1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/sched/clock.h> 14 #include <linux/perf_event.h> 15 #include <linux/percpu.h> 16 #include <linux/hardirq.h> 17 #include <linux/uaccess.h> 18 #include <asm/reg.h> 19 #include <asm/pmc.h> 20 #include <asm/machdep.h> 21 #include <asm/firmware.h> 22 #include <asm/ptrace.h> 23 #include <asm/code-patching.h> 24 25 #ifdef CONFIG_PPC64 26 #include "internal.h" 27 #endif 28 29 #define BHRB_MAX_ENTRIES 32 30 #define BHRB_TARGET 0x0000000000000002 31 #define BHRB_PREDICTION 0x0000000000000001 32 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 33 34 struct cpu_hw_events { 35 int n_events; 36 int n_percpu; 37 int disabled; 38 int n_added; 39 int n_limited; 40 u8 pmcs_enabled; 41 struct perf_event *event[MAX_HWEVENTS]; 42 u64 events[MAX_HWEVENTS]; 43 unsigned int flags[MAX_HWEVENTS]; 44 /* 45 * The order of the MMCR array is: 46 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 47 * - 32-bit, MMCR0, MMCR1, MMCR2 48 */ 49 unsigned long mmcr[4]; 50 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 51 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 52 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 53 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 54 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 55 56 unsigned int txn_flags; 57 int n_txn_start; 58 59 /* BHRB bits */ 60 u64 bhrb_filter; /* BHRB HW branch filter */ 61 unsigned int bhrb_users; 62 void *bhrb_context; 63 struct perf_branch_stack bhrb_stack; 64 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 65 u64 ic_init; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 69 70 static struct power_pmu *ppmu; 71 72 /* 73 * Normally, to ignore kernel events we set the FCS (freeze counters 74 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 75 * hypervisor bit set in the MSR, or if we are running on a processor 76 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 77 * then we need to use the FCHV bit to ignore kernel events. 78 */ 79 static unsigned int freeze_events_kernel = MMCR0_FCS; 80 81 /* 82 * 32-bit doesn't have MMCRA but does have an MMCR2, 83 * and a few other names are different. 84 */ 85 #ifdef CONFIG_PPC32 86 87 #define MMCR0_FCHV 0 88 #define MMCR0_PMCjCE MMCR0_PMCnCE 89 #define MMCR0_FC56 0 90 #define MMCR0_PMAO 0 91 #define MMCR0_EBE 0 92 #define MMCR0_BHRBA 0 93 #define MMCR0_PMCC 0 94 #define MMCR0_PMCC_U6 0 95 96 #define SPRN_MMCRA SPRN_MMCR2 97 #define MMCRA_SAMPLE_ENABLE 0 98 99 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 100 { 101 return 0; 102 } 103 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 104 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 105 { 106 return 0; 107 } 108 static inline void perf_read_regs(struct pt_regs *regs) 109 { 110 regs->result = 0; 111 } 112 static inline int perf_intr_is_nmi(struct pt_regs *regs) 113 { 114 return 0; 115 } 116 117 static inline int siar_valid(struct pt_regs *regs) 118 { 119 return 1; 120 } 121 122 static bool is_ebb_event(struct perf_event *event) { return false; } 123 static int ebb_event_check(struct perf_event *event) { return 0; } 124 static void ebb_event_add(struct perf_event *event) { } 125 static void ebb_switch_out(unsigned long mmcr0) { } 126 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 127 { 128 return cpuhw->mmcr[0]; 129 } 130 131 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 132 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 133 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 134 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 135 static void pmao_restore_workaround(bool ebb) { } 136 #endif /* CONFIG_PPC32 */ 137 138 bool is_sier_available(void) 139 { 140 if (ppmu->flags & PPMU_HAS_SIER) 141 return true; 142 143 return false; 144 } 145 146 static bool regs_use_siar(struct pt_regs *regs) 147 { 148 /* 149 * When we take a performance monitor exception the regs are setup 150 * using perf_read_regs() which overloads some fields, in particular 151 * regs->result to tell us whether to use SIAR. 152 * 153 * However if the regs are from another exception, eg. a syscall, then 154 * they have not been setup using perf_read_regs() and so regs->result 155 * is something random. 156 */ 157 return ((TRAP(regs) == 0xf00) && regs->result); 158 } 159 160 /* 161 * Things that are specific to 64-bit implementations. 162 */ 163 #ifdef CONFIG_PPC64 164 165 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 166 { 167 unsigned long mmcra = regs->dsisr; 168 169 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 170 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 171 if (slot > 1) 172 return 4 * (slot - 1); 173 } 174 175 return 0; 176 } 177 178 /* 179 * The user wants a data address recorded. 180 * If we're not doing instruction sampling, give them the SDAR 181 * (sampled data address). If we are doing instruction sampling, then 182 * only give them the SDAR if it corresponds to the instruction 183 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 184 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 185 */ 186 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 187 { 188 unsigned long mmcra = regs->dsisr; 189 bool sdar_valid; 190 191 if (ppmu->flags & PPMU_HAS_SIER) 192 sdar_valid = regs->dar & SIER_SDAR_VALID; 193 else { 194 unsigned long sdsync; 195 196 if (ppmu->flags & PPMU_SIAR_VALID) 197 sdsync = POWER7P_MMCRA_SDAR_VALID; 198 else if (ppmu->flags & PPMU_ALT_SIPR) 199 sdsync = POWER6_MMCRA_SDSYNC; 200 else if (ppmu->flags & PPMU_NO_SIAR) 201 sdsync = MMCRA_SAMPLE_ENABLE; 202 else 203 sdsync = MMCRA_SDSYNC; 204 205 sdar_valid = mmcra & sdsync; 206 } 207 208 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 209 *addrp = mfspr(SPRN_SDAR); 210 211 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) && 212 is_kernel_addr(mfspr(SPRN_SDAR))) 213 *addrp = 0; 214 } 215 216 static bool regs_sihv(struct pt_regs *regs) 217 { 218 unsigned long sihv = MMCRA_SIHV; 219 220 if (ppmu->flags & PPMU_HAS_SIER) 221 return !!(regs->dar & SIER_SIHV); 222 223 if (ppmu->flags & PPMU_ALT_SIPR) 224 sihv = POWER6_MMCRA_SIHV; 225 226 return !!(regs->dsisr & sihv); 227 } 228 229 static bool regs_sipr(struct pt_regs *regs) 230 { 231 unsigned long sipr = MMCRA_SIPR; 232 233 if (ppmu->flags & PPMU_HAS_SIER) 234 return !!(regs->dar & SIER_SIPR); 235 236 if (ppmu->flags & PPMU_ALT_SIPR) 237 sipr = POWER6_MMCRA_SIPR; 238 239 return !!(regs->dsisr & sipr); 240 } 241 242 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 243 { 244 if (regs->msr & MSR_PR) 245 return PERF_RECORD_MISC_USER; 246 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 247 return PERF_RECORD_MISC_HYPERVISOR; 248 return PERF_RECORD_MISC_KERNEL; 249 } 250 251 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 252 { 253 bool use_siar = regs_use_siar(regs); 254 255 if (!use_siar) 256 return perf_flags_from_msr(regs); 257 258 /* 259 * If we don't have flags in MMCRA, rather than using 260 * the MSR, we intuit the flags from the address in 261 * SIAR which should give slightly more reliable 262 * results 263 */ 264 if (ppmu->flags & PPMU_NO_SIPR) { 265 unsigned long siar = mfspr(SPRN_SIAR); 266 if (is_kernel_addr(siar)) 267 return PERF_RECORD_MISC_KERNEL; 268 return PERF_RECORD_MISC_USER; 269 } 270 271 /* PR has priority over HV, so order below is important */ 272 if (regs_sipr(regs)) 273 return PERF_RECORD_MISC_USER; 274 275 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 276 return PERF_RECORD_MISC_HYPERVISOR; 277 278 return PERF_RECORD_MISC_KERNEL; 279 } 280 281 /* 282 * Overload regs->dsisr to store MMCRA so we only need to read it once 283 * on each interrupt. 284 * Overload regs->dar to store SIER if we have it. 285 * Overload regs->result to specify whether we should use the MSR (result 286 * is zero) or the SIAR (result is non zero). 