw->n_limited; 1611 } 1612 if (cpuhw->n_events == 0) { 1613 /* disable exceptions if no events are running */ 1614 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); 1615 } 1616 1617 if (has_branch_stack(event)) 1618 power_pmu_bhrb_disable(event); 1619 1620 perf_pmu_enable(event->pmu); 1621 local_irq_restore(flags); 1622 } 1623 1624 /* 1625 * POWER-PMU does not support disabling individual counters, hence 1626 * program their cycle counter to their max value and ignore the interrupts. 1627 */ 1628 1629 static void power_pmu_start(struct perf_event *event, int ef_flags) 1630 { 1631 unsigned long flags; 1632 s64 left; 1633 unsigned long val; 1634 1635 if (!event->hw.idx || !event->hw.sample_period) 1636 return; 1637 1638 if (!(event->hw.state & PERF_HES_STOPPED)) 1639 return; 1640 1641 if (ef_flags & PERF_EF_RELOAD) 1642 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1643 1644 local_irq_save(flags); 1645 perf_pmu_disable(event->pmu); 1646 1647 event->hw.state = 0; 1648 left = local64_read(&event->hw.period_left); 1649 1650 val = 0; 1651 if (left < 0x80000000L) 1652 val = 0x80000000L - left; 1653 1654 write_pmc(event->hw.idx, val); 1655 1656 perf_event_update_userpage(event); 1657 perf_pmu_enable(event->pmu); 1658 local_irq_restore(flags); 1659 } 1660 1661 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1662 { 1663 unsigned long flags; 1664 1665 if (!event->hw.idx || !event->hw.sample_period) 1666 return; 1667 1668 if (event->hw.state & PERF_HES_STOPPED) 1669 return; 1670 1671 local_irq_save(flags); 1672 perf_pmu_disable(event->pmu); 1673 1674 power_pmu_read(event); 1675 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1676 write_pmc(event->hw.idx, 0); 1677 1678 perf_event_update_userpage(event); 1679 perf_pmu_enable(event->pmu); 1680 local_irq_restore(flags); 1681 } 1682 1683 /* 1684 * Start group events scheduling transaction 1685 * Set the flag to make pmu::enable() not perform the 1686 * schedulability test, it will be performed at commit time 1687 * 1688 * We only support PERF_PMU_TXN_ADD transactions. Save the 1689 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1690 * transactions. 1691 */ 1692 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1693 { 1694 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1695 1696 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1697 1698 cpuhw->txn_flags = txn_flags; 1699 if (txn_flags & ~PERF_PMU_TXN_ADD) 1700 return; 1701 1702 perf_pmu_disable(pmu); 1703 cpuhw->n_txn_start = cpuhw->n_events; 1704 } 1705 1706 /* 1707 * Stop group events scheduling transaction 1708 * Clear the flag and pmu::enable() will perform the 1709 * schedulability test. 1710 */ 1711 static void power_pmu_cancel_txn(struct pmu *pmu) 1712 { 1713 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1714 unsigned int txn_flags; 1715 1716 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1717 1718 txn_flags = cpuhw->txn_flags; 1719 cpuhw->txn_flags = 0; 1720 if (txn_flags & ~PERF_PMU_TXN_ADD) 1721 return; 1722 1723 perf_pmu_enable(pmu); 1724 } 1725 1726 /* 1727 * Commit group events scheduling transaction 1728 * Perform the group schedulability test as a whole 1729 * Return 0 if success 1730 */ 1731 static int power_pmu_commit_txn(struct pmu *pmu) 1732 { 1733 struct cpu_hw_events *cpuhw; 1734 long i, n; 1735 1736 if (!ppmu) 1737 return -EAGAIN; 1738 1739 cpuhw = this_cpu_ptr(&cpu_hw_events); 1740 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1741 1742 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1743 cpuhw->txn_flags = 0; 1744 return 0; 1745 } 1746 1747 n = cpuhw->n_events; 1748 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1749 return -EAGAIN; 1750 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1751 if (i < 0) 1752 return -EAGAIN; 1753 1754 for (i = cpuhw->n_txn_start; i < n; ++i) 1755 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1756 1757 cpuhw->txn_flags = 0; 1758 perf_pmu_enable(pmu); 1759 return 0; 1760 } 1761 1762 /* 1763 * Return 1 if we might be able to put event on a limited PMC, 1764 * or 0 if not. 1765 * An event can only go on a limited PMC if it counts something 1766 * that a limited PMC can count, doesn't require interrupts, and 1767 * doesn't exclude any processor mode. 1768 */ 1769 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1770 unsigned int flags) 1771 { 1772 int n; 1773 u64 alt[MAX_EVENT_ALTERNATIVES]; 1774 1775 if (event->attr.exclude_user 1776 || event->attr.exclude_kernel 1777 || event->attr.exclude_hv 1778 || event->attr.sample_period) 1779 return 0; 1780 1781 if (ppmu->limited_pmc_event(ev)) 1782 return 1; 1783 1784 /* 1785 * The requested event_id isn't on a limited PMC already; 1786 * see if any alternative code goes on a limited PMC. 1787 */ 1788 if (!ppmu->get_alternatives) 1789 return 0; 1790 1791 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1792 n = ppmu->get_alternatives(ev, flags, alt); 1793 1794 return n > 0; 1795 } 1796 1797 /* 1798 * Find an alternative event_id that goes on a normal PMC, if possible, 1799 * and return the event_id code, or 0 if there is no such alternative. 1800 * (Note: event_id code 0 is "don't count" on all machines.) 1801 */ 1802 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1803 { 1804 u64 alt[MAX_EVENT_ALTERNATIVES]; 1805 int n; 1806 1807 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1808 n = ppmu->get_alternatives(ev, flags, alt); 1809 if (!n) 1810 return 0; 1811 return alt[0]; 1812 } 1813 1814 /* Number of perf_events counting hardware events */ 1815 static atomic_t num_events; 1816 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1817 static DEFINE_MUTEX(pmc_reserve_mutex); 1818 1819 /* 1820 * Release the PMU if this is the last perf_event. 1821 */ 1822 static void hw_perf_event_destroy(struct perf_event *event) 1823 { 1824 if (!atomic_add_unless(&num_events, -1, 1)) { 1825 mutex_lock(&pmc_reserve_mutex); 1826 if (atomic_dec_return(&num_events) == 0) 1827 release_pmc_hardware(); 1828 mutex_unlock(&pmc_reserve_mutex); 1829 } 1830 } 1831 1832 /* 1833 * Translate a generic cache event_id config to a raw event_id code. 1834 */ 1835 static int hw_perf_cache_event(u64 config, u64 *eventp) 1836 { 1837 unsigned long type, op, result; 1838 u64 ev; 1839 1840 if (!ppmu->cache_events) 1841 return -EINVAL; 1842 1843 /* unpack config */ 1844 type = config & 0xff; 1845 op = (config >> 8) & 0xff; 1846 result = (config >> 16) & 0xff; 1847 1848 if (type >= PERF_COUNT_HW_CACHE_MAX || 1849 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1850 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1851 return -EINVAL; 1852 1853 ev = (*ppmu->cache_events)[type][op][result]; 1854 if (ev == 0) 1855 return -EOPNOTSUPP; 1856 if (ev == -1) 1857 return -EINVAL; 1858 *eventp = ev; 1859 return 0; 1860 } 1861 1862 static bool is_event_blacklisted(u64 ev) 1863 { 1864 int i; 1865 1866 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1867 if (ppmu->blacklist_ev[i] == ev) 1868 return true; 1869 } 1870 1871 return false; 1872 } 1873 1874 static int power_pmu_event_init(struct perf_event *event) 1875 { 1876 u64 ev; 1877 unsigned long flags; 1878 struct perf_event *ctrs[MAX_HWEVENTS]; 1879 u64 events[MAX_HWEVENTS]; 1880 unsigned int cflags[MAX_HWEVENTS]; 1881 int n; 1882 int err; 1883 struct cpu_hw_events *cpuhw; 1884 u64 bhrb_filter; 1885 1886 if (!ppmu) 1887 return -ENOENT; 1888 1889 if (has_branch_stack(event)) { 1890 /* PMU has BHRB enabled */ 1891 if (!