287 */ 288 static inline void perf_read_regs(struct pt_regs *regs) 289 { 290 unsigned long mmcra = mfspr(SPRN_MMCRA); 291 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 292 int use_siar; 293 294 regs->dsisr = mmcra; 295 296 if (ppmu->flags & PPMU_HAS_SIER) 297 regs->dar = mfspr(SPRN_SIER); 298 299 /* 300 * If this isn't a PMU exception (eg a software event) the SIAR is 301 * not valid. Use pt_regs. 302 * 303 * If it is a marked event use the SIAR. 304 * 305 * If the PMU doesn't update the SIAR for non marked events use 306 * pt_regs. 307 * 308 * If the PMU has HV/PR flags then check to see if they 309 * place the exception in userspace. If so, use pt_regs. In 310 * continuous sampling mode the SIAR and the PMU exception are 311 * not synchronised, so they may be many instructions apart. 312 * This can result in confusing backtraces. We still want 313 * hypervisor samples as well as samples in the kernel with 314 * interrupts off hence the userspace check. 315 */ 316 if (TRAP(regs) != 0xf00) 317 use_siar = 0; 318 else if ((ppmu->flags & PPMU_NO_SIAR)) 319 use_siar = 0; 320 else if (marked) 321 use_siar = 1; 322 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 323 use_siar = 0; 324 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 325 use_siar = 0; 326 else 327 use_siar = 1; 328 329 regs->result = use_siar; 330 } 331 332 /* 333 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 334 * it as an NMI. 335 */ 336 static inline int perf_intr_is_nmi(struct pt_regs *regs) 337 { 338 return (regs->softe & IRQS_DISABLED); 339 } 340 341 /* 342 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 343 * must be sampled only if the SIAR-valid bit is set. 344 * 345 * For unmarked instructions and for processors that don't have the SIAR-Valid 346 * bit, assume that SIAR is valid. 347 */ 348 static inline int siar_valid(struct pt_regs *regs) 349 { 350 unsigned long mmcra = regs->dsisr; 351 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 352 353 if (marked) { 354 if (ppmu->flags & PPMU_HAS_SIER) 355 return regs->dar & SIER_SIAR_VALID; 356 357 if (ppmu->flags & PPMU_SIAR_VALID) 358 return mmcra & POWER7P_MMCRA_SIAR_VALID; 359 } 360 361 return 1; 362 } 363 364 365 /* Reset all possible BHRB entries */ 366 static void power_pmu_bhrb_reset(void) 367 { 368 asm volatile(PPC_CLRBHRB); 369 } 370 371 static void power_pmu_bhrb_enable(struct perf_event *event) 372 { 373 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 374 375 if (!ppmu->bhrb_nr) 376 return; 377 378 /* Clear BHRB if we changed task context to avoid data leaks */ 379 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 380 power_pmu_bhrb_reset(); 381 cpuhw->bhrb_context = event->ctx; 382 } 383 cpuhw->bhrb_users++; 384 perf_sched_cb_inc(event->ctx->pmu); 385 } 386 387 static void power_pmu_bhrb_disable(struct perf_event *event) 388 { 389 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 390 391 if (!ppmu->bhrb_nr) 392 return; 393 394 WARN_ON_ONCE(!cpuhw->bhrb_users); 395 cpuhw->bhrb_users--; 396 perf_sched_cb_dec(event->ctx->pmu); 397 398 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 399 /* BHRB cannot be turned off when other 400 * events are active on the PMU. 401 */ 402 403 /* avoid stale pointer */ 404 cpuhw->bhrb_context = NULL; 405 } 406 } 407 408 /* Called from ctxsw to prevent one process's branch entries to 409 * mingle with the other process's entries during context switch. 410 */ 411 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 412 { 413 if (!ppmu->bhrb_nr) 414 return; 415 416 if (sched_in) 417 power_pmu_bhrb_reset(); 418 } 419 /* Calculate the to address for a branch */ 420 static __u64 power_pmu_bhrb_to(u64 addr) 421 { 422 unsigned int instr; 423 int ret; 424 __u64 target; 425 426 if (is_kernel_addr(addr)) { 427 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr))) 428 return 0; 429 430 return branch_target(&instr); 431 } 432 433 /* Userspace: need copy instruction here then translate it */ 434 pagefault_disable(); 435 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 436 if (ret) { 437 pagefault_enable(); 438 return 0; 439 } 440 pagefault_enable(); 441 442 target = branch_target(&instr); 443 if ((!target) || (instr & BRANCH_ABSOLUTE)) 444 return target; 445 446 /* Translate relative branch target from kernel to user address */ 447 return target - (unsigned long)&instr + addr; 448 } 449 450 /* Processing BHRB entries */ 451 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 452 { 453 u64 val; 454 u64 addr; 455 int r_index, u_index, pred; 456 457 r_index = 0; 458 u_index = 0; 459 while (r_index < ppmu->bhrb_nr) { 460 /* Assembly read function */ 461 val = read_bhrb(r_index++); 462 if (!val) 463 /* Terminal marker: End of valid BHRB entries */ 464 break; 465 else { 466 addr = val & BHRB_EA; 467 pred = val & BHRB_PREDICTION; 468 469 if (!addr) 470 /* invalid entry */ 471 continue; 472 473 /* 474 * BHRB rolling buffer could very much contain the kernel 475 * addresses at this point. Check the privileges before 476 * exporting it to userspace (avoid exposure of regions 477 * where we could have speculative execution) 478 */ 479 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) && 480 is_kernel_addr(addr)) 481 continue; 482 483 /* Branches are read most recent first (ie. mfbhrb 0 is 484 * the most recent branch). 485 * There are two types of valid entries: 486 * 1) a target entry which is the to address of a 487 * computed goto like a blr,bctr,btar. The next 488 * entry read from the bhrb will be branch 489 * corresponding to this target (ie. the actual 490 * blr/bctr/btar instruction). 491 * 2) a from address which is an actual branch. If a 492 * target entry proceeds this, then this is the 493 * matching branch for that target. If this is not 494 * following a target entry, then this is a branch 495 * where the target is given as an immediate field 496 * in the instruction (ie. an i or b form branch). 497 * In this case we need to read the instruction from 498 * memory to determine the target/to address. 499 */ 500 501 if (val & BHRB_TARGET) { 502 /* Target branches use two entries 503 * (ie. computed gotos/XL form) 504 */ 505 cpuhw->bhrb_entries[u_index].to = addr; 506 cpuhw->bhrb_entries[u_index].mispred = pred; 507 cpuhw->bhrb_entries[u_index].predicted = ~pred; 508 509 /* Get from address in next entry */ 510 val = read_bhrb(r_index++); 511 addr = val & BHRB_EA; 512 if (val & BHRB_TARGET) { 513 /* Shouldn't have two targets in a 514 row.. Reset index and try again */ 515 r_index--; 516 addr = 0; 517 } 518 cpuhw->bhrb_entries[u_index].from = addr; 519 } else { 520 /* Branches to immediate field 521 (ie I or B form) */ 522 cpuhw->bhrb_entries[u_index].from = addr; 523 cpuhw->bhrb_entries[u_index].to = 524 power_pmu_bhrb_to(addr); 525 cpuhw->bhrb_entries[u_index].mispred = pred; 526 cpuhw->bhrb_entries[u_index].predicted = ~pred; 527 } 528 u_index++; 529 530 } 531 } 532 cpuhw->bhrb_stack.nr = u_index; 533 return; 534 } 535 536 static bool is_ebb_event(struct perf_event *event) 537 { 538 /* 539 * This could be a per-PMU callback, but we'd rather avoid the cost. We 540 * check that the PMU supports EBB, meaning those that don't can still 541 * use bit 63 of the event code for something else if they wish. 542 */ 543 return (ppmu->flags & PPMU_ARCH_207S) && 544 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 545 } 546 547 static int ebb_event_check(struct perf_event *event) 548 { 549 struct perf_event *leader = event->group_leader; 550 551 /* Event and group leader must agree on EBB */ 552 if (is_ebb_event(leader) != is_ebb_event(event)) 553 return -EINVAL; 554 555 if (is_ebb_event(event)) { 556 if (!(event->attach_state & PERF_ATTACH_TASK)) 557 return -EINVAL; 558 559 if (!leader->attr.pinned || !leader->attr.exclusive) 560 return -EINVAL; 561 562 if (event->attr.freq || 563 event->attr.inherit || 564 event->attr.sample_type || 565 event->attr.sample_period || 566 event->attr.enable_on_exec) 567 return -EINVAL; 568 } 569 570 return 0; 571 } 572 573 static void ebb_event_add(struct perf_event *event) 574 { 575 if (!is_ebb_event(event) || current->thread.used_ebb) 576 return; 577 578 /* 579 * IFF this is the first time we've added an EBB event, set 580 * PMXE in the user MMCR0 so we can detect when it's cleared by 581 * userspace. We need this so that we can context switch while 582 * userspace is in the EBB handler (where PMXE is 0). 583 */ 584 current->thread.used_ebb = 1; 585 current->thread.mmcr0 |= MMCR0_PMXE; 586 } 587 588 static void ebb_switch_out(unsigned long mmcr0) 589 { 590 if (!(mmcr0 & MMCR0_EBE)) 591 return; 592 593 current->thread.siar = mfspr(SPRN_SIAR); 594 current->thread.sier = mfspr(SPRN_SIER); 595 current->thread.sdar = mfspr(SPRN_SDAR); 596 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 597 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 598 } 599 600 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 601 { 602 unsigned long mmcr0 = cpuhw->mmcr[0]; 603 604 if (!ebb) 605 goto out; 606 607 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 608 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 609 610 /* 611 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 612 * with pmao_restore_workaround() because we may add PMAO but we never 613 * clear it here. 614 */ 615 mmcr0 |= current->thread.mmcr0; 616 617 /* 618 * Be careful not to set PMXE if userspace had it cleared. This is also 619 * compatible with pmao_restore_workaround() because it has already 620 * cleared PMXE and we leave PMAO alone. 621 */ 622 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 623 mmcr0 &= ~MMCR0_PMXE; 624 625 mtspr(SPRN_SIAR, current->thread.siar); 626 mtspr(SPRN_SIER, current->thread.sier); 627 mtspr(SPRN_SDAR, current->thread.sdar); 628 629 /* 630 * Merge the kernel & user values of MMCR2. The semantics we implement 631 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 632 * but not clear bits. If a task wants to be able to clear bits, ie. 633 * unfreeze counters, it should not set exclude_xxx in its events and 634 * instead manage the MMCR2 entirely by itself. 635 */ 636 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 637 out: 638 return mmcr0; 639 } 640 641 static void pmao_restore_workaround(bool ebb) 642 { 643 unsigned pmcs[6]; 644 645 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 646 return; 647 648 /* 649 * On POWER8E there is a hardware defect which affects the PMU context 650 * switch logic, ie. power_pmu_disable/enable(). 651 * 652 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 653 * by the hardware. Sometime later the actual PMU exception is 654 * delivered. 655 * 656 * If we context switch, or simply disable/enable, the PMU prior to the 657 * exception arriving, the exception will be lost when we clear PMAO. 658 * 659 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 660 * set, and this _should_ generate an exception. However because of the 661 * defect no exception is generated when we write PMAO, and we get 662 * stuck with no counters counting but no exception delivered. 663 * 664 * The workaround is to detect this case and tweak the hardware to 665 * create another pending PMU exception. 666 * 667 * We do that by setting up PMC6 (cycles) for an imminent overflow and 668 * enabling the PMU. That causes a new exception to be generated in the 669 * chip, but we don't take it yet because we have interrupts hard 670 * disabled. We then write back the PMU state as we want it to be seen 671 * by the exception handler. When we reenable interrupts the exception 672 * handler will be called and see the correct state. 673 * 674 * The logic is the same for EBB, except that the exception is gated by 675 * us having interrupts hard disabled as well as the fact that we are 676 * not in userspace. The exception is finally delivered when we return 677 * to userspace. 678 */ 679 680 /* Only if PMAO is set and PMAO_SYNC is clear */ 681 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 682 return; 683 684 /* If we're doing EBB, only if BESCR[GE] is set */ 685 if (ebb && !(current->thread.bescr & BESCR_GE)) 686 return; 687 688 /* 689 * We are already soft-disabled in power_pmu_enable(). We need to hard 690 * disable to actually prevent the PMU exception from firing. 691 */ 692 hard_irq_disable(); 693 694 /* 695 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 696 * Using read/write_pmc() in a for loop adds 12 function calls and 697 * almost doubles our code size. 698 */ 699 pmcs[0] = mfspr(SPRN_PMC1); 700 pmcs[1] = mfspr(SPRN_PMC2); 701 pmcs[2] = mfspr(SPRN_PMC3); 702 pmcs[3] = mfspr(SPRN_PMC4); 703 pmcs[4] = mfspr(SPRN_PMC5); 704 pmcs[5] = mfspr(SPRN_PMC6); 705 706 /* Ensure all freeze bits are unset */ 707 mtspr(SPRN_MMCR2, 0); 708 709 /* Set up PMC6 to overflow in one cycle */ 710 mtspr(SPRN_PMC6, 0x7FFFFFFE); 711 712 /* Enable exceptions and unfreeze PMC6 */ 713 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 714 715 /* Now we need to refreeze and restore the PMCs */ 716 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 717 718 mtspr(SPRN_PMC1, pmcs[0]); 719 mtspr(SPRN_PMC2, pmcs[1]); 720 mtspr(SPRN_PMC3, pmcs[2]); 721 mtspr(SPRN_PMC4, pmcs[3]); 722 mtspr(SPRN_PMC5, pmcs[4]); 723 mtspr(SPRN_PMC6, pmcs[5]); 724 } 725 726 #endif /* CONFIG_PPC64 */ 727 728 static void perf_event_interrupt(struct pt_regs *regs); 729 730 /* 731 * Read one performance monitor counter (PMC). 732 */ 733 static unsigned long read_pmc(int idx) 734 { 735 unsigned long val; 736 737 switch (idx) { 738 case 1: 739 val = mfspr(SPRN_PMC1); 740 break; 741 case 2: 742 val = mfspr(SPRN_PMC2); 743 break; 744 case 3: 745 val = mfspr(SPRN_PMC3); 746 break; 747 case 4: 748 val = mfspr(SPRN_PMC4); 749 break; 750 case 5: 751 val = mfspr(SPRN_PMC5); 752 break; 753 case 6: 754 val = mfspr(SPRN_PMC6); 755 break; 756 #ifdef CONFIG_PPC64 757 case 7: 758 val = mfspr(SPRN_PMC7); 759 break; 760 case 8: 761 val = mfspr(SPRN_PMC8); 762 break; 763 #endif /* CONFIG_PPC64 */ 764 default: 765 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 766 val = 0; 767 } 768 return val; 769 } 770 771 /* 772 * Write one PMC. 773 */ 774 static void write_pmc(int idx, unsigned long val) 775 { 776 switch (idx) { 777 case 1: 778 mtspr(SPRN_PMC1, val); 779 break; 780 case 2: 781 mtspr(SPRN_PMC2, val); 782 break; 783 case 3: 784 mtspr(SPRN_PMC3, val); 785 break; 786 case 4: 787 mtspr(SPRN_PMC4, val); 788 break; 789 case 5: 790 mtspr(SPRN_PMC5, val); 791 break; 792 case 6: 793 mtspr(SPRN_PMC6, val); 794 break; 795 #ifdef CONFIG_PPC64 796 case 7: 797 mtspr(SPRN_PMC7, val); 798 break; 799 case 8: 800 mtspr(SPRN_PMC8, val); 801 break; 802 #endif /* CONFIG_PPC64 */ 803 default: 804 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 805 } 806 } 807 808 /* Called from sysrq_handle_showregs() */ 809 void perf_event_print_debug(void) 810 { 811 unsigned long sdar, sier, flags; 812 u32 pmcs[MAX_HWEVENTS]; 813 int i; 814 815 if (!ppmu) { 816 pr_info("Performance monitor hardware not registered.\n"); 817 return; 818 } 819 820 if (!ppmu->n_counter) 821 return; 822 823 local_irq_save(flags); 824 825 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 826 smp_processor_id(), ppmu->name, ppmu->n_counter); 827 828 for (i = 0; i < ppmu->n_counter; i++) 829 pmcs[i] = read_pmc(i + 1); 830 831 for (; i < MAX_HWEVENTS; i++) 832 pmcs[i] = 0xdeadbeef; 833 834 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 835 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 836 837 if (ppmu->n_counter > 4) 838 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 839 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 840 841 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 842 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 843 844 sdar = sier = 0; 845 #ifdef CONFIG_PPC64 846 sdar = mfspr(SPRN_SDAR); 847 848 if (ppmu->flags & PPMU_HAS_SIER) 849 sier = mfspr(SPRN_SIER); 850 851 if (ppmu->flags & PPMU_ARCH_207S) { 852 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 853 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 854 pr_info("EBBRR: %016lx BESCR: %016lx\n", 855 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 856 } 857 #endif 858 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 859 mfspr(SPRN_SIAR), sdar, sier); 860 861 local_irq_restore(flags); 862 } 863 864 /* 865 * Check if a set of events can all go on the PMU at once. 866 * If they can't, this will look at alternative codes for the events 867 * and see if any combination of alternative codes is feasible. 868 * The feasible set is returned in event_id[]. 