(ppmu->flags & PPMU_ARCH_207S)) 1892 return -EOPNOTSUPP; 1893 } 1894 1895 switch (event->attr.type) { 1896 case PERF_TYPE_HARDWARE: 1897 ev = event->attr.config; 1898 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1899 return -EOPNOTSUPP; 1900 1901 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1902 return -EINVAL; 1903 ev = ppmu->generic_events[ev]; 1904 break; 1905 case PERF_TYPE_HW_CACHE: 1906 err = hw_perf_cache_event(event->attr.config, &ev); 1907 if (err) 1908 return err; 1909 1910 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1911 return -EINVAL; 1912 break; 1913 case PERF_TYPE_RAW: 1914 ev = event->attr.config; 1915 1916 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1917 return -EINVAL; 1918 break; 1919 default: 1920 return -ENOENT; 1921 } 1922 1923 event->hw.config_base = ev; 1924 event->hw.idx = 0; 1925 1926 /* 1927 * If we are not running on a hypervisor, force the 1928 * exclude_hv bit to 0 so that we don't care what 1929 * the user set it to. 1930 */ 1931 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1932 event->attr.exclude_hv = 0; 1933 1934 /* 1935 * If this is a per-task event, then we can use 1936 * PM_RUN_* events interchangeably with their non RUN_* 1937 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1938 * XXX we should check if the task is an idle task. 1939 */ 1940 flags = 0; 1941 if (event->attach_state & PERF_ATTACH_TASK) 1942 flags |= PPMU_ONLY_COUNT_RUN; 1943 1944 /* 1945 * If this machine has limited events, check whether this 1946 * event_id could go on a limited event. 1947 */ 1948 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1949 if (can_go_on_limited_pmc(event, ev, flags)) { 1950 flags |= PPMU_LIMITED_PMC_OK; 1951 } else if (ppmu->limited_pmc_event(ev)) { 1952 /* 1953 * The requested event_id is on a limited PMC, 1954 * but we can't use a limited PMC; see if any 1955 * alternative goes on a normal PMC. 1956 */ 1957 ev = normal_pmc_alternative(ev, flags); 1958 if (!ev) 1959 return -EINVAL; 1960 } 1961 } 1962 1963 /* Extra checks for EBB */ 1964 err = ebb_event_check(event); 1965 if (err) 1966 return err; 1967 1968 /* 1969 * If this is in a group, check if it can go on with all the 1970 * other hardware events in the group. We assume the event 1971 * hasn't been linked into its leader's sibling list at this point. 1972 */ 1973 n = 0; 1974 if (event->group_leader != event) { 1975 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1976 ctrs, events, cflags); 1977 if (n < 0) 1978 return -EINVAL; 1979 } 1980 events[n] = ev; 1981 ctrs[n] = event; 1982 cflags[n] = flags; 1983 if (check_excludes(ctrs, cflags, n, 1)) 1984 return -EINVAL; 1985 1986 cpuhw = &get_cpu_var(cpu_hw_events); 1987 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1988 1989 if (has_branch_stack(event)) { 1990 bhrb_filter = ppmu->bhrb_filter_map( 1991 event->attr.branch_sample_type); 1992 1993 if (bhrb_filter == -1) { 1994 put_cpu_var(cpu_hw_events); 1995 return -EOPNOTSUPP; 1996 } 1997 cpuhw->bhrb_filter = bhrb_filter; 1998 } 1999 2000 put_cpu_var(cpu_hw_events); 2001 if (err) 2002 return -EINVAL; 2003 2004 event->hw.config = events[n]; 2005 event->hw.event_base = cflags[n]; 2006 event->hw.last_period = event->hw.sample_period; 2007 local64_set(&event->hw.period_left, event->hw.last_period); 2008 2009 /* 2010 * For EBB events we just context switch the PMC value, we don't do any 2011 * of the sample_period logic. We use hw.prev_count for this. 2012 */ 2013 if (is_ebb_event(event)) 2014 local64_set(&event->hw.prev_count, 0); 2015 2016 /* 2017 * See if we need to reserve the PMU. 2018 * If no events are currently in use, then we have to take a 2019 * mutex to ensure that we don't race with another task doing 2020 * reserve_pmc_hardware or release_pmc_hardware. 2021 */ 2022 err = 0; 2023 if (!atomic_inc_not_zero(&num_events)) { 2024 mutex_lock(&pmc_reserve_mutex); 2025 if (atomic_read(&num_events) == 0 && 2026 reserve_pmc_hardware(perf_event_interrupt)) 2027 err = -EBUSY; 2028 else 2029 atomic_inc(&num_events); 2030 mutex_unlock(&pmc_reserve_mutex); 2031 } 2032 event->destroy = hw_perf_event_destroy; 2033 2034 return err; 2035 } 2036 2037 static int power_pmu_event_idx(struct perf_event *event) 2038 { 2039 return event->hw.idx; 2040 } 2041 2042 ssize_t power_events_sysfs_show(struct device *dev, 2043 struct device_attribute *attr, char *page) 2044 { 2045 struct perf_pmu_events_attr *pmu_attr; 2046 2047 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2048 2049 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2050 } 2051 2052 static struct pmu power_pmu = { 2053 .pmu_enable = power_pmu_enable, 2054 .pmu_disable = power_pmu_disable, 2055 .event_init = power_pmu_event_init, 2056 .add = power_pmu_add, 2057 .del = power_pmu_del, 2058 .start = power_pmu_start, 2059 .stop = power_pmu_stop, 2060 .read = power_pmu_read, 2061 .start_txn = power_pmu_start_txn, 2062 .cancel_txn = power_pmu_cancel_txn, 2063 .commit_txn = power_pmu_commit_txn, 2064 .event_idx = power_pmu_event_idx, 2065 .sched_task = power_pmu_sched_task, 2066 }; 2067 2068 /* 2069 * A counter has overflowed; update its count and record 2070 * things if requested. Note that interrupts are hard-disabled 2071 * here so there is no possibility of being interrupted. 2072 */ 2073 static void record_and_restart(struct perf_event *event, unsigned long val, 2074 struct pt_regs *regs) 2075 { 2076 u64 period = event->hw.sample_period; 2077 s64 prev, delta, left; 2078 int record = 0; 2079 2080 if (event->hw.state & PERF_HES_STOPPED) { 2081 write_pmc(event->hw.idx, 0); 2082 return; 2083 } 2084 2085 /* we don't have to worry about interrupts here */ 2086 prev = local64_read(&event->hw.prev_count); 2087 delta = check_and_compute_delta(prev, val); 2088 local64_add(delta, &event->count); 2089 2090 /* 2091 * See if the total period for this event has expired, 2092 * and update for the next period. 2093 */ 2094 val = 0; 2095 left = local64_read(&event->hw.period_left) - delta; 2096 if (delta == 0) 2097 left++; 2098 if (period) { 2099 if (left <= 0) { 2100 left += period; 2101 if (left <= 0) 2102 left = period; 2103 record = siar_valid(regs); 2104 event->hw.last_period = event->hw.sample_period; 2105 } 2106 if (left < 0x80000000LL) 2107 val = 0x80000000LL - left; 2108 } 2109 2110 write_pmc(event->hw.idx, val); 2111 local64_set(&event->hw.prev_count, val); 2112 local64_set(&event->hw.period_left, left); 2113 perf_event_update_userpage(event); 2114 2115 /* 2116 * Finally record data if requested. 