869 */ 870 static int power_check_constraints(struct cpu_hw_events *cpuhw, 871 u64 event_id[], unsigned int cflags[], 872 int n_ev) 873 { 874 unsigned long mask, value, nv; 875 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 876 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 877 int i, j; 878 unsigned long addf = ppmu->add_fields; 879 unsigned long tadd = ppmu->test_adder; 880 unsigned long grp_mask = ppmu->group_constraint_mask; 881 unsigned long grp_val = ppmu->group_constraint_val; 882 883 if (n_ev > ppmu->n_counter) 884 return -1; 885 886 /* First see if the events will go on as-is */ 887 for (i = 0; i < n_ev; ++i) { 888 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 889 && !ppmu->limited_pmc_event(event_id[i])) { 890 ppmu->get_alternatives(event_id[i], cflags[i], 891 cpuhw->alternatives[i]); 892 event_id[i] = cpuhw->alternatives[i][0]; 893 } 894 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 895 &cpuhw->avalues[i][0])) 896 return -1; 897 } 898 value = mask = 0; 899 for (i = 0; i < n_ev; ++i) { 900 nv = (value | cpuhw->avalues[i][0]) + 901 (value & cpuhw->avalues[i][0] & addf); 902 903 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 904 break; 905 906 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 907 & (~grp_mask)) != 0) 908 break; 909 910 value = nv; 911 mask |= cpuhw->amasks[i][0]; 912 } 913 if (i == n_ev) { 914 if ((value & mask & grp_mask) != (mask & grp_val)) 915 return -1; 916 else 917 return 0; /* all OK */ 918 } 919 920 /* doesn't work, gather alternatives... */ 921 if (!ppmu->get_alternatives) 922 return -1; 923 for (i = 0; i < n_ev; ++i) { 924 choice[i] = 0; 925 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 926 cpuhw->alternatives[i]); 927 for (j = 1; j < n_alt[i]; ++j) 928 ppmu->get_constraint(cpuhw->alternatives[i][j], 929 &cpuhw->amasks[i][j], 930 &cpuhw->avalues[i][j]); 931 } 932 933 /* enumerate all possibilities and see if any will work */ 934 i = 0; 935 j = -1; 936 value = mask = nv = 0; 937 while (i < n_ev) { 938 if (j >= 0) { 939 /* we're backtracking, restore context */ 940 value = svalues[i]; 941 mask = smasks[i]; 942 j = choice[i]; 943 } 944 /* 945 * See if any alternative k for event_id i, 946 * where k > j, will satisfy the constraints. 947 */ 948 while (++j < n_alt[i]) { 949 nv = (value | cpuhw->avalues[i][j]) + 950 (value & cpuhw->avalues[i][j] & addf); 951 if ((((nv + tadd) ^ value) & mask) == 0 && 952 (((nv + tadd) ^ cpuhw->avalues[i][j]) 953 & cpuhw->amasks[i][j]) == 0) 954 break; 955 } 956 if (j >= n_alt[i]) { 957 /* 958 * No feasible alternative, backtrack 959 * to event_id i-1 and continue enumerating its 960 * alternatives from where we got up to. 961 */ 962 if (--i < 0) 963 return -1; 964 } else { 965 /* 966 * Found a feasible alternative for event_id i, 967 * remember where we got up to with this event_id, 968 * go on to the next event_id, and start with 969 * the first alternative for it. 970 */ 971 choice[i] = j; 972 svalues[i] = value; 973 smasks[i] = mask; 974 value = nv; 975 mask |= cpuhw->amasks[i][j]; 976 ++i; 977 j = -1; 978 } 979 } 980 981 /* OK, we have a feasible combination, tell the caller the solution */ 982 for (i = 0; i < n_ev; ++i) 983 event_id[i] = cpuhw->alternatives[i][choice[i]]; 984 return 0; 985 } 986 987 /* 988 * Check if newly-added events have consistent settings for 989 * exclude_{user,kernel,hv} with each other and any previously 990 * added events. 991 */ 992 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 993 int n_prev, int n_new) 994 { 995 int eu = 0, ek = 0, eh = 0; 996 int i, n, first; 997 struct perf_event *event; 998 999 /* 1000 * If the PMU we're on supports per event exclude settings then we 1001 * don't need to do any of this logic. NB. This assumes no PMU has both 1002 * per event exclude and limited PMCs. 1003 */ 1004 if (ppmu->flags & PPMU_ARCH_207S) 1005 return 0; 1006 1007 n = n_prev + n_new; 1008 if (n <= 1) 1009 return 0; 1010 1011 first = 1; 1012 for (i = 0; i < n; ++i) { 1013 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1014 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1015 continue; 1016 } 1017 event = ctrs[i]; 1018 if (first) { 1019 eu = event->attr.exclude_user; 1020 ek = event->attr.exclude_kernel; 1021 eh = event->attr.exclude_hv; 1022 first = 0; 1023 } else if (event->attr.exclude_user != eu || 1024 event->attr.exclude_kernel != ek || 1025 event->attr.exclude_hv != eh) { 1026 return -EAGAIN; 1027 } 1028 } 1029 1030 if (eu || ek || eh) 1031 for (i = 0; i < n; ++i) 1032 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1033 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1034 1035 return 0; 1036 } 1037 1038 static u64 check_and_compute_delta(u64 prev, u64 val) 1039 { 1040 u64 delta = (val - prev) & 0xfffffffful; 1041 1042 /* 1043 * POWER7 can roll back counter values, if the new value is smaller 1044 * than the previous value it will cause the delta and the counter to 1045 * have bogus values unless we rolled a counter over. If a coutner is 1046 * rolled back, it will be smaller, but within 256, which is the maximum 1047 * number of events to rollback at once. If we detect a rollback 1048 * return 0. This can lead to a small lack of precision in the 1049 * counters. 1050 */ 1051 if (prev > val && (prev - val) < 256) 1052 delta = 0; 1053 1054 return delta; 1055 } 1056 1057 static void power_pmu_read(struct perf_event *event) 1058 { 1059 s64 val, delta, prev; 1060 1061 if (event->hw.state & PERF_HES_STOPPED) 1062 return; 1063 1064 if (!event->hw.idx) 1065 return; 1066 1067 if (is_ebb_event(event)) { 1068 val = read_pmc(event->hw.idx); 1069 local64_set(&event->hw.prev_count, val); 1070 return; 1071 } 1072 1073 /* 1074 * Performance monitor interrupts come even when interrupts 1075 * are soft-disabled, as long as interrupts are hard-enabled. 1076 * Therefore we treat them like NMIs. 1077 */ 1078 do { 1079 prev = local64_read(&event->hw.prev_count); 1080 barrier(); 1081 val = read_pmc(event->hw.idx); 1082 delta = check_and_compute_delta(prev, val); 1083 if (!delta) 1084 return; 1085 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1086 1087 local64_add(delta, &event->count); 1088 1089 /* 1090 * A number of places program the PMC with (0x80000000 - period_left). 1091 * We never want period_left to be less than 1 because we will program 1092 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1093 * roll around to 0 before taking an exception. We have seen this 1094 * on POWER8. 1095 * 1096 * To fix this, clamp the minimum value of period_left to 1. 1097 */ 1098 do { 1099 prev = local64_read(&event->hw.period_left); 1100 val = prev - delta; 1101 if (val < 1) 1102 val = 1; 1103 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1104 } 1105 1106 /* 1107 * On some machines, PMC5 and PMC6 can't be written, don't respect 1108 * the freeze conditions, and don't generate interrupts. This tells 1109 * us if `event' is using such a PMC. 1110 */ 1111 static int is_limited_pmc(int pmcnum) 1112 { 1113 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1114 && (pmcnum == 5 || pmcnum == 6); 1115 } 1116 1117 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1118 unsigned long pmc5, unsigned long pmc6) 1119 { 1120 struct perf_event *event; 1121 u64 val, prev, delta; 1122 int i; 1123 1124 for (i = 0; i < cpuhw->n_limited; ++i) { 1125 event = cpuhw->limited_counter[i]; 1126 if (!event->hw.idx) 1127 continue; 1128 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1129 prev = local64_read(&event->hw.prev_count); 1130 event->hw.idx = 0; 1131 delta = check_and_compute_delta(prev, val); 1132 if (delta) 1133 local64_add(delta, &event->count); 1134 } 1135 } 1136 1137 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1138 unsigned long pmc5, unsigned long pmc6) 1139 { 1140 struct perf_event *event; 1141 u64 val, prev; 1142 int i; 1143 1144 for (i = 0; i < cpuhw->n_limited; ++i) { 1145 event = cpuhw->limited_counter[i]; 1146 event->hw.idx = cpuhw->limited_hwidx[i]; 1147 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1148 prev = local64_read(&event->hw.prev_count); 1149 if (check_and_compute_delta(prev, val)) 1150 local64_set(&event->hw.prev_count, val); 1151 perf_event_update_userpage(event); 1152 } 1153 } 1154 1155 /* 1156 * Since limited events don't respect the freeze conditions, we 1157 * have to read them immediately after freezing or unfreezing the 1158 * other events. We try to keep the values from the limited 1159 * events as consistent as possible by keeping the delay (in 1160 * cycles and instructions) between freezing/unfreezing and reading 1161 * the limited events as small and consistent as possible. 1162 * Therefore, if any limited events are in use, we read them 1163 * both, and always in the same order, to minimize variability, 1164 * and do it inside the same asm that writes MMCR0. 1165 */ 1166 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1167 { 1168 unsigned long pmc5, pmc6; 1169 1170 if (!cpuhw->n_limited) { 1171 mtspr(SPRN_MMCR0, mmcr0); 1172 return; 1173 } 1174 1175 /* 1176 * Write MMCR0, then read PMC5 and PMC6 immediately. 1177 * To ensure we don't get a performance monitor interrupt 1178 * between writing MMCR0 and freezing/thawing the limited 1179 * events, we first write MMCR0 with the event overflow 1180 * interrupt enable bits turned off. 1181 */ 1182 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1183 : "=&r" (pmc5), "=&r" (pmc6) 1184 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1185 "i" (SPRN_MMCR0), 1186 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1187 1188 if (mmcr0 & MMCR0_FC) 1189 freeze_limited_counters(cpuhw, pmc5, pmc6); 1190 else 1191 thaw_limited_counters(cpuhw, pmc5, pmc6); 1192 1193 /* 1194 * Write the full MMCR0 including the event overflow interrupt 1195 * enable bits, if necessary. 1196 */ 1197 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1198 mtspr(SPRN_MMCR0, mmcr0); 1199 } 1200 1201 /* 1202 * Disable all events to prevent PMU interrupts and to allow 1203 * events to be added or removed. 1204 */ 1205 static void power_pmu_disable(struct pmu *pmu) 1206 { 1207 struct cpu_hw_events *cpuhw; 1208 unsigned long flags, mmcr0, val; 1209 1210 if (!ppmu) 1211 return; 1212 local_irq_save(flags); 1213 cpuhw = this_cpu_ptr(&cpu_hw_events); 1214 1215 if (!cpuhw->disabled) { 1216 /* 1217 * Check if we ever enabled the PMU on this cpu. 1218 */ 1219 if (!cpuhw->pmcs_enabled) { 1220 ppc_enable_pmcs(); 1221 cpuhw->pmcs_enabled = 1; 1222 } 1223 1224 /* 1225 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1226 */ 1227 val = mmcr0 = mfspr(SPRN_MMCR0); 1228 val |= MMCR0_FC; 1229 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1230 MMCR0_FC56); 1231 1232 /* 1233 * The barrier is to make sure the mtspr has been 1234 * executed and the PMU has frozen the events etc. 1235 * before we return. 1236 */ 1237 write_mmcr0(cpuhw, val); 1238 mb(); 1239 isync(); 1240 1241 /* 1242 * Disable instruction sampling if it was enabled 1243 */ 1244 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1245 mtspr(SPRN_MMCRA, 1246 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1247 mb(); 1248 isync(); 1249 } 1250 1251 cpuhw->disabled = 1; 1252 cpuhw->n_added = 0; 1253 1254 ebb_switch_out(mmcr0); 1255 1256 #ifdef CONFIG_PPC64 1257 /* 1258 * These are readable by userspace, may contain kernel 1259 * addresses and are not switched by context switch, so clear 1260 * them now to avoid leaking anything to userspace in general 1261 * including to another process. 1262 */ 1263 if (ppmu->flags & PPMU_ARCH_207S) { 1264 mtspr(SPRN_SDAR, 0); 1265 mtspr(SPRN_SIAR, 0); 1266 } 1267 #endif 1268 } 1269 1270 local_irq_restore(flags); 1271 } 1272 1273 /* 1274 * Re-enable all events if disable == 0. 1275 * If we were previously disabled and events were added, then 1276 * put the new config on the PMU. 1277 */ 1278 static void power_pmu_enable(struct pmu *pmu) 1279 { 1280 struct perf_event *event; 1281 struct cpu_hw_events *cpuhw; 1282 unsigned long flags; 1283 long i; 1284 unsigned long val, mmcr0; 1285 s64 left; 1286 unsigned int hwc_index[MAX_HWEVENTS]; 1287 int n_lim; 1288 int idx; 1289 bool ebb; 1290 1291 if (!ppmu) 1292 return; 1293 local_irq_save(flags); 1294 1295 cpuhw = this_cpu_ptr(&cpu_hw_events); 1296 if (!cpuhw->disabled) 1297 goto out; 1298 1299 if (cpuhw->n_events == 0) { 1300 ppc_set_pmu_inuse(0); 1301 goto out; 1302 } 1303 1304 cpuhw->disabled = 0; 1305 1306 /* 1307 * EBB requires an exclusive group and all events must have the EBB 1308 * flag set, or not set, so we can just check a single event. Also we 1309 * know we have at least one event. 1310 */ 1311 ebb = is_ebb_event(cpuhw->event[0]); 1312 1313 /* 1314 * If we didn't change anything, or only removed events, 1315 * no need to recalculate MMCR* settings and reset the PMCs. 1316 * Just reenable the PMU with the current MMCR* settings 1317 * (possibly updated for removal of events). 1318 */ 1319 if (!cpuhw->n_added) { 1320 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1321 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1322 goto out_enable; 1323 } 1324 1325 /* 1326 * Clear all MMCR settings and recompute them for the new set of events. 1327 */ 1328 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1329 1330 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1331 cpuhw->mmcr, cpuhw->event)) { 1332 /* shouldn't ever get here */ 1333 printk(KERN_ERR "oops compute_mmcr failed\n"); 1334 goto out; 1335 } 1336 1337 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1338 /* 1339 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1340 * bits for the first event. We have already checked that all 1341 * events have the same value for these bits as the first event. 1342 */ 1343 event = cpuhw->event[0]; 1344 if (event->attr.exclude_user) 1345 cpuhw->mmcr[0] |= MMCR0_FCP; 1346 if (event->attr.exclude_kernel) 1347 cpuhw->mmcr[0] |= freeze_events_kernel; 1348 if (event->attr.exclude_hv) 1349 cpuhw->mmcr[0] |= MMCR0_FCHV; 1350 } 1351 1352 /* 1353 * Write the new configuration to MMCR* with the freeze 1354 * bit set and set the hardware events to their initial values. 1355 * Then unfreeze the events. 1356 */ 1357 ppc_set_pmu_inuse(1); 1358 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1359 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1360 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1361 | MMCR0_FC); 1362 if (ppmu->flags & PPMU_ARCH_207S) 1363 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1364 1365 /* 1366 * Read off any pre-existing events that need to move 1367 * to another PMC. 1368 */ 1369 for (i = 0; i < cpuhw->n_events; ++i) { 1370 event = cpuhw->event[i]; 1371 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1372 power_pmu_read(event); 1373 write_pmc(event->hw.idx, 0); 1374 event->hw.idx = 0; 1375 } 1376 } 1377 1378 /* 1379 * Initialize the PMCs for all the new and moved events. 1380 */ 1381 cpuhw->n_limited = n_lim = 0; 1382 for (i = 0; i < cpuhw->n_events; ++i) { 1383 event = cpuhw->event[i]; 1384 if (event->hw.idx) 1385 continue; 1386 idx = hwc_index[i] + 1; 1387 if (is_limited_pmc(idx)) { 1388 cpuhw->limited_counter[n_lim] = event; 1389 cpuhw->limited_hwidx[n_lim] = idx; 1390 ++n_lim; 1391 continue; 1392 } 1393 1394 if (ebb) 1395 val = local64_read(&event->hw.prev_count); 1396 else { 1397 val = 0; 1398 if (event->hw.sample_period) { 1399 left = local64_read(&event->hw.period_left); 1400 if (left < 0x80000000L) 1401 val = 0x80000000L - left; 1402 } 1403 local64_set(&event->hw.prev_count, val); 1404 } 1405 1406 event->hw.idx = idx; 1407 if (event->hw.state & PERF_HES_STOPPED) 1408 val = 0; 1409 write_pmc(idx, val); 1410 1411 perf_event_update_userpage(event); 1412 } 1413 cpuhw->n_limited = n_lim; 1414 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1415 1416 out_enable: 1417 pmao_restore_workaround(ebb); 1418 1419 mmcr0 = ebb_switch_in(ebb, cpuhw); 1420 1421 mb(); 1422 if (cpuhw->bhrb_users) 1423 ppmu->config_bhrb(cpuhw->bhrb_filter); 1424 1425 write_mmcr0(cpuhw, mmcr0); 1426 1427 /* 1428 * Enable instruction sampling if necessary 1429 */ 1430 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1431 mb(); 1432 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1433 } 1434 1435 out: 1436 1437 local_irq_restore(flags); 1438 } 1439 1440 static int collect_events(struct perf_event *group, int