2117 */ 2118 if (record) { 2119 struct perf_sample_data data; 2120 2121 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2122 2123 if (event->attr.sample_type & 2124 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2125 perf_get_data_addr(event, regs, &data.addr); 2126 2127 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2128 struct cpu_hw_events *cpuhw; 2129 cpuhw = this_cpu_ptr(&cpu_hw_events); 2130 power_pmu_bhrb_read(event, cpuhw); 2131 data.br_stack = &cpuhw->bhrb_stack; 2132 } 2133 2134 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2135 ppmu->get_mem_data_src) 2136 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2137 2138 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2139 ppmu->get_mem_weight) 2140 ppmu->get_mem_weight(&data.weight); 2141 2142 if (perf_event_overflow(event, &data, regs)) 2143 power_pmu_stop(event, 0); 2144 } 2145 } 2146 2147 /* 2148 * Called from generic code to get the misc flags (i.e. processor mode) 2149 * for an event_id. 2150 */ 2151 unsigned long perf_misc_flags(struct pt_regs *regs) 2152 { 2153 u32 flags = perf_get_misc_flags(regs); 2154 2155 if (flags) 2156 return flags; 2157 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2158 PERF_RECORD_MISC_KERNEL; 2159 } 2160 2161 /* 2162 * Called from generic code to get the instruction pointer 2163 * for an event_id. 2164 */ 2165 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2166 { 2167 bool use_siar = regs_use_siar(regs); 2168 2169 if (use_siar && siar_valid(regs)) 2170 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2171 else if (use_siar) 2172 return 0; // no valid instruction pointer 2173 else 2174 return regs->nip; 2175 } 2176 2177 static bool pmc_overflow_power7(unsigned long val) 2178 { 2179 /* 2180 * Events on POWER7 can roll back if a speculative event doesn't 2181 * eventually complete. Unfortunately in some rare cases they will 2182 * raise a performance monitor exception. We need to catch this to 2183 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2184 * cycles from overflow. 2185 * 2186 * We only do this if the first pass fails to find any overflowing 2187 * PMCs because a user might set a period of less than 256 and we 2188 * don't want to mistakenly reset them. 2189 */ 2190 if ((0x80000000 - val) <= 256) 2191 return true; 2192 2193 return false; 2194 } 2195 2196 static bool pmc_overflow(unsigned long val) 2197 { 2198 if ((int)val < 0) 2199 return true; 2200 2201 return false; 2202 } 2203 2204 /* 2205 * Performance monitor interrupt stuff 2206 */ 2207 static void __perf_event_interrupt(struct pt_regs *regs) 2208 { 2209 int i, j; 2210 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2211 struct perf_event *event; 2212 unsigned long val[8]; 2213 int found, active; 2214 int nmi; 2215 2216 if (cpuhw->n_limited) 2217 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2218 mfspr(SPRN_PMC6)); 2219 2220 perf_read_regs(regs); 2221 2222 /* 2223 * If perf interrupts hit in a local_irq_disable (soft-masked) region, 2224 * we consider them as NMIs. This is required to prevent hash faults on 2225 * user addresses when reading callchains. See the NMI test in 2226 * do_hash_page. 2227 */ 2228 nmi = perf_intr_is_nmi(regs); 2229 if (nmi) 2230 nmi_enter(); 2231 else 2232 irq_enter(); 2233 2234 /* Read all the PMCs since we'll need them a bunch of times */ 2235 for (i = 0; i < ppmu->n_counter; ++i) 2236 val[i] = read_pmc(i + 1); 2237 2238 /* Try to find what caused the