max_count, 1441 struct perf_event *ctrs[], u64 *events, 1442 unsigned int *flags) 1443 { 1444 int n = 0; 1445 struct perf_event *event; 1446 1447 if (group->pmu->task_ctx_nr == perf_hw_context) { 1448 if (n >= max_count) 1449 return -1; 1450 ctrs[n] = group; 1451 flags[n] = group->hw.event_base; 1452 events[n++] = group->hw.config; 1453 } 1454 for_each_sibling_event(event, group) { 1455 if (event->pmu->task_ctx_nr == perf_hw_context && 1456 event->state != PERF_EVENT_STATE_OFF) { 1457 if (n >= max_count) 1458 return -1; 1459 ctrs[n] = event; 1460 flags[n] = event->hw.event_base; 1461 events[n++] = event->hw.config; 1462 } 1463 } 1464 return n; 1465 } 1466 1467 /* 1468 * Add an event to the PMU. 1469 * If all events are not already frozen, then we disable and 1470 * re-enable the PMU in order to get hw_perf_enable to do the 1471 * actual work of reconfiguring the PMU. 1472 */ 1473 static int power_pmu_add(struct perf_event *event, int ef_flags) 1474 { 1475 struct cpu_hw_events *cpuhw; 1476 unsigned long flags; 1477 int n0; 1478 int ret = -EAGAIN; 1479 1480 local_irq_save(flags); 1481 perf_pmu_disable(event->pmu); 1482 1483 /* 1484 * Add the event to the list (if there is room) 1485 * and check whether the total set is still feasible. 1486 */ 1487 cpuhw = this_cpu_ptr(&cpu_hw_events); 1488 n0 = cpuhw->n_events; 1489 if (n0 >= ppmu->n_counter) 1490 goto out; 1491 cpuhw->event[n0] = event; 1492 cpuhw->events[n0] = event->hw.config; 1493 cpuhw->flags[n0] = event->hw.event_base; 1494 1495 /* 1496 * This event may have been disabled/stopped in record_and_restart() 1497 * because we exceeded the ->event_limit. If re-starting the event, 1498 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1499 * notification is re-enabled. 1500 */ 1501 if (!(ef_flags & PERF_EF_START)) 1502 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1503 else 1504 event->hw.state = 0; 1505 1506 /* 1507 * If group events scheduling transaction was started, 1508 * skip the schedulability test here, it will be performed 1509 * at commit time(->commit_txn) as a whole 1510 */ 1511 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1512 goto nocheck; 1513 1514 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1515 goto out; 1516 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1517 goto out; 1518 event->hw.config = cpuhw->events[n0]; 1519 1520 nocheck: 1521 ebb_event_add(event); 1522 1523 ++cpuhw->n_events; 1524 ++cpuhw->n_added; 1525 1526 ret = 0; 1527 out: 1528 if (has_branch_stack(event)) { 1529 power_pmu_bhrb_enable(event); 1530 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1531 event->attr.branch_sample_type); 1532 } 1533 1534 perf_pmu_enable(event->pmu); 1535 local_irq_restore(flags); 1536 return ret; 1537 } 1538 1539 /* 1540 * Remove an event from the PMU. 1541 */ 1542 static void power_pmu_del(struct perf_event *event, int ef_flags) 1543 { 1544 struct cpu_hw_events *cpuhw; 1545 long i; 1546 unsigned long flags; 1547 1548 local_irq_save(flags); 1549 perf_pmu_disable(event->pmu); 1550 1551 power_pmu_read(event); 1552 1553 cpuhw = this_cpu_ptr(&cpu_hw_events); 1554 for (i = 0; i < cpuhw->n_events; ++i) { 1555 if (event == cpuhw->event[i]) { 1556 while (++i < cpuhw->n_events) { 1557 cpuhw->event[i-1] = cpuhw->event[i]; 1558 cpuhw->events[i-1] = cpuhw->events[i]; 1559 cpuhw->flags[i-1] = cpuhw->flags[i]; 1560 } 1561 --cpuhw->n_events; 1562 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1563 if (event->hw.idx) { 1564 write_pmc(event->hw.idx, 0); 1565 event->hw.idx = 0; 1566 } 1567 perf_event_update_userpage(event); 1568 break; 1569 } 1570 } 1571 for (i = 0; i < cpuhw->n_limited; ++i) 1572 if (event == cpuhw->limited_counter[i]) 1573 break; 1574 if (i < cpuhw->n_limited) { 1575 while (++i < cpuhw->n_limited) { 1576 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1577 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1578 } 1579 --cpuhw->n_limited; 1580 } 1581 if (cpuhw->n_events == 0) { 1582 /* disable exceptions if no events are running */ 1583 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1584 } 1585 1586 if (has_branch_stack(event)) 1587 power_pmu_bhrb_disable(event); 1588 1589 perf_pmu_enable(event->pmu); 1590 local_irq_restore(flags); 1591 } 1592 1593 /* 1594 * POWER-PMU does not support disabling individual counters, hence 1595 * program their cycle counter to their max value and ignore the interrupts. 1596 */ 1597 1598 static void power_pmu_start(struct perf_event *event, int ef_flags) 1599 { 1600 unsigned long flags; 1601 s64 left; 1602 unsigned long val; 1603 1604 if (!event->hw.idx || !event->hw.sample_period) 1605 return; 1606 1607 if (!(event->hw.state & PERF_HES_STOPPED)) 1608 return; 1609 1610 if (ef_flags & PERF_EF_RELOAD) 1611 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1612 1613 local_irq_save(flags); 1614 perf_pmu_disable(event->pmu); 1615 1616 event->hw.state = 0; 1617 left = local64_read(&event->hw.period_left); 1618 1619 val = 0; 1620 if (left < 0x80000000L) 1621 val = 0x80000000L - left; 1622 1623 write_pmc(event->hw.idx, val); 1624 1625 perf_event_update_userpage(event); 1626 perf_pmu_enable(event->pmu); 1627 local_irq_restore(flags); 1628 } 1629 1630 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1631 { 1632 unsigned long flags; 1633 1634 if (!event->hw.idx || !event->hw.sample_period) 1635 return; 1636 1637 if (event->hw.state & PERF_HES_STOPPED) 1638 return; 1639 1640 local_irq_save(flags); 1641 perf_pmu_disable(event->pmu); 1642 1643 power_pmu_read(event); 1644 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1645 write_pmc(event->hw.idx, 0); 1646 1647 perf_event_update_userpage(event); 1648 perf_pmu_enable(event->pmu); 1649 local_irq_restore(flags); 1650 } 1651 1652 /* 1653 * Start group events scheduling transaction 1654 * Set the flag to make pmu::enable() not perform the 1655 * schedulability test, it will be performed at commit time 1656 * 1657 * We only support PERF_PMU_TXN_ADD transactions. Save the 1658 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1659 * transactions. 1660 */ 1661 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1662 { 1663 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1664 1665 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1666 1667 cpuhw->txn_flags = txn_flags; 1668 if (txn_flags & ~PERF_PMU_TXN_ADD) 1669 return; 1670 1671 perf_pmu_disable(pmu); 1672 cpuhw->n_txn_start = cpuhw->n_events; 1673 } 1674 1675 /* 1676 * Stop group events scheduling transaction 1677 * Clear the flag and pmu::enable() will perform the 1678 * schedulability test. 1679 */ 1680 static void power_pmu_cancel_txn(struct pmu *pmu) 1681 { 1682 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1683 unsigned int txn_flags; 1684 1685 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1686 1687 txn_flags = cpuhw->txn_flags; 1688 cpuhw->txn_flags = 0; 1689 if (txn_flags & ~PERF_PMU_TXN_ADD) 1690 return; 1691 1692 perf_pmu_enable(pmu); 1693 } 1694 1695 /* 1696 * Commit group events scheduling transaction 1697 * Perform the group schedulability test as a whole 1698 * Return 0 if success 1699 */ 1700 static int power_pmu_commit_txn(struct pmu *pmu) 1701 { 1702 struct cpu_hw_events *cpuhw; 1703 long i, n; 1704 1705 if (!ppmu) 1706 return -EAGAIN; 1707 1708 cpuhw = this_cpu_ptr(&cpu_hw_events); 1709 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1710 1711 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1712 cpuhw->txn_flags = 0; 1713 return 0; 1714 } 1715 1716 n = cpuhw->n_events; 1717 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1718 return -EAGAIN; 1719 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1720 if (i < 0) 1721 return -EAGAIN; 1722 1723 for (i = cpuhw->n_txn_start; i < n; ++i) 1724 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1725 1726 cpuhw->txn_flags = 0; 1727 perf_pmu_enable(pmu); 1728 return 0; 1729 } 1730 1731 /* 1732 * Return 1 if we might be able to put event on a limited PMC, 1733 * or 0 if not. 1734 * An event can only go on a limited PMC if it counts something 1735 * that a limited PMC can count, doesn't require interrupts, and 1736 * doesn't exclude any processor mode. 1737 */ 1738 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1739 unsigned int flags) 1740 { 1741 int n; 1742 u64 alt[MAX_EVENT_ALTERNATIVES]; 1743 1744 if (event->attr.exclude_user 1745 || event->attr.exclude_kernel 1746 || event->attr.exclude_hv 1747 || event->attr.sample_period) 1748 return 0; 1749 1750 if (ppmu->limited_pmc_event(ev)) 1751 return 1; 1752 1753 /* 1754 * The requested event_id isn't on a limited PMC already; 1755 * see if any alternative code goes on a limited PMC. 1756 */ 1757 if (!ppmu->get_alternatives) 1758 return 0; 1759 1760 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1761 n = ppmu->get_alternatives(ev, flags, alt); 1762 1763 return n > 0; 1764 } 1765 1766 /* 1767 * Find an alternative event_id that goes on a normal PMC, if possible, 1768 * and return the event_id code, or 0 if there is no such alternative. 1769 * (Note: event_id code 0 is "don't count" on all machines.) 1770 */ 1771 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1772 { 1773 u64 alt[MAX_EVENT_ALTERNATIVES]; 1774 int n; 1775 1776 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1777 n = ppmu->get_alternatives(ev, flags, alt); 1778 if (!n) 1779 return 0; 1780 return alt[0]; 1781 } 1782 1783 /* Number of perf_events counting hardware events */ 1784 static atomic_t num_events; 1785 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1786 static DEFINE_MUTEX(pmc_reserve_mutex); 1787 1788 /* 1789 * Release the PMU if this is the last perf_event. 1790 */ 1791 static void hw_perf_event_destroy(struct perf_event *event) 1792 { 1793 if (!atomic_add_unless(&num_events, -1, 1)) { 1794 mutex_lock(&pmc_reserve_mutex); 1795 if (atomic_dec_return(&num_events) == 0) 1796 release_pmc_hardware(); 1797 mutex_unlock(&pmc_reserve_mutex); 1798 } 1799 } 1800 1801 /* 1802 * Translate a generic cache event_id config to a raw event_id code. 1803 */ 1804 static int hw_perf_cache_event(u64 config, u64 *eventp) 1805 { 1806 unsigned long type, op, result; 1807 int ev; 1808 1809 if (!ppmu->cache_events) 1810 return -EINVAL; 1811 1812 /* unpack config */ 1813 type = config & 0xff; 1814 op = (config >> 8) & 0xff; 1815 result = (config >> 16) & 0xff; 1816 1817 if (type >= PERF_COUNT_HW_CACHE_MAX || 1818 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1819 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1820 return -EINVAL; 1821 1822 ev = (*ppmu->cache_events)[type][op][result]; 1823 if (ev == 0) 1824 return -EOPNOTSUPP; 1825 if (ev == -1) 1826 return -EINVAL; 1827 *eventp = ev; 1828 return 0; 1829 } 1830 1831 static bool is_event_blacklisted(u64 ev) 1832 { 1833 int i; 1834 1835 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1836 if (ppmu->blacklist_ev[i] == ev) 1837 return true; 1838 } 1839 1840 return false; 1841 } 1842 1843 static int power_pmu_event_init(struct perf_event *event) 1844 { 1845 u64 ev; 1846 unsigned long flags; 1847 struct perf_event *ctrs[MAX_HWEVENTS]; 1848 u64 events[MAX_HWEVENTS]; 1849 unsigned int cflags[MAX_HWEVENTS]; 1850 int n; 1851 int err; 1852 struct cpu_hw_events *cpuhw; 1853 1854 if (!ppmu) 1855 return -ENOENT; 1856 1857 if (has_branch_stack(event)) { 1858 /* PMU has BHRB enabled */ 1859 if (!(ppmu->flags & PPMU_ARCH_207S)) 1860 return -EOPNOTSUPP; 1861 } 1862 1863 switch (event->attr.type) { 1864 case PERF_TYPE_HARDWARE: 1865 ev = event->attr.config; 1866 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1867 return -EOPNOTSUPP; 1868 1869 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1870 return -EINVAL; 1871 ev = ppmu->generic_events[ev]; 1872 break; 1873 case PERF_TYPE_HW_CACHE: 1874 err = hw_perf_cache_event(event->attr.config, &ev); 1875 if (err) 1876 return err; 1877 1878 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1879 return -EINVAL; 1880 break; 1881 case PERF_TYPE_RAW: 1882 ev = event->attr.config; 1883 1884 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1885 return -EINVAL; 1886 break; 1887 default: 1888 return -ENOENT; 1889 } 1890 1891 event->hw.config_base = ev; 1892 event->hw.idx = 0; 1893 1894 /* 1895 * If we are not running on a hypervisor, force the 1896 * exclude_hv bit to 0 so that we don't care what 1897 * the user set it to. 1898 */ 1899 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1900 event->attr.exclude_hv = 0; 1901 1902 /* 1903 * If this is a per-task event, then we can use 1904 * PM_RUN_* events interchangeably with their non RUN_* 1905 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1906 * XXX we should check if the task is an idle task. 1907 */ 1908 flags = 0; 1909 if (event->attach_state & PERF_ATTACH_TASK) 1910 flags |= PPMU_ONLY_COUNT_RUN; 1911 1912 /* 1913 * If this machine has limited events, check whether this 1914 * event_id could go on a limited event. 1915 */ 1916 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1917 if (can_go_on_limited_pmc(event, ev, flags)) { 1918 flags |= PPMU_LIMITED_PMC_OK; 1919 } else if (ppmu->limited_pmc_event(ev)) { 1920 /* 1921 * The requested event_id is on a limited PMC, 1922 * but we can't use a limited PMC; see if any 1923 * alternative goes on a normal PMC. 1924 */ 1925 ev = normal_pmc_alternative(ev, flags); 1926 if (!ev) 1927 return -EINVAL; 1928 } 1929 } 1930 1931 /* Extra checks for EBB */ 1932 err = ebb_event_check(event); 1933 if (err) 1934 return err; 1935 1936 /* 1937 * If this is in a group, check if it can go on with all the 1938 * other hardware events in the group. We assume the event 1939 * hasn't been linked into its leader's sibling list at this point. 1940 */ 1941 n = 0; 1942 if (event->group_leader != event) { 1943 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1944 ctrs, events, cflags); 1945 if (n < 0) 1946 return -EINVAL; 1947 } 1948 events[n] = ev; 1949 ctrs[n] = event; 1950 cflags[n] = flags; 1951 if (check_excludes(ctrs, cflags, n, 1)) 1952 return -EINVAL; 1953 1954 cpuhw = &get_cpu_var(cpu_hw_events); 1955 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1956 1957 if (has_branch_stack(event)) { 1958 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1959 event->attr.branch_sample_type); 1960 1961 if (cpuhw->bhrb_filter == -1) { 1962 put_cpu_var(cpu_hw_events); 1963 return -EOPNOTSUPP; 1964 } 1965 } 1966 1967 put_cpu_var(cpu_hw_events); 1968 if (err) 1969 return -EINVAL; 1970 1971 event->hw.config = events[n]; 1972 event->hw.event_base = cflags[n]; 1973 event->hw.last_period = event->hw.sample_period; 1974 local64_set(&event->hw.period_left, event->hw.last_period); 1975 1976 /* 1977 * For EBB events we just context switch the PMC value, we don't do any 1978 * of the sample_period logic. We use hw.prev_count for this. 1979 */ 1980 if (is_ebb_event(event)) 1981 local64_set(&event->hw.prev_count, 0); 1982 1983 /* 1984 * See if we need to reserve the PMU. 1985 * If no events are currently in use, then we have to take a 1986 * mutex to ensure that we don't race with another task doing 1987 * reserve_pmc_hardware or release_pmc_hardware. 1988 */ 1989 err = 0; 1990 if (!atomic_inc_not_zero(&num_events)) { 1991 mutex_lock(&pmc_reserve_mutex); 1992 if (atomic_read(&num_events) == 0 && 1993 reserve_pmc_hardware(perf_event_interrupt)) 1994 err = -EBUSY; 1995 else 1996 atomic_inc(&num_events); 1997 mutex_unlock(&pmc_reserve_mutex); 1998 } 1999 event->destroy = hw_perf_event_destroy; 2000 2001 return err; 2002 } 2003 2004 static int power_pmu_event_idx(struct perf_event *event) 2005 { 2006 return event->hw.idx; 2007 } 2008 2009 ssize_t power_events_sysfs_show(struct device *dev, 2010 struct device_attribute *attr, char *page) 2011 { 2012 struct perf_pmu_events_attr *pmu_attr; 2013 2014 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2015 2016 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2017 } 2018 2019 static struct pmu power_pmu = { 2020 .pmu_enable = power_pmu_enable, 2021 .pmu_disable = power_pmu_disable, 2022 .event_init = power_pmu_event_init, 2023 .add = power_pmu_add, 2024 .del = power_pmu_del, 2025 .start = power_pmu_start, 2026 .stop = power_pmu_stop, 2027 .read = power_pmu_read, 2028 .start_txn = power_pmu_start_txn, 2029 .cancel_txn = power_pmu_cancel_txn, 2030 .commit_txn = power_pmu_commit_txn, 2031 .event_idx = power_pmu_event_idx, 2032 .sched_task = power_pmu_sched_task, 2033 }; 2034 2035 /* 2036 * A counter has overflowed; update its count and record 2037 * things if requested. Note that interrupts are hard-disabled 2038 * here so there is no possibility of being interrupted. 