IRQ */ 2239 found = 0; 2240 for (i = 0; i < ppmu->n_counter; ++i) { 2241 if (!pmc_overflow(val[i])) 2242 continue; 2243 if (is_limited_pmc(i + 1)) 2244 continue; /* these won't generate IRQs */ 2245 /* 2246 * We've found one that's overflowed. For active 2247 * counters we need to log this. For inactive 2248 * counters, we need to reset it anyway 2249 */ 2250 found = 1; 2251 active = 0; 2252 for (j = 0; j < cpuhw->n_events; ++j) { 2253 event = cpuhw->event[j]; 2254 if (event->hw.idx == (i + 1)) { 2255 active = 1; 2256 record_and_restart(event, val[i], regs); 2257 break; 2258 } 2259 } 2260 if (!active) 2261 /* reset non active counters that have overflowed */ 2262 write_pmc(i + 1, 0); 2263 } 2264 if (!found && pvr_version_is(PVR_POWER7)) { 2265 /* check active counters for special buggy p7 overflow */ 2266 for (i = 0; i < cpuhw->n_events; ++i) { 2267 event = cpuhw->event[i]; 2268 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2269 continue; 2270 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2271 /* event has overflowed in a buggy way*/ 2272 found = 1; 2273 record_and_restart(event, 2274 val[event->hw.idx - 1], 2275 regs); 2276 } 2277 } 2278 } 2279 if (!found && !nmi && printk_ratelimit()) 2280 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2281 2282 /* 2283 * Reset MMCR0 to its normal value. This will set PMXE and 2284 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2285 * and thus allow interrupts to occur again. 2286 * XXX might want to use MSR.PM to keep the events frozen until 2287 * we get back out of this interrupt. 2288 */ 2289 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); 2290 2291 if (nmi) 2292 nmi_exit(); 2293 else 2294 irq_exit(); 2295 } 2296 2297 static void perf_event_interrupt(struct pt_regs *regs) 2298 { 2299 u64 start_clock = sched_clock(); 2300 2301 __perf_event_interrupt(regs); 2302 perf_sample_event_took(sched_clock() - start_clock); 2303 } 2304 2305 static int power_pmu_prepare_cpu(unsigned int cpu) 2306 { 2307 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2308 2309 if (ppmu) { 2310 memset(cpuhw, 0, sizeof(*cpuhw)); 2311 cpuhw->mmcr.mmcr0 = MMCR0_FC; 2312 } 2313 return 0; 2314 } 2315 2316 int register_power_pmu(struct power_pmu *pmu) 2317 { 2318 if (ppmu) 2319 return -EBUSY; /* something's already registered */ 2320 2321 ppmu = pmu; 2322 pr_info("%s performance monitor hardware support registered\n", 2323 pmu->name); 2324 2325 power_pmu.attr_groups = ppmu->attr_groups; 2326 2327 #ifdef MSR_HV 2328 /* 2329 * Use FCHV to ignore kernel events if MSR.HV is set. 2330 */ 2331 if (mfmsr() & MSR_HV) 2332 freeze_events_kernel = MMCR0_FCHV; 2333 #endif /* CONFIG_PPC64 */ 2334 2335 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2336 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2337 power_pmu_prepare_cpu, NULL); 2338 return 0; 2339 } 2340 2341 #ifdef CONFIG_PPC64 2342 static int __init init_ppc64_pmu(void) 2343 { 2344 /* run through all the pmu drivers one at a time */ 2345 if (!init_power5_pmu()) 2346 return 0; 2347 else if (!init_power5p_pmu()) 2348 return 0; 2349 else if (!init_power6_pmu()) 2350 return 0; 2351 else if (!init_power7_pmu()) 2352 return 0; 2353 else if (!init_power8_pmu()) 2354 return 0; 2355 else if (!init_power9_pmu()) 2356 return 0; 2357 else if (!init_power10_pmu()) 2358 return 0; 2359 else if (!init_ppc970_pmu()) 2360 return 0; 2361 else 2362 return init_generic_compat_pmu(); 2363 } 2364 early_initcall(init_ppc64_pmu); 2365 #endif 2366