2039 */ 2040 static void record_and_restart(struct perf_event *event, unsigned long val, 2041 struct pt_regs *regs) 2042 { 2043 u64 period = event->hw.sample_period; 2044 s64 prev, delta, left; 2045 int record = 0; 2046 2047 if (event->hw.state & PERF_HES_STOPPED) { 2048 write_pmc(event->hw.idx, 0); 2049 return; 2050 } 2051 2052 /* we don't have to worry about interrupts here */ 2053 prev = local64_read(&event->hw.prev_count); 2054 delta = check_and_compute_delta(prev, val); 2055 local64_add(delta, &event->count); 2056 2057 /* 2058 * See if the total period for this event has expired, 2059 * and update for the next period. 2060 */ 2061 val = 0; 2062 left = local64_read(&event->hw.period_left) - delta; 2063 if (delta == 0) 2064 left++; 2065 if (period) { 2066 if (left <= 0) { 2067 left += period; 2068 if (left <= 0) 2069 left = period; 2070 record = siar_valid(regs); 2071 event->hw.last_period = event->hw.sample_period; 2072 } 2073 if (left < 0x80000000LL) 2074 val = 0x80000000LL - left; 2075 } 2076 2077 write_pmc(event->hw.idx, val); 2078 local64_set(&event->hw.prev_count, val); 2079 local64_set(&event->hw.period_left, left); 2080 perf_event_update_userpage(event); 2081 2082 /* 2083 * Finally record data if requested. 2084 */ 2085 if (record) { 2086 struct perf_sample_data data; 2087 2088 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2089 2090 if (event->attr.sample_type & 2091 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2092 perf_get_data_addr(regs, &data.addr); 2093 2094 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2095 struct cpu_hw_events *cpuhw; 2096 cpuhw = this_cpu_ptr(&cpu_hw_events); 2097 power_pmu_bhrb_read(cpuhw); 2098 data.br_stack = &cpuhw->bhrb_stack; 2099 } 2100 2101 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2102 ppmu->get_mem_data_src) 2103 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2104 2105 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2106 ppmu->get_mem_weight) 2107 ppmu->get_mem_weight(&data.weight); 2108 2109 if (perf_event_overflow(event, &data, regs)) 2110 power_pmu_stop(event, 0); 2111 } 2112 } 2113 2114 /* 2115 * Called from generic code to get the misc flags (i.e. processor mode) 2116 * for an event_id. 2117 */ 2118 unsigned long perf_misc_flags(struct pt_regs *regs) 2119 { 2120 u32 flags = perf_get_misc_flags(regs); 2121 2122 if (flags) 2123 return flags; 2124 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2125 PERF_RECORD_MISC_KERNEL; 2126 } 2127 2128 /* 2129 * Called from generic code to get the instruction pointer 2130 * for an event_id. 2131 */ 2132 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2133 { 2134 bool use_siar = regs_use_siar(regs); 2135 2136 if (use_siar && siar_valid(regs)) 2137 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2138 else if (use_siar) 2139 return 0; // no valid instruction pointer 2140 else 2141 return regs->nip; 2142 } 2143 2144 static bool pmc_overflow_power7(unsigned long val) 2145 { 2146 /* 2147 * Events on POWER7 can roll back if a speculative event doesn't 2148 * eventually complete. Unfortunately in some rare cases they will 2149 * raise a performance monitor exception. We need to catch this to 2150 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2151 * cycles from overflow. 2152 * 2153 * We only do this if the first pass fails to find any overflowing 2154 * PMCs because a user might set a period of less than 256 and we 2155 * don't want to mistakenly reset them. 2156 */ 2157 if ((0x80000000 - val) <= 256) 2158 return true; 2159 2160 return false; 2161 } 2162 2163 static bool pmc_overflow(unsigned long val) 2164 { 2165 if ((int)val < 0) 2166 return true; 2167 2168 return false; 2169 } 2170 2171 /* 2172 * Performance monitor interrupt stuff 2173 */ 2174 static void __perf_event_interrupt(struct pt_regs *regs) 2175 { 2176 int i, j; 2177 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2178 struct perf_event *event; 2179 unsigned long val[8]; 2180 int found, active; 2181 int nmi; 2182 2183 if (cpuhw->n_limited) 2184 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2185 mfspr(SPRN_PMC6)); 2186 2187 perf_read_regs(regs); 2188 2189 nmi = perf_intr_is_nmi(regs); 2190 if (nmi) 2191 nmi_enter(); 2192 else 2193 irq_enter(); 2194 2195 /* Read all the PMCs since we'll need them a bunch of times */ 2196 for (i = 0; i < ppmu->n_counter; ++i) 2197 val[i] = read_pmc(i + 1); 2198 2199 /* Try to find what caused the IRQ */ 2200 found = 0; 2201 for (i = 0; i < ppmu->n_counter; ++i) { 2202 if (!pmc_overflow(val[i])) 2203 continue; 2204 if (is_limited_pmc(i + 1)) 2205 continue; /* these won't generate IRQs */ 2206 /* 2207 * We've found one that's overflowed. For active 2208 * counters we need to log this. For inactive 2209 * counters, we need to reset it anyway 2210 */ 2211 found = 1; 2212 active = 0; 2213 for (j = 0; j < cpuhw->n_events; ++j) { 2214 event = cpuhw->event[j]; 2215 if (event->hw.idx == (i + 1)) { 2216 active = 1; 2217 record_and_restart(event, val[i], regs); 2218 break; 2219 } 2220 } 2221 if (!active) 2222 /* reset non active counters that have overflowed */ 2223 write_pmc(i + 1, 0); 2224 } 2225 if (!found && pvr_version_is(PVR_POWER7)) { 2226 /* check active counters for special buggy p7 overflow */ 2227 for (i = 0; i < cpuhw->n_events; ++i) { 2228 event = cpuhw->event[i]; 2229 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2230 continue; 2231 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2232 /* event has overflowed in a buggy way*/ 2233 found = 1; 2234 record_and_restart(event, 2235 val[event->hw.idx - 1], 2236 regs); 2237 } 2238 } 2239 } 2240 if (!found && !nmi && printk_ratelimit()) 2241 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2242 2243 /* 2244 * Reset MMCR0 to its normal value. This will set PMXE and 2245 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2246 * and thus allow interrupts to occur again. 2247 * XXX might want to use MSR.PM to keep the events frozen until 2248 * we get back out of this interrupt. 2249 */ 2250 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2251 2252 if (nmi) 2253 nmi_exit(); 2254 else 2255 irq_exit(); 2256 } 2257 2258 static void perf_event_interrupt(struct pt_regs *regs) 2259 { 2260 u64 start_clock = sched_clock(); 2261 2262 __perf_event_interrupt(regs); 2263 perf_sample_event_took(sched_clock() - start_clock); 2264 } 2265 2266 static int power_pmu_prepare_cpu(unsigned int cpu) 2267 { 2268 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2269 2270 if (ppmu) { 2271 memset(cpuhw, 0, sizeof(*cpuhw)); 2272 cpuhw->mmcr[0] = MMCR0_FC; 2273 } 2274 return 0; 2275 } 2276 2277 int register_power_pmu(struct power_pmu *pmu) 2278 { 2279 if (ppmu) 2280 return -EBUSY; /* something's already registered */ 2281 2282 ppmu = pmu; 2283 pr_info("%s performance monitor hardware support registered\n", 2284 pmu->name); 2285 2286 power_pmu.attr_groups = ppmu->attr_groups; 2287 2288 #ifdef MSR_HV 2289 /* 2290 * Use FCHV to ignore kernel events if MSR.HV is set. 2291 */ 2292 if (mfmsr() & MSR_HV) 2293 freeze_events_kernel = MMCR0_FCHV; 2294 #endif /* CONFIG_PPC64 */ 2295 2296 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2297 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2298 power_pmu_prepare_cpu, NULL); 2299 return 0; 2300 } 2301 2302 #ifdef CONFIG_PPC64 2303 static int __init init_ppc64_pmu(void) 2304 { 2305 /* run through all the pmu drivers one at a time */ 2306 if (!init_power5_pmu()) 2307 return 0; 2308 else if (!init_power5p_pmu()) 2309 return 0; 2310 else if (!init_power6_pmu()) 2311 return 0; 2312 else if (!init_power7_pmu()) 2313 return 0; 2314 else if (!init_power8_pmu()) 2315 return 0; 2316 else if (!init_power9_pmu()) 2317 return 0; 2318 else if (!init_ppc970_pmu()) 2319 return 0; 2320 else 2321 return init_generic_compat_pmu(); 2322 } 2323 early_initcall(init_ppc64_pmu); 2324 #endif 2325